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Abstract. Dependent type systems allow programmers to specify and
enforce rich data invariants. Consequently, they are important tools in
global computing environments where users must certify and check deep
properties of untrusted mobile programs. Unfortunately, programmers
who use these languages are required to annotate their programs with
many typing specifications to help guide the type checker. This paper
shows how to make the process of programming with dependent types
more palatable by defining a language in which programmers have fine-
grained control over the trade-off between the number of dependent typ-
ing annotations they must place on programs and the degree of compile-
time safety. More specifically, certain program fragments are marked de-
pendent, in which case the programmer annotates them in detail and a
dependent type checker verifies them at compile time. Other fragments
are marked simple, where programmers can just put simply-typed code
without any dependent annotation. To ensure safety, the compiler auto-
matically inserts coercions when control passes in between dependent and
simple fragments. These coercions are dynamic checks that make sure de-
pendent constraints are not violated by the simply-typed fragment at run
time. The language semantics are defined via a type-directed translation
from a surface language that mixes dependently and simply typed code
into an internal language that is completely dependently-typed. In the
internal language all dynamic checks on dependent constraints are ex-
plicit. The translation always produces type-safe internal language code
and the internal language type system is sound.



1 Introduction

Dependent type systems are powerful tools that allow programmers to specify
and enforce rich data invariants and guarantee that dangerous or unwanted pro-
gram behaviors never happen. Consequently, dependently-typed programming
languages are important tools in global computing environments where users
must certify and check deep properties of mobile programs.

While the theory of dependent types has been studied for several decades, re-
searchers have only recently begun to be able to integrate these rich specification
mechanisms into modern programming languages. The major stumbling block
in this enterprise is how to avoid a design in which programmers must place so
many typing annotations on their programs that the dependent types become
more trouble than they are worth. In other words, how do we avoid a situation
in which programmers spend so much time writing specifications to guide the
type checker that they cannot make any progress coding up the computation
they wish to execute?

The main solution to this problem has been to explicitly avoid any attempt
at full verification of program correctness and to instead focus on verification of
safety properties in limited but important domains. Hence, Xi and Pfenning [11]
and Zenger [12] have focused on integer reasoning to check the safety of array-
based code and also on simple symbolic constraints for checking properties of
data types. Similarly, in their language Vault, DeLine and Fahndrich [5] use a
form of linear type together with dependency to verify properties of state and
improve the robustness of Windows device drivers.

These projects have been very successful, but the annotations required by
programming languages involving dependent types can still be a burden to pro-
grammers, particularly in functional languages, where programmers are accus-
tomed to using complete type reconstruction algorithms. For instance, one set of
benchmarks analyzed by Xi and Pfenning indicates that programmers can often
expect that 10-20 percent of their code will be typing annotations1.

In order to encourage programmers to use dependent specifications in their
programs, we propose a language design and type system that allows program-
mers to add dependent specifications to program fragments bit by bit. More
specifically, certain program components are marked dependent, in which case
the type checker verifies statically that the programmer has properly maintained
dependent typing annotations. Other portions of the program are marked sim-
ple and in these sections, programmers are free to write code as they would
in any ordinary simply-typed programming language. When control passes be-
tween dependent and simple fragments, data flowing from simply-typed code
into dependently-typed code is checked dynamically to ensure that the depen-
dent invariants hold.

1 Table 1 from Xi and Pfenning [11] shows ratios of total lines of type annotations/lines
of code for eight array-based benchmarks to be 50/281, 2/33, 3/37, 10/50, 9/81,
40/200, 10/45 and 3/18.



This strategy allows programmers to employ a pay-as-you-go approach when
it comes to using dependent types. For instance, when first prototyping their
system, programmers may avoid dependent types since their invariants and code
structure may be in greater flux at that time or they simply need to get the
project off the ground as quickly as possible. Later, they may add dependent
types piece by piece until they are satisfied with the level of static verification.
More generally, our strategy allows programmers to achieve better compile-time
safety assurance in a gradual and type-safe way.

The main contributions of our paper are the following: First, we formal-
ize a source-level dependently-typed functional language with a syntax-directed
type checking algorithm. The language admits programs that freely mix both
dependently-typed and simply-typed program fragments.

Second, we formalize the procedure for inserting coercions between higher-
order dependently-typed and simply-typed code sections and the generation of
intermediate-language programs. In these intermediate-language programs, all
dynamic checks are explicit and the code is completely dependently typed. We
have proven that the translation always produces wellformed dependently-typed
code. In other words, we formalize the first stage of a certifying compiler for our
language. Our translation is also total under an admissibility requirement on the
dependently-typed interface. Any simply-typed code fragment can be linked with
a dependently-typed fragment that satisfies this requirement, and the compiler
is able to insert sufficient coercions to guarantee safety at run-time.

Finally, we extend our system with references. We ensure that references and
dependency interact safely and prove the correctness of the strategy for mixing
simply-typed and dependently-typed code. Proof outlines for all our theorems
can be found in Appendix B.

2 Language Syntax and Overview

At the core of our system is a dependently-typed lambda calculus with recursive
functions, pairs and a set of pre-defined constant symbols. At a minimum, the
constants must include booleans true and false as well as conjunction (∧),
negation (¬),and equality(=). We often use λx : τ1. e to denote the function
fix f(x : τ1) : τ2.e when f does not appear free in e and let x = e1 in e to
denote (λx : τ. e) e1.2

τ : : = τb | Πx : τ.τ | τ × τ | {x : τb | e}
e : : = c | x | fix f(x : τ1) : τ2.e | e e

| 〈e, e〉 | π1e | π2e | if e then e else e

The language of types includes a collection of base types (τb), which must include
boolean type, but may also include other types (like integer) that are important
for the application under consideration. Function types have the form Πx : τ1.τ2

and x, the function argument, may appear in τ2. If x does not appear in τ2, we

2 The typing annotations τ2 and τ are unnecessary in these cases.



abbreviate the function type as τ1 → τ2. Note that unlike much recent work on
dependent types for practical programming languages, here x is a valid run-time
object rather than a purely compile-time index. The reason for this choice is that
the compiler will need to generate run-time tests based on types. If the types
contain constraints involving abstract compile-time only indices, generation of
the run-time tests may be impossible.

To specify interesting properties of values programmers can use set types with
the form {x : τb | e}, where e is a boolean term involving x. Intuitively, the type
contains all values v with base type τb such that [v/x]e is equivalent to true.
We use {e} as a shorthand for the set type {x : τb | e} when x does not appear
free in e. The essential type of τ , JτK, is defined below.

J{x : τb | e}K = τb JτK = τ (τ is not a set type)

The type-checking algorithm for our language, like other dependently-typed lan-
guages, involves deciding equivalence of expressions that appear in types. There-
fore, in order for our type system to be both sound and tractable, we cannot
allow just any lambda calculus term to appear inside types. In particular, al-
lowing recursive functions inside types makes equivalence decision undecidable,
and allowing effectful operations such as access to mutable storage within types
makes the type system unsound. To avoid these difficulties, we categorize a sub-
set of the expressions as pure terms. For the purpose of this paper, we limit
the pure terms to variables whose essential type is a base type, constants with
simple type τb1 → · · · → τbn , and application of pure terms to pure terms. Only
a pure term can appear in a valid type. Note this effectively limits dependent
functions to the form Πx : τ1.τ2 where Jτ1K = τb

3. A pure term in our system is
also a valid run-time expression, as opposed to a compile-time only object.

As an example of the basic elements of the language, consider the following
typing context, which gives types to a collection of operations for manipulating
integers (type int) and integer vectors (type intvec).

... -1, 0, 1, ... : int

+, -, * : int -> int -> int

<, <= : int -> int -> bool

type nat = {x:int | 0 <= x}

length : intvec -> nat

newvec : Πn:nat.{v:intvec | length v = n}

sub : Πi:nat.({v:intvec | i < length v} -> int)

The newvec takes a natural number n and returns a new integer vector whose
length is equal to n, as specified by the set type. The subscript operation sub
takes two arguments: a natural number i and an integer vector, and returns
the component of the vector at index i. Its type requires i must be within the
vector’s bound.

