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Abstract

The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent
computations can be represented as monadic objects, for which there is an intrinsic notion of
concurrency. It is designed as a conservative extension of the linear logical framework LLF
with the synchronous connectives ⊗, 1, !, and ∃ of intuitionistic linear logic, encapsulated
in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives
−◦, & and >.
The present report, the first of two technical reports describing CLF, presents the frame-
work itself and its meta-theory. A novel, algorithmic formulation of the underlying type
theory concentrating on canonical forms leads to a simple notion of definitional equality for
concurrent computations in which the order of independent steps cannot be distinguished.
The new formulation of the framework constitutes an original contribution even for the LF
fragment.
For many additional examples illustrating the use of the framework to specify and reason
about object systems of interest, the reader is referred to the companion technical report
on applications [CPWW02].
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1 Introduction

A logical framework [Pfe01b, BM01] is a meta-language for the specification and imple-
mentation of deductive systems, which are used pervasively in logic and the theory of pro-
gramming languages. A logical framework should be as simple and uniform as possible, yet
provide intrinsic means for representing common concepts and operations in its application
domain.

The particular lineage of logical frameworks we are concerned with in this paper started
with the Automath languages [dB80] which originated the use of dependent types. It was
followed by LF [HHP93], crystallizing the judgments-as-types principle. LF is based on a
minimal type theory λΠ with only the dependent function type constructor Π. It nonetheless
directly supports concise and elegant expression of variable renaming and capture-avoiding
substitution at the level of syntax, and parametric and hypothetical judgments in deduc-
tions. Moreover, proofs are reified as objects which allows properties of or relations between
proofs to be expressed within the framework [Pfe91].

Representations of systems involving state remained cumbersome until the design of the
linear logical framework LLF [CP98] and its close relative RLF [IP98]. For example, LLF
allows an elegant representation of Mini-ML with mutable references that reifies imperative
computations as objects. LLF is a conservative extension of LF with the linear function type
A −◦B, the additive product type A & B, and the additive unit type >. This type theory
corresponds to the largest freely generated fragment of intuitionistic linear logic [HM94,
Bar96] whose proofs admit long normal forms without any commuting conversions. This
allows a relatively simple type-directed equality-checking algorithm which is critical in the
proof of decidability of type-checking for the framework [CP98, VC00].

While LLF solved many problems associated with the representation of stateful compu-
tations, the encoding of concurrent computations remained unsatisfactory. In this report,
we demonstrate that the limitations of LLF can be overcome by extending the framework
with a monad that incorporates the synchronous connectives ⊗, 1, !, and ∃ of intuitionistic
linear logic. We call this new framework Concurrent LF (CLF).

The purpose of this report is to describe the language and meta-theory of CLF. Readers
interested in examples of CLF representations can consult the companion report [CPWW02],
which demonstrates the expressive power of CLF through a series of examples and, in par-
ticular, focuses on CLF’s effectiveness for encoding concurrent programming paradigms.

Summary. The remainder of the report is organized as follows. Section 2 introduces the
CLF type theory, including its syntax, equality judgments and typing judgments. Section 3
discusses how concurrent systems can be represented in CLF and how such representations
improve on what is possible in LLF, and relates CLF to various other similar proposals. Sec-
tion 4 describes CLF’s instantiation and expansion operators, which permit the formulation
of the framework without a notion of βη-conversion, and describes the key meta-theorems
on equality and typing. It also compares the formulation of the type theory seen here with
previous accounts of LF and related type theories. Finally, Section 5 offers some concluding
remarks.
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2 A type theory with concurrent terms

2.1 A language of concurrent objects

In the LF tradition, the terms classified by types are called objects, and the terms classified
by kinds are called type constructors, among which are the types. CLF has two categories
of types: the asynchronous types A and the synchronous types S. The asynchronous types
include all the type constructors of LF and LLF, as well as a new monadic type constructor
written {S}. The synchronous types, which are only allowed within the monad constructor,
include further type constructors of intuitionistic linear logic, all of which have let-style
elimination rules. Intuitively, the monad restricts the availability of these elimination forms
so that the question of commutative conversions between the eliminations and other terms
of the type theory does not arise. Sections 2.3 and 3.3 describe this in further detail. The
“(a)synchronous” terminology is due to Andreoli [And92].