3 Non-dependent function τ1 → τ2 can still have arbitrary domain type.



2.1 Simple and Dependent Typing

To allow programmers to control the precision of the type checker for the lan-
guage, we add three special commands to the core language:

e : : = · · · | simple{e} | dependent{e} | assert(e, τ)

Informally, simple{e} means expression e is only simply well-typed and there
is no sufficient annotation for statically verifying all dependent constraints. The
type checker must insert dynamic checks to ensure dependent constraints when
control passes to a dependent section. For instance, suppose f is a variable that
stands for a function defined in a dependently-typed section that requires its
argument to have set type {x : int | x ≥ 0}. At application site simple{f e} the
type checker must verify e is an integer, but may not be able to verify that it
is nonnegative. To guarantee run-time safety, the compiler automatically inserts
a dynamic check for e ≥ 0 when it cannot verify this fact statically. At higher
types, these simple checks become more general coercions from data of one type
to another.

On the other hand, dependent{e} directs the type checker to verify e is
well-typed taking all of the dependent constraints into consideration. If the type
checker cannot verify all dependent constraints statically, it fails and alerts the
user. We also provide a convenient utility function assert(e, τ) that checks at
run time that expression e produces a value with type τ .

Together these commands allow users to tightly control the trade-off between
the degree of compile-time guarantee and the ease of programming. The fewer
simple or assert commands, the greater the compile-time guarantee, although
the greater the burden to the programmer in terms of type annotations. Also,
programmers have good control over where potential failures may happen —
they can only occur inside a simple scope or at an assert expression.

For instance, consider the following function that computes dot-product:

simple{

let dotprod = λv1.λv2. let f = fix loop n i sum

if (i = n) then sum

else loop n (i+1) (sum + (sub i v1) * (sub i v2))

in f (length v1) 0 0

in dotprod vec1 vec2 }

Function dotprod takes two vectors as arguments and returns the sum of mul-
tiplication of corresponding components of the vectors. The entire function is
defined within a simple scope so programmers need not add any typing anno-
tations. However, the cost is that the type checker infers only that i is some
integer and v1 and v2 are integer vectors. Without information concerning the
length of the vectors and size of the integer, the checker cannot verify that the
sub operations are in bound. As a result, the compiler will insert dynamic checks
at these points.

As a matter of fact, without these checks the above program would crash
if the length of vec1 is greater than that of vec2! To prevent clients of the



dotprod function from calling it with such illegal arguments, a programmer can
give dotprod a dependent type while leaving the body of the function simply-
typed:

dependent {

let dotprod = λv1:intvec, v2:{v2:intvec | length v1 = length v2}.

simple { ... }

in dotprod vec1 vec2 }

The advantage of adding this typing annotation is that the programmer has
formally documented the condition for correct use of the dotprod function. Now
the type checker has to prove that the length of vec1 is equal to that of vec2.
If this is not the case the error will be detected at compile time.

Even though the compiler can verify the function is called with valid argu-
ments, it still needs to insert run-time checks for the vector accesses because
they are inside a simple scope. To add an extra degree of compile-time confi-
dence, the programmer can verify the function body by placing it completely in
the dependent scope and adding the appropriate loop invariant annotation as
shown below.

dependent {

let dotprod = λv1:intvec, v2:{v2:intvec | length v1 = length v2}.

let f = fix loop (n:{n:nat|n = length(v1)})

(i:{i:nat|i <= n}) (sum:int).

if (i = n) then sum

else loop n (i+1) (sum + (sub i v1) * (sub i v2))

in f (length v1) 0 0

in dotprod vec1 vec2 }

With the new typing annotations and some simple integer arithmetic reasoning,
our type checker can verify that all the dependent function applications within
the function body are well-typed. Once the above code type checks, there can
be no failure at run time.

3 Formal Language Semantics

We give a formal semantics to our language in two main steps. First, we define
a type system for our internal dependently-typed language which contains no
dependent{}, simple{} or assert commands. Second, we simultaneously de-
fine a syntax-directed type system and translation from the surface programming
language into the internal language. We have proven that the translation always
generates well-typed internal language terms. Since the latter proof is construc-
tive, our translation always generates expressions with sufficient information for
an intermediate language type checker to verify type correctness.

3.1 Internal Language Typing

The judgment Γ ` e : τ presented in Fig 1 defines the type system for the inter-
nal language. The context Γ maps variables to types and F maps constants to



F(c) = τ

Γ ` c : τ
TConst

Γ (x) = τ

Γ ` x : τ
TVar

Γ ` τ valid
Γ ` fail : τ

TFail

Γ ` Πx : τ1.τ2 valid Γ, f : Πx : τ1.τ2, x : τ1 ` e : τ2

Γ ` fix f(x : τ1) : τ2.e : Πx : τ1.τ2
TFun

Γ ` e1 : Πx : τ1.τ2

Γ ` e2 : τ1 Γ `pure e2

Γ ` e1 e2 : [e2/x]τ2

TAppPure

Γ ` e1 : τ1 → τ2

Γ ` e2 : τ1

Γ ` e1 e2 : τ2
TAppImPure

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
TP

Γ ` e : τ1 × τ2

Γ ` π1e : τ1
TPL

Γ ` e : τ1 × τ2

Γ ` π2e : τ2
TPR

Γ `pure e : bool Γ, u : {e} ` e1 : τ Γ, u : {¬e} ` e2 : τ

Γ ` if e then e1 else e2 : τ
TIf

Γ ` e : τ Γ `pure e

Γ ` e : self(τ, e)
TSelf

Γ ` e : τ ′ Γ ` τ ′ ≤ τ

Γ ` e : τ
TSub

Fig. 1. Type rules for the internal language

their types. Many of the rules are standard so we only highlight a few. First, the
fail expression, which has not been mentioned before is used to safely terminate
programs and may be given any type. Dependent function introduction is stan-
dard, but there are two elimination rules. In the first case, the function type may
be dependent, so the argument must be a pure term (judged by Γ `pure e), since
only pure terms may appear inside types. In the second case, the argument may
be impure so the function must have non-dependent type. When type checking
an if statement, the primary argument of the if must be a pure boolean term
and this argument (or its negation) is added to the context when checking each
branch4.

The type system has a selfification rule (TSelf), which is inspired by de-
pendent type systems developed to reason about modules [7]. The rule ap-
plies a “selfification” function, which returns the most precise possible type
for the term, its singleton type. For instance, though x might have type int
in the context, self(int, x) produces the type {y : int | y = x}, the type
of values exactly equal to x. Also, the constant + might have type int →
int → int, but through selfification, it will be given the more precise type
Πx : int.Πy : int.{z : int | z = x + y}, the type of functions that add their
arguments. Without selfification, the type system would be too weak to do any
sophisticated reasoning about variables and values. The selfification function is
defined below. Notice that the definition is only upon types that a pure term
may have.

self(τb, e) = {x : τb | x = e}
self({x : τb | e′}, e) = {x : τb | e′ ∧ x = e}
self(τb → τ, e) = Πx : τb.self(τ, e x)

4 Γ `pure e : τ is the same as Γ `pure e except that it also returns the simple type of
the pure term



Finally, the type system includes a notion of subtyping, which is where all
reasoning about dependent constraints occur. Appendix A.3 gives the complete
subtyping rules. The interesting case is the subtype relation between set types.
As stated below, {x : τb | e1} is a subtype of {x : τb | e2} provided that e1 ⊃ e2 is
true under assumptions in Γ . Term e1 ⊃ e2 stands for the implication between
two boolean terms.

Γ ` {x : τb | e1} valid Γ ` {x : τb | e2} valid Γ, x : τb |= e1 ⊃ e2

Γ ` {x : τb | e1} ≤ {x : τb | e2}

Γ |= e is a logical entailment judgment that infers truth about the application
domains. For example it may infer that n : int |= n ≤ n + 1. We do not want
to limit our language to a particular set of application domains so we leave this
judgment unspecified but it must obey the axioms of standard classical logic. A
precise set of requirements on the logical entailment judgment may be found in
Appendix B.1.

3.2 Surface Language Typing and Translation

We give a formal semantics to the surface language via a type-directed transla-
tion into the internal language. The translation has the form Γ `w e ; e′ : τ
where e is a surface language expression and e′ is the resulting internal language
expression with type τ . w is a type checking mode which is either dep or sim.
In mode dep every dependent constraint must be statically verified, whereas in
mode sim if the type checker cannot infer dependent constraints statically it
will generate dynamic checks. It is important to note that this judgment is a
syntax-directed function with Γ , w and e as inputs and e′ and τ uniquely deter-
mined outputs (if the translation succeeds). In other words, the rules in Figure 2
defines the type checking and translation algorithm for the surface language.

Constants and variables are given singleton types if they are pure (ATConst-
Self and ATVarSelf) via the selfification function, but they are given less precise
types otherwise (ATConst and ATVar). To translate a function definition (AT-
Fun), the function body e is first translated into e′ with type τ ′

2. Since this type
may not match the annotated result type τ2, the type coercion judgment is called
to coerce e′ to τ2, possibly inserting run-time checks under sim mode.

The type coercion judgment has the form Γ `w e : τ −→ e′ : τ ′. It is
a function, which given typing mode w, context Γ , expression e with type τ ,
and a target type τ ′, generates a new expression e′ with type τ ′. The output
expression is equivalent to the input expression aside from the possible presence
of run-time checks. We will discuss the details of this judgment in a moment.

There are two function application rules, distinguished based on whether the
argument expression is judged pure or not. If it is pure, rule ATAppPure applies
and the argument expression is substituted into the result type. If the argument
expression is impure, rule ATAppImpure first coerces the function expression that
has a potentially dependent type Πx : τ1.τ2, to an expression that has a non-
dependent function type τ1 → [τ2]x. [τ ]x returns the type with all occurrences of



Γ `pure c F(c) = τ

Γ `w c ; c : self(τ, c)
ATConstSelf

Γ 6`pure c F(c) = τ

Γ `w c ; c : τ
ATConst

Γ `pure x Γ (x) = τ

Γ `w x ; x : self(τ, x)
ATVarSelf

Γ 6`pure x Γ (x) = τ

Γ `w x ; x : τ
ATVar

Γ ` Πx : τ1.τ2 valid Γ ′ = Γ, f : Πx : τ1.τ2, x : τ1

Γ ′ `w e ; e′ : τ ′
2 Γ ′ `w e′ : τ ′

2 −→ e′′ : τ2

Γ `w fix f(x : τ1) : τ2.e ; fix f(x : τ1) : τ2.e
′′ : Πx : τ1.τ2

ATFun

Γ `w e1 ; e′
1 : Πx : τ1.τ2

Γ `w e2 ; e′
2 : τ ′

1 Γ `w e′
2 : τ ′

1 −→ e′′
2 : τ1 Γ `pure e′′

2

Γ `w e1 e2 ; e′
1 e′′

2 : [e′′
2/x]τ2

ATAppPure

Γ `w e1 ; e′
1 : Πx : τ1.τ2 Γ `w e′

1 : Πx : τ1.τ2 −→ e′′
1 : τ1 → [τ2]x

Γ `w e2 ; e′
2 : τ ′

1 Γ `w e′
2 : τ ′

1 −→ e′′
2 : τ1 Γ 6`pure e′′

2

Γ `w e1 e2 ; e′′
1 e′′

2 : [τ2]x
ATAppImPure

Γ `w e1 ; e′
1 : τ1 Γ `w e2 ; e′

2 : τ2

Γ `w 〈e1, e2〉 ; 〈e′
1, e′

2〉 : τ1 × τ2
ATProd

Γ `w e ; e′ : τ1 × τ2

Γ `w π1e ; π1e
′ : τ1

ATProjL
Γ `w e ; e′ : τ1 × τ2

Γ `w π2e ; π2e
′ : τ2

ATProjR

Γ `pure e : bool Γ, u : {e} `w e1 ; e′
1 : τ1 Γ, u : {¬e} `w e2 ; e′

2 : τ2

Γ, u : {e} `w e′
1 : τ1 −→ e′′

1 : τ1 t τ2 Γ, u : {¬e} `w e′
2 : τ2 −→ e′′

2 : τ1 t τ2

Γ `w if e then e1 else e2 ; if e then e′′
1 else e′′

2 : τ1 t τ2

ATIfPure

Γ 6`pure e Γ `w let x = e in if x then e1 else e2 ; e′ : τ

Γ `w if e then e1 else e2 ; e′ : τ
ATIfImPure

Γ `dep e ; e′ : τ ′ Γ ` τ valid Γ `sim e′ : τ ′ −→ e′′ : τ

Γ `dep assert(e, τ) ; e′′ : τ
ATAssert

Γ `sim e ; e′ : τ

Γ `dep simple{e} ; e′ : τ
ATDynamic

Γ `dep e ; e′ : τ

Γ `sim dependent{e} ; e′ : τ
ATStatic

Fig. 2. Surface language type checking and translation



Γ ` τ ≤ τ ′

Γ `w e : τ −→ e : τ ′ CSub

τ = τb or τ = {x : τb | e′
1}

Γ `sim e : τ −→ let x = e in if e1 then x else fail : {x : τb | e1}
CBase

Γ ` τ ′
1 ≤ τ1 Γ, y : Πx : τ1.τ2, x : τ ′

1 `sim y x : τ2 −→ eb : τ ′
2

Γ `sim e : Πx : τ1.τ2 −→ (let y = e in λx : τ ′
1. eb) : Πx : τ ′

1.τ
′
2

CFunCo

Γ 6` τ ′
1 ≤ τ1 Γ, x : τ ′

1 `sim x : τ ′
1 −→ ex : τ1

Γ, y : τ1 → τ2, x : τ ′
1 `sim y ex : τ2 −→ eb : τ ′

2

Γ `sim e : (τ1 → τ2) −→ (let y = e in λx : τ ′
1. eb) : (τ ′

1 → τ ′
2)

CFunContNonDep

Γ 6` τ ′
1 ≤ τ1 τ1 = {x : τb | e1} τ ′

1 = {x : τb | e′
1} or τb

Γ, y : Πx : τ1.τ2, x : τ1 `sim y x : τ2 −→ eb : τ ′
2

e′
b = if e1 then eb else fail

Γ `sim e : Πx : τ1.τ2 −→ (let y = e in λx : τ ′
1. e′

b) : Πx : τ ′
1.τ

′
2

CFunContDep

Γ, y : τ1 × τ2 `sim π1y : τ1 −→ e′
1 : τ ′

1

Γ, y : τ1 × τ2 `sim π2y : τ2 −→ e′
2 : τ ′

2

Γ `sim e : τ1 × τ2 −→ (let y = e in 〈e′
1, e′

2〉) : τ ′
1 × τ ′

2

CPair

Fig. 3. Type coercion

variable x removed. It is defined on set types as follows and recursively defined
according to the type structures for the other types.

[{y : τb | e}]x = τb (x ∈ FV (e))
[{y : τb | e}]x = {y : τb | e} (x 6∈ FV (e))

Note that in both application rules the argument expression’s type τ ′
1 may not

match the function’s argument type so it is coerced to an expression e′′
2 with the

right type.
In type checking the if expression, since the two branches may be given

different types, rule ATIfPure finds a common type τ1 t τ2 and coerce the two
branches to this type. Informally, τ1 t τ2 recursively applies disjunction opera-
tion on boolean expressions in set types that appear in covariant positions and
applies conjunction operation on those on contravariant positions. For example,
{x : int | x < 3} t {x : int | x > 10} = {x : int | x < 3 ∨ x > 10}. The precise defi-
nition for τ1 t τ2 can be found in Appendix A.5.

The rules for checking and translating dependent{e} and simple{e} ex-
pressions simply switch the type checking mode from sim to dep and vice versa.
The rule for assert(e, τ) uses the type coercion judgment to coerce expression
e to type τ . Note that the coercion is called with sim mode to allow insertion of
run-time checks.

Type coercion judgment. The complete rules for the type coercion judgment can
be found in Figure 3. When the source type is a subtype of the target type, no



conversion is necessary (CSub). The remaining coercion rules implicitly assume
the subtype relation does not hold, hence dynamic checks must be inserted at
appropriate places. Note that those rules require the checking mode be sim;
when called with mode dep the coercion judgment is just the subtyping judgment
and the type checker is designed to signal a compile-time error when it cannot
statically prove the source is a subtype of the target.

Coercion for the base-type case (CBase) is straightforward. An if expression
ensures that the invariant expressed by the target set type holds. Otherwise a
runtime failure will occur. With the help of the logical entailment judgment, our
type system is able to infer that the resulting if expression has the set type.