Definition 1 (Type constructors)

A,B, C ::= A −◦B | Πx :A.B | A&B | > | {S} | P Asynchronous types

P ::= a | P N Atomic type constructors

S ::= S1 ⊗ S2 | 1 | ∃x :A. S | A Synchronous types

The asynchronous types include the dependent function type Πx :A.B, the linear func-
tion type A−◦B, the additive product type A&B, and the additive unit >. The monadic
type {S} acts as a coercion from the synchronous types into the asynchronous types. The
atomic type constructors P include type constructor constants a and the type-level depen-
dent application P N (where N is an object).

The synchronous types include the other type constructors new to CLF: the multiplica-
tive product type S1 ⊗ S2, the multiplicative unit 1, and the dependent pair type ∃x :A. S.
There is a trivial coercion from the asynchronous types into the synchronous ones. In addi-
tion, the exponential type ! of intuitionistic linear logic can be defined as a trivial dependent
pair: !A ≡ ∃x :A. 1.

The kind language of CLF is identical to that of LF and LLF. The symbol kind is also
used on occasion to classify the valid kinds.

Definition 2 (Kinds)

K,L ::= type | Πx :A.K Kinds

We often write A→ B instead of Πx :A.B and A→ K instead of Πx :A.K when B or
K respectively contains no free occurrence of x.

The CLF type theory inherits all the type and kind constructors of LF and LLF, and
the corresponding objects. It differs, however, in that the syntax of CLF admits only
those terms of LF and LLF that are β-normal and η-long—the canonical terms. This
simplifies the meta-theory of CLF, and highlights the importance of the principle that
LF representations always establish a compositional bijection between terms of an object
language and the canonical objects of LF of a given type. Thus, in CLF, there is no notion
of β- or η-conversion, and every well-formed term can be regarded as “canonical.”
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Definition 3 (Objects)

N ::=
∧
λx.N | λx.N | 〈N1, N2〉 | 〈〉 | {E} | R Normal objects

R ::= c | x | R∧N | R N | π1R | π2R Atomic objects

E ::= let {p} = R in E |M Expressions

M ::= M1 ⊗M2 | 1 | [N,M ] | N Monadic objects

p ::= p1 ⊗ p2 | 1 | [x, p] | x Patterns

The first two categories of object are the normal objects N and the atomic objects R.
These correspond to the quasi-canonical and quasi-atomic forms of LF object, respectively,
as described by Harper and Pfenning [HP00]. A normal object is a series of constructors
applied to atomic objects, while an atomic object is a series of natural-deduction style
destructors applied to a variable x or constant c. They include all the constructors and
destructors of LF and LLF: the unrestricted function constructor λx.N and destructorR N ;

the linear function constructor
∧
λx.N and destructor R∧N ; the additive pair constructor

〈N1, N2〉 and destructors π1R and π2R; and the additive unit constructor 〈〉.
In addition, there is a constructor {E} associated with the monadic type. The remaining

categories of object, the expressions E and monadic objects M , are associated with the
monadic type and the additional linear type constructors ⊗, 1 and ∃. They include the
monadic binding form let {p} = R in E; the multiplicative pair constructor M1 ⊗M2 and
pattern p1⊗p2; the multiplicative unit constructor 1 and pattern 1; and the dependent pair
constructor [N,M ] and pattern [x, p]. The monadic binding form let {p} = R in E binds all
the variables occurring in the pattern p within the expression E. Hence, it subsumes the
destructors for 1, ⊗, and ∃. The purpose of the monadic type is to isolate these binding
forms, which would otherwise have a catastrophic effect on the LF and LLF fragments of
CLF, as explained in Section 3.2.

Terms which differ only in the names of their bound variables are considered to be
the same. For the LF and LLF fragments of CLF, this is the only notion of equality:
two terms are equal if and only if they are α-equivalent. But expressions differ from the
other categories of object in that they are subject to permutative conversions by which the
monadic bindings can be reordered:

(let {p1} = R1 in let {p2} = R2 in E) = (let {p2} = R2 in let {p1} = R1 in E)

Of course, this rule is subject to the proviso that the bindings be independent : p1 and p2

must bind disjoint sets of variables, no variable bound by p1 can appear free in R2, and
vice versa. The reordering of monadic bindings is the mechanism by which CLF admits an
intrinsic description of concurrent computations. We think of each let binding as a single
computation step. Computation steps appearing in a single expression that are independent
in the above sense can be thought of as occurring concurrently.