In general, one cannot directly check at run-time that a function’s code pre-
cisely obeys some behavioral specification expressed by a dependent type. What
we can do is ensure that every time the function is called, the function’s argument
meets the dependent type’s requirement, and its body produces a value that sat-
isfies the promised result type. This strategy is sufficient for ensuring run-time
safety. The coercion rules for functions are designed to coerce a function from
one type to a function with another type, deferring checks on arguments and
results until the function is called.

There are three coercion rules for function types. In all cases the expression
that generates the function is evaluated first to preserve the order of effects.
Next a new function is constructed with checks on argument and result inserted
when necessary. In the case where the new argument type is a subtype of the
old one (CFunCo), we only need to convert the function body to the appropriate
result type. Otherwise checks must be inserted to make sure the argument has
the type the old function expects. This can be done by recursively calling the
coercion judgment on the argument x to convert it to a term ex with type τ1.
When the function’s type is not dependent (CFunContNonDep), it can receive
ex as an argument. But when it is a dependent function, it cannot receive ex

as an argument since ex contains dynamic checks and is impure5. Consequently
rule CFunContDep uses an if statement to directly check the constraint on the
dependent argument x. This is possible because x must be a pure term and
hence has a base type. If the check succeeds x is directly passed to the function.
For all the three cases, our type system is able to prove the resulting expression
has the target function type.

4 Mutable References

The addition of mutable references to our language presents a significant chal-
lenge. When sharing a reference between simple and dependent code, it is natural
to wish to assign the reference a simple type in the simple code and a dependent
type in the dependent code, for example int ref and {x:int|x >= 0} ref.
Clearly, if we are to transfer references between simply-typed and dependently-
typed portions of code and assign them relevant simple and dependent types,
5 We also cannot simply write let z = ex in y z since the effects in ex do not allow

the type system to maintain the proper dependency between x and z in this case.



we will need to check some of the accesses to these references dynamically. To
achieve soundness in the presence of function references, the placement of dy-
namic checks is guided by the following two principles: First, the recipient of
a reference is responsible for writing data that maintains the invariants of the
reference’s donor. Second, the recipient must protect itself by ensuring that data
it reads indeed respects its own invariants.

For instance, consider transferring a reference with type ({x:int|x >= 0}
-> {x:int|x >= 0}) ref to simply-typed code where it takes on the type
(int->int) ref. Since (int->int) is neither a subtype nor a supertype of
{x:int|x >= 0} -> {x:int|x >= 0}, safety requires that the simply-typed code
coerce any function it reads out of the reference to the type int -> int and
likewise, it must coerce any value it writes to the type {x:int|x >= 0} ->
{x:int|x >= 0}.

To accommodate these ideas within our surface language, we introduce dy-
namic references with type τ dref. One reference with type τ dref can be coerced
into another reference with type τ ′ dref whenever the simple type of τ and τ ′

coincide. Upon reading from or writing to such references, dynamic checks ensure
the appropriate invariants are maintained.

While read and write checks can guarantee soundness for references passed
between dependent and simple code, they come at a cost: potential failure upon
read and write even in dependent sections of code. Therefore, to restore pro-
grammer control over failures, we allow programmers to use ordinary references
with type τ ref. Attempted access to ordinary references never fails, and values
with type τ ref can be coerced into values with type τ ′ dref whenever τ and
τ ′’s simple types coincide, but not the other way around. With these two kinds
of references, programmers can write failure-free dependently-typed code and
transfer references between dependently and simply typed code.

In order to use references, we extend the syntax of the surface language with
references (Figure 4). !d and :=d are read and write operators for dynamic ref-
erences. The new τ ref e command always creates an ordinary reference, which
may later be coerced to a dynamic reference. The internal language implements
the dynamic reference in terms of a pair of function closures, one to read an
underlying reference and coerce the value to the right type; the other to do a
coercion and then write the coerced value into the underlying reference. Conse-
quently, the internal language only contains ordinary invariant references, which
have completely standard typing rules. Formally, we define a translation on types
(|τ |), which translates τ dref as shown in Figure 4, and translates the other
types recursively according to their structure. The corresponding translation of
the surface language terms into the internal language terms is also presented in
Figure 4.

We proved type safety for the internal language based on a standard dynamic
semantics with mutable references:

Theorem 1 (Type safety).
If • ` e : τ , then e won’t get stuck in evaluation.



Extended Syntax

e : : = . . . | new τ ref e |!e | e := e |!d e | e :=d e

(|τ |) = τ ′

(|τ dref|) = (unit → (|τ |))× ((|τ |) → unit)

Γ `w e : τ −→ e′ : τ ′

Γ, x:τ `sim x : τ −→ er : τ ′

Γ, x:τ ′ `sim x : τ ′ −→ ew : τ
(fr = λx : τ. er fw = λx : τ ′. ew)

Γ `sim e : τ ref −→ PackDRef(e, τ, τ ′, fr, fw) : τ ′ dref
CPackDRef

Γ, x:τ `sim x : τ −→ er : τ ′

Γ, x:τ ′ `sim x : τ ′ −→ ew : τ
(fr = λx : τ. er fw = λx : τ ′. ew)

Γ `sim e : τ dref −→ RepackDRef(e, τ, τ ′, fr, fw) : τ ′ dref
CRePackDRef

PackDRef(e, τ, τ ′, fr, fw) ≡
let r = e in
let f ′

r = λx : unit. fr !r in
let f ′

w = λx : τ ′. r := (fw x) in
〈f ′

r, f ′
w〉

RepackDRef(e, τ, τ ′, fr, fw) ≡
let r = e in
let f ′

r = π1r in
let f ′′

r = λx : unit. fr (f ′
r x) in

let f ′
w = π2r in

let f ′′
w = λx : τ ′. f ′

w (fw x) in
〈f ′′

r , f ′′
w〉

Γ `w e ; e′ : τ

Γ `w e ; e′ : τ ′ Γ ` τ valid Γ `w e′ : τ ′ −→ e′′ : τ

Γ `w new τ ref e ; new τ ref e′′ : τ ref
ATNew

Γ `w e ; e′ : τ ref

Γ `w !e ;!e′ : τ
ATGet

Γ `w e ; e′ : τ ′ (τ ′ = τ ref or τ dref)
Γ `w e′ : τ ′ −→ e′′ : τ dref

Γ `w !d e ; (π1e
′′) () : τ

ATDGet

Γ `w e1 ; e′
1 : τ1 ref

Γ `w e2 ; e′
2 : τ2

Γ `w e′
2 : τ2 −→ e′′

2 : τ1

Γ `w e1 := e2 ; e′
1 := e′′

2 : unit
ATSet

Γ `w e1 ; e′
1 : τ ′

1 (τ ′
1 = τ1 ref or τ1 dref)

Γ `w e′
1 : τ ′

1 −→ e′′
1 : τ1 dref

Γ `w e2 ; e′
2 : τ2

Γ `w e′
2 : τ2 −→ e′′

2 : τ1

Γ `w e1 :=d e2 ; (π2e
′′
1 ) e′′

2 : unit
ATDSet

Fig. 4. References: Syntax and Translations



The proof is by induction on the length of execution sequence, using progress
and preservation theorems formalized and proved in Appendix B.2.

The soundness of the type-directed translation for the surface language is
formalized as the following theorem.

Theorem 2 (Soundness of translation of surface language).
If Γ `w e ; e′ : τ , then (|Γ |) ` (|e′|) : (|τ |).

(|e|) is the expression with every type τ appearing in it replaced by (|τ |), and
∀x ∈ dom(Γ ).(|Γ |)(x) = (|Γ (x)|).

For all source programs that are simply well-typed (judged by Γ `0 e : τ),
if the dependent interface Γ satisfies an admissibility requirement co ref(Γ ), the
translation is total in sim mode:

Theorem 3 (Completeness of translation).
Assuming co ref(Γ ) and co ref(F), if Γ `0 e : τ , then there exist e′ and τ ′

such that Γ `sim e ; e′ : τ ′.

Informally, co ref(Γ ) states that in Γ , unchecked reference type (τ ref) can only
appear in covariant positions. Details of the proof can be found in Appendix B.4.

5 Related Work

In this paper, we have shown how to include fragments of simply-typed code
within the context of a dependently-typed language. In the past, many researchers
have examined techniques for including uni-typed code (code with one type such
as Scheme code) within the context of a simply-typed language by means of soft
typing [3, 2, 4]. Soft typing infers simple or polymorphic types for programs but
not general dependent types.

Necula et al. [8] have developed a soft typing system for C, with the goal
of ensuring that C programs do not contain memory errors. Necula et al. focus
on the problem of inferring the status of C pointers in the presence of casts
and pointer arithmetic, which he infers are either safe (well-typed and requiring
no checks), seq (well-typed and requiring bounds checking) or dynamic (about
which nothing is known). In contrast, we always know the simple type of an
object that is pointed to, but may not know about its dependent refinements.

Walker [10] shows how to compile a simply-typed lambda calculus into a
dependently-typed intermediate language that enforces safety policies specified
by simple state machines. However, he does not consider mixing a generally
dependently-typed language with a simply-typed language or problems concern-
ing mutable references.

In earlier work, Abadi et al. [1] showed how to add a special type dynamic
to represent values of completely unknown type and a typecase operation to the
simply-typed lambda calculus. Abadi et al. use type dynamic when the simple
static type of data is unknown, such as when accessing objects from persistent
storage or exchanging data with other programs. Thatte [9] demonstrates how
to relieve the programmer from having to explicitly write Abadi et al.’s typecase



operations themselves by having the compiler automatically insert them as we
do. In contrast to our work, Thatte does not consider dependent types or how
to instrument programs with mutable references.

In contract checking systems such as Findler and Felleisen’s work [6], pro-
grammers can place assertions at well-defined program points, such as proce-
dure entries and exits. Findler and Felleisen have specifically looked at how to
enforce properties of higher-order code dynamically by wrapping functions to
verify function inputs conform to function expectations and function outputs
satisfy promised invariants. Our strategy for handling higher-order code is simi-
lar. However, Finder and Felleisen’s contracts enforce all predicates dynamically
whereas we show how to blend dynamic mechanism with static verification.
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A Language Summary

A.1 Program Syntax

Internal language:
types τ : : = τb | {x : τb | e} | Πx : τ.τ | τ × τ | τ ref
expressions e : : = c | x | fix f(x : τ1) : τ2.e | e e

| 〈e, e〉 | π1e | π2e | if e then e else e
| new τ ref e |!e | e := e | fail

Surface language:
types τ : : = τb | {x : τb | e} | Πx : τ.τ | τ × τ | τ ref | τ dref
expressions e : : = c | x | fix f(x : τ1) : τ2.e | e e

| 〈e, e〉 | π1e | π2e | if e then e else e
| new τ ref e |!e | e := e |!d e | e :=d e
| assert(e, τ) | simple{e} | dependent{e}

A.2 Constant symbols

The language is parameterized with an abstract collection of constant symbols and
operators, that are described by a triple (T ,F , I): T is a collection of type constants;
F maps from symbols to their types; an implementation function I that describes how
symbols with function type evaluate. We have the following requirements on (T ,F , I).

1. bool ∈ T ; true and false are the only symbols c such that F(c) = bool; ¬, ∧
and ⊃ are the standard logical symbols in F .

2. unit ∈ T and symbol () is of type unit.
3. For any c ∈ C, F(c) is either τb , or Πx : τ1.τ2; and • ` F(c) valid.
4. For all c ∈ dom(F) and value v, if Ψ ; • ` c v : τ , then I(c, v) is defined and

Ψ ; • ` I(c, v) : τ .

A.3 Static Semantics

JτK J{x : τb | e}K = τb JτK = τ (τ is not a set type)

self(τ, e)
self(τb, e) = {x : τb | x = e}
self({x : τb | e′}, e) = {x : τb | e′ ∧ x = e}
self(τb → τ, e) = Πx : τb.self(τ, e x)

Γ `pure e : τ

F(c) = τ τ = τb1 → · · · → τbn

Γ `pure c : τ
PConst

JΓ (x)K = τb

Γ `pure x : τb
PVar

Γ `pure e1 : τb → τ2 Γ `pure e2 : τb

Γ `pure e1 e2 : τ2
PApp

Γ `pure e is an abbreviation of Γ `pure e : τ for some τ



Γ ` τ valid

τb ∈ T
Γ ` τb valid

VBase
Γ, x : τb `pure e : bool

Γ ` {x : τb | e} valid
VSet

Γ, x : τ1 ` τ2 valid

Γ ` Πx : τ1.τ2 valid
VFun

Γ ` τ1 valid Γ ` τ2 valid

Γ ` τ1 × τ2 valid
VPair

Γ ` τ valid
Γ ` τ ref valid

VRef
Γ ` τ valid

Γ ` τ dref valid
VDRef

Γ ` τ ≤ τ ′

Γ ` τb ≤ τb
SBase

Γ ` {x : τb | e1} valid Γ ` {x : τb | e2} valid Γ, x : τb |= e1 ⊃ e2

Γ ` {x : τb | e1} ≤ {x : τb | e2}
SSet

Γ ` {x : τb | e} valid

Γ ` {x : τb | e} ≤ τb
SSetBase

Γ ` {x : τb | e} valid Γ, x : τb |= e

Γ ` τb ≤ {x : τb | e} SBaseSet

Γ ` τ ′
1 ≤ τ1 Γ, x : τ ′

1 ` τ2 ≤ τ ′
2

Γ ` Πx : τ1.τ2 ≤ Πx : τ ′
1.τ

′
2

SFun

Γ ` τ1 ≤ τ ′
1 Γ ` τ2 ≤ τ ′

2

Γ ` τ1 × τ2 ≤ τ ′
1 × τ ′

2

SPair

Γ ` τ ≤ τ ′ Γ ` τ ′ ≤ τ

Γ ` τ ref ≤ τ ′ ref
SRef

Γ ` τ ≤ τ ′ Γ ` τ ′ ≤ τ

Γ ` τ dref ≤ τ ′ dref
SDRef

Ψ ; Γ ` e : τ

F(c) = τ

Ψ ; Γ ` c : τ
TConst

Γ (x) = τ

Ψ ; Γ ` x : τ
TVar

Γ ` τ valid
Ψ ; Γ ` fail : τ

TFail

Γ ` Πx : τ1.τ2 valid Ψ ; Γ, f : Πx : τ1.τ2, x : τ1 ` e : τ2

Ψ ; Γ ` fix f(x : τ1) : τ2.e : Πx : τ1.τ2
TFun

Ψ ; Γ ` e1 : Πx : τ1.τ2 Ψ ; Γ ` e2 : τ1 Γ `pure e2

Ψ ; Γ ` e1 e2 : [e2/x]τ2

TAppPure

Ψ ; Γ ` e1 : τ1 → τ2 Ψ ; Γ ` e2 : τ1

Ψ ; Γ ` e1 e2 : τ2
TAppImPure



Ψ ; Γ ` e1 : τ1 Ψ ; Γ ` e2 : τ2

Ψ ; Γ ` 〈e1, e2〉 : τ1 × τ2
TProd

Ψ ; Γ ` e : τ1 × τ2

Ψ ; Γ ` π1e : τ1
TProjL

Ψ ; Γ ` e : τ1 × τ2

Ψ ; Γ ` π2e : τ2
TProjR

Γ `pure e : bool Ψ ; Γ, u : {e} ` e1 : τ Ψ ; Γ, u : {¬e} ` e2 : τ

Ψ ; Γ ` if e then e1 else e2 : τ
TIf

Ψ(`) = τ

Ψ ; Γ ` ` : τ ref
TLbl

Ψ ; Γ ` e : τ

Ψ ; Γ ` new τ ref e : τ ref
TNew

Ψ ; Γ ` e : τ ref

Ψ ; Γ `!e : τ
TGet

Ψ ; Γ ` e : τ ref Ψ ; Γ ` e′ : τ

Ψ ; Γ ` e := e′ : unit
TSet

Ψ ; Γ ` e : τ Γ `pure e

Ψ ; Γ ` e : self(τ, e)
TSelf

Ψ ; Γ ` e : τ ′ Γ ` τ ′ ≤ τ

Ψ ; Γ ` e : τ
TSub

M : Ψ

dom(M) = dom(Ψ) ∀l ∈ dom(M).Ψ ; • ` M(l) : Ψ(l)

M : Ψ

(M, e) ok

M : Ψ Ψ ; • ` e : τ

(M, e) ok

A.4 Dynamic Semantics

A machine state is a tuple (M, e). M is a mapping from label l to values. And e is
the expression to be evaluated. When l 6∈ dom(M), M . (l → v) denotes the extended
mapping that maps l to v and every label l′ ∈ dom(M) to M(l′).

values v : : = c (c ∈ C) | fix f(x : τ1) : τ2.e | 〈v1, v2〉 | l
evaluation contexts E : : = 2 e | v 2 | 〈2, e〉 | 〈v, 2〉 | π12 | π22

| if 2 then e else e
| new τ ref 2 |!2 | 2 := e | v := 2



(M, E(e)) 7−→ (M ′, E(e′)), if (M, e) 7−→ (M ′, e′)

(M, c v) 7−→ (M, I(c, v)), when I(c, v) is defined.