The notion of equality on CLF objects could be characterized as the least congruence
relation including the above equation schema. The reason is that having separate syntactic
classes of objects and expressions eliminates any need for commuting conversions. (We do
not think of the permutative conversions as being commuting conversions.) But we prefer
to define the framework’s equality in a slightly different way. The definition relies on the
subsidiary concept of a concurrent context.
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Definition 4 (Concurrent contexts)

ε ::= | let {p} = R in ε Concurrent contexts

As usual, the notation ε[E] stands for the expression constructed by replacing the hole
in ε with E. Now equality can be defined as follows.

Definition 5 (Equality)

E1 =c E2 [Concurrent equality]

M1 = M2

M1 =c M2

R1 = R2 E1 =c ε[E2]

(let {p} = R1 in E1) =c ε[let {p} = R2 in E2]
*

E1 = E2 [Expression equality]

E1 =c E2

E1 = E2

N1 = N2 R1 = R2 M1 = M2 P1 = P2 [Other equalities]

(All congruences.)

The judgment E1 =c E2 holds when E1 and E2 represent the same underlying concurrent
computation even though their syntactic representations may differ. The rule marked (*)
is subject to the side condition that no variable bound by p be free in the conclusion or
bound by the context ε, and that no variable free in R2 be bound by the context ε. (It is
always possible to globally α-convert terms being compared for equality in order to avoid
running afoul of the side condition.)

Then the equality on expressions E1 = E2 is simply defined to be concurrent equality.
While the definition of concurrent equality is not presented symmetrically, it turns out to
be symmetric. The judgments N1 = N2, R1 = R2, M1 = M2, and P1 = P2 are characterized
by simple congruence rules for each syntactic form, not shown. In Section 4.5 it is shown
that equality is an equivalence relation. When it is necessary to refer to α-equivalence, as
opposed to the framework’s equality, the former will be denoted ≡.

The main advantage of this concrete definition of equality is that it is syntax directed.
The sequence of rules to be applied is determined by the syntax of the term on the left, and
the instantiation of the metavariables in the rule schemas is determined up to finitely many
possibilities (in considering how to decompose an expression E on the right into ε[E ′]).
Hence it is manifestly decidable and lends itself to interpretation as an algorithm.

2.2 The type system of CLF

We present first the type system of the LF fragment of CLF, then extend it to the LLF
fragment and finally the full language. Before presenting the typing judgments, it is nec-
essary to introduce the notions of signature and context, which record assumptions about
the types (or kinds) of constants and variables respectively.

Definition 6 (Signatures and contexts, LF fragment)

Σ ::= · | Σ, a :K | Σ, c :A Signatures

Γ ::= · | Γ, x :A Unrestricted contexts
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It is an invariant that variables added to signatures and contexts must be unique, and
the metavariables for contexts always denote contexts with unique variables.

There is a typing judgment for each syntactic category, as well as validity judgments for
contexts Γ and signatures Σ. Each of these judgments is defined in a completely syntax-
directed manner, so termination and decidability of typing is clear. For normal syntactic
categories (N , A, K) the operational interpretation of the type-checking judgment is that
a putative type is provided, and the judgment holds if the term can be typed with the
given type. In particular, a normal term such as λx. x may have several different types.
This stands in contrast to the typical presentation of LF, where type labels are used in
abstractions to ensure that every term has a unique type. For the atomic syntactic categories
(R, P ) the situation is different: the operational meaning of the typing judgment is that
it defines a partial function from an atomic term (in a given context and signature) to its
unique type. The direction of the arrow ⇐ or ⇒ serves as a mnemonic for whether a type
is being checked against or inferred, respectively.

In all cases the typing judgment is not considered to have any particular meaning unless
the context and signature referred to in the judgment are valid. For the normal syntactic
categories, the typing judgment is meaningless unless the type referred to in the judgment is
valid as well. For the atomic syntactic categories, it will be proved that whenever a typing
is derivable and the context and signature mentioned in the typing are valid, the type
mentioned in the judgment is valid. The signature Σ subscripting the various judgments is
often omitted—it is invariant in the course of a typing derivation.