(M, (fix f(x : τ1) : τ2.e) v) 7−→ (M, [fix f(x : τ1) : τ2.e/f, v/x]e)

(M, π1〈v1, v2〉) 7−→ (M, v1)

(M, π2〈v1, v2〉) 7−→ (M, v2)

(M, if true then e1 else e2) 7−→ (M, e1)

(M, if false then e1 else e2) 7−→ (M, e2)

(M, new τ ref v) 7−→ (M . (l → v), l), l /∈ dom(M)

(M, !l) 7−→ (M, M(l)), l ∈ dom(M)

(M, l := v) 7−→ (M{l → v}, ()), l ∈ dom(M)

(M, E(fail)) 7−→ (M, fail)

A.5 Surface language type checking and translation

[τ ]x

[τb]x = τb

[{y : τb | e}]x =

{
τb if x ∈ FV(e)
{y : τb | e} x 6∈ FV(e)

[Πy : τ1.τ2]x = Πy : [τ1]x.[τ2]x
[τ1 × τ2]x = [τ1]x × [τ2]x

[τ ref]x =

{
[τ ]x dref if x ∈ FV(τ)
τ ref x 6∈ FV(e)

[τ dref]x = [τ ]x dref

[τ ] Simplified type of τ

[τb] = τb [{x : τb | e}] = τb

[Πx : τ1.τ2] = [τ1] → [τ2] [τ1 × τ2] = [τ1]× [τ2]
[τ ref] = [τ ] dref [τ dref] = [τ ] dref

τ1 t τ2 and τ1 u τ2

Let � = t or u,
Let t̃ = u, ũ = t and {t} = ∨, {u} = ∧

{x : τb | e1} � {x : τb | e2} = {x : τb | e1{�}e2}
τb � τ = {x : τb | true} � τ τ � τb = τ � {x : τb | true}
(Πx : τ1.τ2) � (Πx : τ ′

1.τ
′
2) = Πx : (τ1�̃τ ′

1).(τ2 � τ ′
2)

(τ1 × τ2) � (τ ′
1 × τ ′

2) = (τ1 � τ ′
1)× (τ2 � τ ′

2)
(τ ref) � (τ ref) = τ ref
(τ1 ρ) � (τ2 ρ) = [τ1] dref (ρ = ref or dref)



Γ `w e : τ −→ e′ : τ ′

Γ ` τ ≤ τ ′

Γ `w e : τ −→ e : τ ′ CSub

τ = τb or τ = {x : τb | e′
1}

Γ `sim e : τ −→ let x = e in if e1 then x else fail : {x : τb | e1}
CBase

Γ ` τ ′
1 ≤ τ1 Γ, y : Πx : τ1.τ2, x : τ ′

1 `sim y x : τ2 −→ eb : τ ′
2

Γ `sim e : Πx : τ1.τ2 −→ (let y = e in λx : τ ′
1. eb) : Πx : τ ′

1.τ
′
2

CFunCo

Γ 6` τ ′
1 ≤ τ1 Γ, x : τ ′

1 `sim x : τ ′
1 −→ ex : τ1

Γ, y : τ1 → τ2, x : τ ′
1 `sim y ex : τ2 −→ eb : τ ′

2

Γ `sim e : (τ1 → τ2) −→ (let y = e in λx : τ ′
1. eb) : (τ ′

1 → τ ′
2)

CFunContNonDep

Γ 6` τ ′
1 ≤ τ1 τ1 = {x : τb | e1} τ ′

1 = {x : τb | e′
1} or τb

Γ, y : Πx : τ1.τ2, x : τ1 `sim y x : τ2 −→ eb : τ ′
2

e′
b = if e1 then eb else fail

Γ `sim e : Πx : τ1.τ2 −→ (let y = e in λx : τ ′
1. e′

b) : Πx : τ ′
1.τ

′
2

CFunContDep

Γ, y : τ1 × τ2 `sim π1y : τ1 −→ e′
1 : τ ′

1

Γ, y : τ1 × τ2 `sim π2y : τ2 −→ e′
2 : τ ′

2

Γ `sim e : τ1 × τ2 −→ (let y = e in 〈e′
1, e′

2〉) : τ ′
1 × τ ′

2

CPair

Γ, x:τ `sim x : τ −→ er : τ ′

Γ, x:τ ′ `sim x : τ ′ −→ ew : τ
(fr = λx : τ. er fw = λx : τ ′. ew)

Γ `sim e : τ ref −→ PackDRef(e, τ, τ ′, fr, fw) : τ ′ dref
CPackDRef

Γ, x:τ `sim x : τ −→ er : τ ′

Γ, x:τ ′ `sim x : τ ′ −→ ew : τ
(fr = λx : τ. er fw = λx : τ ′. ew)

Γ `sim e : τ dref −→ RepackDRef(e, τ, τ ′, fr, fw) : τ ′ dref
CRePackDRef

PackDRef(e, τ, τ ′, fr, fw) ≡
let r = e in
let f ′

r = λx : unit. fr !r in
let f ′

w = λx : τ ′. r := (fw x) in
〈f ′

r, f ′
w〉

RepackDRef(e, τ, τ ′, fr, fw) ≡
let r = e in
let f ′

r = π1r in
let f ′′

r = λx : unit. fr (f ′
r x) in

let f ′
w = π2r in

let f ′′
w = λx : τ ′. f ′

w (fw x) in
〈f ′′

r , f ′′
w〉



Γ `w e ; e′ : τ

Γ `pure c F(c) = τ

Γ `w c ; c : self(τ, c)
ATConstSelf

Γ 6`pure c F(c) = τ

Γ `w c ; c : τ
ATConst

Γ `pure x Γ (x) = τ

Γ `w x ; x : self(τ, x)
ATVarSelf

Γ 6`pure x Γ (x) = τ

Γ `w x ; x : τ
ATVar

Γ ` Πx : τ1.τ2 valid Γ ′ = Γ, f : Πx : τ1.τ2, x : τ1

Γ ′ `w e ; e′ : τ ′
2 Γ ′ `w e′ : τ ′

2 −→ e′′ : τ2

Γ `w fix f(x : τ1) : τ2.e ; fix f(x : τ1) : τ2.e
′′ : Πx : τ1.τ2

ATFun

Γ `w e1 ; e′
1 : Πx : τ1.τ2

Γ `w e2 ; e′
2 : τ ′

1 Γ `w e′
2 : τ ′

1 −→ e′′
2 : τ1 Γ `pure e′′

2

Γ `w e1 e2 ; e′
1 e′′

2 : [e′′
2/x]τ2

ATAppPure

Γ `w e1 ; e′
1 : Πx : τ1.τ2 Γ `w e′

1 : Πx : τ1.τ2 −→ e′′
1 : τ1 → [τ2]x

Γ `w e2 ; e′
2 : τ ′

1 Γ `w e′
2 : τ ′

1 −→ e′′
2 : τ1 Γ 6`pure e′′

2

Γ `w e1 e2 ; e′′
1 e′′

2 : [τ2]x
ATAppImPure

Γ `w e1 ; e′
1 : τ1 Γ `w e2 ; e′

2 : τ2

Γ `w 〈e1, e2〉 ; 〈e′
1, e′

2〉 : τ1 × τ2
ATProd

Γ `w e ; e′ : τ1 × τ2

Γ `w π1e ; π1e
′ : τ1

ATProjL
Γ `w e ; e′ : τ1 × τ2

Γ `w π2e ; π2e
′ : τ2

ATProjR

Γ `pure e : bool Γ, u : {e} `w e1 ; e′
1 : τ1 Γ, u : {¬e} `w e2 ; e′

2 : τ2

Γ, u : {e} `w e′
1 : τ1 −→ e′′

1 : τ1 t τ2 Γ, u : {¬e} `w e′
2 : τ2 −→ e′′

2 : τ1 t τ2

Γ `w if e then e1 else e2 ; if e then e′′
1 else e′′

2 : τ1 t τ2

ATIfPure

Γ 6`pure e Γ `w let x = e in if x then e1 else e2 ; e′ : τ

Γ `w if e then e1 else e2 ; e′ : τ
ATIfImPure

Γ `w e ; e′ : τ ′ Γ ` τ valid Γ `w e′ : τ ′ −→ e′′ : τ

Γ `w new τ ref e ; new τ ref e′′ : τ ref
ATNew

Γ `w e ; e′ : τ ref

Γ `w !e ;!e′ : τ
ATGet

Γ `w e ; e′ : τ ′ (τ ′ = τ ref or τ dref)
Γ `w e′ : τ ′ −→ e′′ : τ dref

Γ `w !d e ; (π1e
′′) () : τ

ATDGet

Γ `w e1 ; e′
1 : τ1 ref

Γ `w e2 ; e′
2 : τ2

Γ `w e′
2 : τ2 −→ e′′

2 : τ1

Γ `w e1 := e2 ; e′
1 := e′′

2 : unit
ATSet

Γ `w e1 ; e′
1 : τ ′

1 (τ ′
1 = τ1 ref or τ1 dref)

Γ `w e′
1 : τ ′

1 −→ e′′
1 : τ1 dref

Γ `w e2 ; e′
2 : τ2

Γ `w e′
2 : τ2 −→ e′′

2 : τ1

Γ `w e1 :=d e2 ; (π2e
′′
1 ) e′′

2 : unit
ATDSet



Γ `w e ; e′ : τ ′ Γ ` τ valid Γ `sim e′ : τ ′ −→ e′′ : τ

Γ `w assert(e, τ) ; e′′ : τ
ATAssert

Γ `sim e ; e′ : τ

Γ `dep simple{e} ; e′ : τ
ATDynamic

Γ `dep e ; e′ : τ

Γ `sim dependent{e} ; e′ : τ
ATStatic

(|τ |)
(|τ dref|) = (unit → (|τ |))× ((|τ |) → unit)
(|τb|) = τb (|{x : τb | e}|) = {x : τb | e}
(|Πx : τ1.τ2|) = Πx : (|τ1|).(|τ2|) (|τ1 × τ2|) = (|τ1|)× (|τ2|)
(|τ ref|) = (|τ |) ref

(|Γ |)
(|•|) = • (|Γ, x : τ |) = (|Γ |), x : (|τ |)

(|e|) Whenver a type τ appears in e, replace it with (|τ |)

B Type safety

B.1 Properties required for Γ |= e

1. Hypothesis. Γ1, x : {y : τb | e}, Γ2 |= [x/y]e.
2. Weakening. If Γ1, Γ2 |= e, then Γ1, Γ3, Γ2 |= e.
3. Substitution of base type variable. Let e0 be either a value or a variable, if

Γ1, x : τb, Γ2 |= e and Γ1 `pure e0 : τb, then Γ1, [e0/x]Γ2 |= [e0/x]e.
4. Substitution of set type variable. Let e0 be either a value or a variable, if

Γ1, x : {x : τb | e1}, Γ2 |= e, Γ1 `pure e0 : τb, and Γ1 |= [e0/x]e1, then
Γ1, [e0/x]Γ2 |= [e0/x]e.

5. Equality. Γ, x : τb, u : {e}, y : τb, v : {x = y} |= [y/x]e
6. If Γ1, x : τ, Γ2 |= e and x /∈ FV(Γ2) ∪ FV(e), then Γ1, Γ2 |= e.
7. For all c and v such that I(c, v) is defined with type τ , then forall Γ and C,

Γ |= C[c v] iff Γ |= C[I(c, v)]. Context C is of type bool when given an
expression of type τ .

8. true, false, ¬e, e ∧ e satisfy the classical properties of propositional logic such as
Γ |= true, Γ |= ¬false, Γ |= e ⊃ e, etc.

B.2 Type safety

Lemma 1 (Relation between Γ `pure e : τ and Ψ ; Γ ` e : τ).

1. If Γ `pure e : τ , then Ψ ; Γ ` e : τ .
2. If Ψ ; Γ ` e : τ and Γ `pure e : τb, then JτK = τb.

Lemma 2 (Free variables in types).

1. If Γ `pure e : τ and x ∈ FV(e), then JΓ (x)K = τb for some τb ∈ T .
2. If Γ ` τ valid and x ∈ FV(τ), then JΓ (x)K = τb for some τb ∈ T .

Proof. By induction over the derivation of the first premise. 2



Lemma 3 (Weakening).

– If Γ1, Γ2 `pure e : τ , then Γ1, Γ3, Γ2 `pure e : τ .
– If Γ1, Γ2 ` τ valid, then Γ1, Γ3, Γ2 ` τ valid.
– If Γ1Γ2 ` τ1 ≤ τ2 then Γ1, Γ3, Γ2 ` τ1 ≤ τ2.
– If Ψ1; Γ1, Γ2 ` e : τ , then Ψ1, Ψ2; Γ1, Γ3, Γ2 ` e : τ

Proof. By induction over the derivation of the premise and use Prop 2. 2

Lemma 4 (Subsumption on the variable environment).
If Γ1 ` τ ′ ≤ τ ,

– and Γ1, x : τ, Γ2 |= e, then Γ1, x : τ ′, Γ2 |= e.
– and Γ1, x : τ, Γ2 `pure e : τ1, then Γ1, x : τ ′, Γ2 `pure e : τ1.
– and Γ1, x : τ, Γ2 ` τ1 valid, then Γ1, x : τ ′, Γ2 ` τ1 valid.
– and Γ1, x : τ, Γ2 ` τ1 ≤ τ2, then Γ1, x : τ ′, Γ2 ` τ1 ≤ τ2.
– and Ψ ; Γ1, x : τ, Γ2 ` e : τ1, then Ψ ; Γ1, x : τ ′, Γ2 ` e : τ1.

Proof. By induction over the derivation of the second premise. Use Prop 3 and
Prop 4. 2

Lemma 5 (Canonical forms lemma for set type).
Let e0 be a value or a variable, if Ψ ; Γ ` e0 : {x : τb | e}, then e0 = c or e0 = x; and
Γ |= [e0/x]e.

Proof. By induction over the derivation of Ψ ; Γ ` e0 : {x : τb | e}. 2

Lemma 6 (Substitution of base-type values).
Let e0 be a value or a variable, if Γ1 `pure e0 : τb, Ψ ; Γ1 ` e0 : τ ′,

1. and Γ1, x : τ ′, Γ2 `pure e : τ , then Γ1, [e0/x]Γ2 `pure [e0/x]e : [e0/x]τ .
2. and Γ1, x : τ ′, Γ2 ` τ valid, then Γ1, [e0/x]Γ2 ` [e0/x]τ valid.
3. and Γ1, x : τ ′, Γ2 ` τ1 ≤ τ2, then Γ1, [e0/x]Γ2 ` [e0/x]τ1 ≤ [e0/x]τ2.
4. and Ψ ; Γ1, x : τ ′, Γ2 ` e : τ , then

Γ1, [e0/x]Γ2 ` self([e0/x]τ, [e0/x]e) ≤ [e0/x]self(τ, e).
5. and Ψ ; Γ1, x : τ ′, Γ2 ` e : τ , then Ψ ; Γ1, [e0/x]Γ2 ` [e0/x]e : [e0/x]τ .

Proof. Lemma 6.4 is by induction over the structure of τ . Others are by induction
over the derivation of the corresponding judgment. Use Prop 3, Lemma 3 Lemma 1.1
and Lemma 5. 2

Lemma 7 (Substitution of non-base-type values).
If Jτ ′K 6= τb,

1. and Γ1, x : τ ′, Γ2 `pure e : τ , then Γ1, Γ2 `pure e : τ .
2. and Γ1, x : τ ′, Γ2 ` τ valid, then Γ1, Γ2 ` τ valid.
3. and Γ1, x : τ ′, Γ2 ` τ1 ≤ τ2, then Γ1, Γ2 ` τ1 ≤ τ2.
4. • `pure v : τ ′, and Ψ ; Γ1, x : τ ′, Γ2 ` e : τ , then Ψ ; Γ1, Γ2 ` [v/x]e : τ .

Proof. By Lemma 2.1 and Lemma 2.2, variable x cannot appear in pure expressions
and types. Also use Prop 6 and Lemma 3. 2

Lemma 8 (Inversion lemma).



– If Ψ ; Γ ` (fix f(x : τ1) : τ2.e) : Πx : τ3.τ4, then Γ ` τ3 ≤ τ1, Γ, x : τ3 ` τ2 ≤ τ4,
Ψ ; Γ ` fix f(x : τ1) : τ2.e : Πx : τ1.τ2 and Ψ ; Γ, f : Πx : τ1.τ2, x : τ1 ` e : τ2.

– If Ψ ; Γ ` 〈e1, e2〉 : τ1 × τ2, then Ψ ; Γ ` e1 : τ1, Ψ ; Γ ` e2 : τ2.
– If Ψ ; Γ ` l : τ ref, then • ` Ψ(l) ≤ τ and • ` τ ≤ Ψ(l).

Proof. By induction over the derivation of the first premise and use Lemma 4. 2

Lemma 9 (Preservation for pure terms). If (M, e) 7−→ (M, e′) and
• `pure e : τ , then • `pure e′ : τ .

Lemma 10 (Step lemma).
If (M, e) 7−→ (M, e′), • `pure e : τb, Jτ1K = τb,

1. and Γ, x : τ1 `pure e1 : bool, then Γ |= [e′/x]e1 ⊃ [e/x]e1.
2. and Γ, x : τ1 ` τ valid, then Γ ` [e′/x]τ ≤ [e/x]τ .
3. and τb = bool, then Γ1, u : {e}, Γ2 |= e1 iff Γ1, u : {e′}, Γ2 |= e1.
4. and τb = bool, then Ψ ; Γ1, u : {e}, Γ2 ` e1 : τ1 iff Ψ ; Γ1, u : {e′}, Γ2 ` e1 : τ1.

Proof. Use Prop 7 and Prop 3. 2

Theorem 4 (Preservation).
If (M, e) ok and (M, e) 7−→ (M ′, e′), then (M ′, e′) ok.

Proof. Prove a stronger result: if M : Ψ and Ψ ; • ` e : τ , then exists Ψ ′ such that
Ψ ⊆ Ψ ′, M ′ : Ψ ′ and Ψ ′; • ` e′ : τ . By induction over the derivation of Ψ ; • ` e : τ . Use
Lemma 6, Lemma 7, Lemma 8 and Lemma 10. 2

Lemma 11 (Canonical Forms Lemma).
Suppose Ψ ; • ` v : τ

– If τ = bool, then either v = true or v = false
– If τ = Πx : τ1.τ2, then either v = c or v = fix f(x : τ ′

1) : τ ′
2.e,

– If τ = τ1 × τ2, then v = 〈v1, v2〉
– If τ = τ1 ref, then v = l and l ∈ dom(Ψ).

Theorem 5 (Progress).
If (M, e) ok, then either e is a value, or e = fail, or (M, e) 7−→ (M ′, e′) for some
M ′ and e′.

Proof. We know that M : Ψ and Ψ ; • ` e : τ . By induction over the derivation of
Ψ ; • ` e : τ . Use Lemma 11. 2

B.3 Soundness of the type directed translation of surface language

Lemma 12 (Type translation respects type validity and subtyping).

– If Γ ` τ valid then (|Γ |) ` (|τ |) valid.
– If Γ ` τ ≤ τ ′ then (|Γ |) ` (|τ |) ≤ (|τ ′|).

Proof. By induction on the type validity and subtyping judgment. 2

Lemma 13 (Properties of [τ ]x). If Γ, x : τ1 ` τ valid, then Γ ` [τ ]x valid.



Proof. By induction on the type validity judgment. 2

Theorem 6 (Soundness of type coercion).

Assume Γ ` τ valid and Γ ` τ ′ valid, if Γ `w e : τ −→ e′ : τ ′ and •; (|Γ |) ` (|e|) : (|τ |),
then •; (|Γ |) ` (|e′|) : (|τ ′|).

Proof. By induction on the coercion judgment, using Lemma 12. 2

Theorem 7 (Soundness of translation).

If Γ `w e ; e′ : τ , then •; (|Γ |) ` (|e′|) : (|τ |).

Proof. By induction on the translation rules, using Theorem 6 and Lemma 13. 2

B.4 Completeness of type directed translation

First, we formalize a simply typed language which has only non-dependent types and
dynamic reference types.

A simply typed language:

types τ : : = τb | τ → τ | τ × τ | τ dref
expressions e : : = c | x | fix f(x : τ1) : τ2.e | e e

| 〈e, e〉 | π1e | π2e | if e then e else e
| new τ ref e |!d e | e :=d e

Γ `0 e : τ

F(c) = τ

Γ `0 c : [τ ]
SConst

Γ (x) = τ

Γ `0 x : [τ ]
SVar

Γ ` τ1 → τ2 valid
Γ, f : τ1 → τ2, x : τ1 `0 e : τ2

Γ `0 fix f(x : τ1) : τ2.e : τ1 → τ2
SFun

Γ `0 e1 : τ1 → τ2

Γ `0 e2 : τ1

Γ `0 e1 e2 : τ2
SApp

Γ `0 e1 : τ1 Γ `0 e2 : τ2

Γ `0 〈e1, e2〉 : τ1 × τ2
SProd

Γ `0 e : τ1 × τ2

Γ `0 π1e : τ1
SProjL

Γ `0 e : τ1 × τ2

Γ `0 π2e : τ2
SProjR

Γ `0 e : bool Γ `0 e1 : τ Γ `0 e2 : τ

Γ `0 if e then e1 else e2 : τ
SIf

Γ `0 e : τ

Γ `0 new τ ref e : τ dref
SNew

Γ `0 e : τ dref

Γ `0 (!d e) : τ
SGet

Γ `0 e1 : τ dref Γ `0 e2 : τ

Γ `0 e1 :=d e2 : unit
SSet

Define co ref(τ) to be true iff any τ ′ ref in τ only appears in its covariant position.
Define contra ref(τ) to be true iff any τ ′ ref in τ only appears in its contravariant



position.
co ref(τb) = true
co ref({x : τb | e}) = true
co ref(Πx : τ1.τ2) = contra ref(τ1) ∧ co ref(τ2)
co ref(τ1 × τ2) = co ref(τ1)× co ref(τ2)
co ref(τ ref) = co ref(τ) ∧ contra ref(τ)
co ref(τ dref) = co ref(τ) ∧ contra ref(τ)

contra ref(τb) = true
contra ref({x : τb | e}) = true
contra ref(Πx : τ1.τ2) = co ref(τ1) ∧ contra ref(τ2)
contra ref(τ1 × τ2) = contra ref(τ1)× contra ref(τ2)
contra ref(τ ref) = false
contra ref(τ dref) = co ref(τ) ∧ contra ref(τ)

Lemma 14 (Simple type match).

1. If Γ ` τ ≤ τ ′, then [τ ] = [τ ′].
2. If Γ `w e : τ −→ e′ : τ ′, then [τ ] = [τ ′].

Proof. Proof by induction over the derivation of first premise. 2

Lemma 15 (Existence of type coercion). If co ref(τ), contra ref(τ ′) and
[τ ] = [τ ′], then forall Γ and e, exists e′ such that Γ `sim e : τ −→ e′ : τ ′.

Proof. Proof by induction over the structrure of τ and τ ′. 2

Lemma 16. If co ref(Γ ), co ref(F), e is in simply typed language syntax, and
Γ `w e ; e′ : τ , then co ref(τ).

Proof. Proof by induction over the derivation of Γ `w e ; e′ : τ . 2

Lemma 17 (Relation between Γ `0 e : τ and Γ `sim e ; e′ : τ ′). If Γ `0 e : τ
and Γ `sim e ; e′ : τ ′, then [τ ′] = τ .

Proof. Proof by induction over the derivation of Γ `sim e ; e′ : τ ′. Use Lemma 14. 2

Theorem 8 (Completeness of translation). If Γ `0 e : τ and ,co ref(Γ ) and
co ref(F), then exists e′ and τ ′ such that Γ `sim e ; e′ : τ ′.

Proof. Proof by induction over the structure of e. Use Lemma 15, Lemma 16 and
Lemma 17. 2