Definition 7 (Typing, LF fragment)

` Σ ok [Signature validity]

` · ok
` Σ ok · `Σ K ⇐ kind

` Σ, a :K ok

` Σ ok · `Σ A⇐ type

` Σ, c :A ok

`Σ Γ ok [Context validity]

`Σ · ok

`Σ Γ ok Γ `Σ A⇐ type

`Σ Γ, x :A ok

Γ `Σ K ⇐ kind [Kind checking]

Γ ` type ⇐ kind
typeKF

Γ ` A⇐ type Γ, x :A ` K ⇐ kind

Γ ` Πx :A.K ⇐ kind
ΠKF

Γ `Σ A⇐ type [Type checking]

Γ ` A⇐ type Γ, x :A ` B ⇐ type

Γ ` Πx :A.B⇐ type
ΠF

Γ ` P ⇒ type

Γ ` P ⇐ type
⇒type⇐

Γ `Σ P ⇒ K [Atomic type constructor inference]

Γ ` a⇒ Σ(a)
a Γ ` P ⇒ Πx :A.K Γ ` N ⇐ A

Γ ` P N ⇒ inst kA(x.K,N )
ΠKE

Γ `Σ N ⇐ A [Normal object checking]

Γ, x :A ` N ⇐ B

Γ ` λx.N ⇐ Πx :A.B
ΠI

Γ ` R⇒ P ′ P ′ = P
Γ ` R⇐ P

⇒⇐
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Γ `Σ R⇒ A [Atomic object inference]

Γ ` c⇒ Σ(c)
c

Γ ` x⇒ Γ(x)
x Γ ` R⇒ Πx :A.B Γ ` N ⇐ A

Γ ` R N ⇒ inst aA(x. B,N)
ΠE

The typing rules [ΠKE] and [ΠE] involve the operation of instantiating a variable in
a dependent type (or kind) with an object. In the first-order case, an ordinary capture-
avoiding substitution will suffice. However, since β-redices are not syntactically allowed
in CLF, at higher type some computation must occur in order to find the term corre-
sponding to the result of the instantiation. This is achieved by the instantiation operator
inst aA(x. B,N), which computes the result of instantiating the variable x in the type B
with the object N . The instantiation operator is indexed by the type A of the object being
substituted. In the first-order case, we have that inst aa(x. B,N) ≡ [N/x]B, but at higher
type, more complex situations arise:

inst aa→a(x. b (λy. c (x (x y))), λz. d z) ≡ b (λy. c (d (d y)))

The instantiation operators for each syntactic category are defined in Section 4.1.
In contrast to the usual presentation of LF typing, there are no type conversion rules

(which would fail to be syntax directed). Instead, there is an appeal to the equality judgment
in the rule [⇒⇐] for the coercion from atomic objects to normal objects. In Section 4.5
type conversion for the typing judgments for normal syntactic categories is shown to be
admissible.

In order to extend the type system to the LLF fragment, we introduce a new context
for linear hypotheses. We depart slightly from the concrete syntax in adhering to the usual
convention that a metavariable like ∆ denotes an equivalence class of linear contexts up to
rearrangement. Note that there is no issue of dependency, as there would be in rearranging
an unrestricted context Γ, because types cannot depend on linear variables.

Definition 8 (Contexts, LLF fragment)

∆ ::= · | ∆, x∧:A Linear contexts

The typing judgments for objects must be modified in order to account for linear
hypotheses—the new formulation depends on a pair of contexts Γ; ∆ in the style of dual
intuitionistic linear logic [Bar96]. The following definition includes all the inference rules
from the LF fragment that have to be revised for this reason. Note that type constructors
and kinds never depend on linear variables.

Definition 9 (Typing, LLF fragment)

Γ `Σ ∆ ok [Linear context validity]

Γ `Σ · ok

Γ `Σ ∆ ok Γ `Σ A⇐ type

Γ `Σ ∆, x∧:A ok

Γ `Σ A⇐ type [Type checking, extended]

Γ ` A⇐ type Γ ` B ⇐ type

Γ ` A−◦ B ⇐ type
−◦F

Γ ` A⇐ type Γ ` B ⇐ type

Γ ` A& B ⇐ type
&F

Γ ` > ⇐ type
>F
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Γ `Σ P ⇒ K [Atomic type inference, revised]

Γ ` P ⇒ Πx :A.K Γ; · ` N ⇐ A

Γ ` P N ⇒ inst kA(x.K,N )
ΠKE

Γ; ∆ `Σ N ⇐ A [Normal object checking, revised and extended]

Γ, x :A; ∆ ` N ⇐ B

Γ; ∆ ` λx.N ⇐ Πx :A.B
ΠI

Γ; ∆ ` R⇒ P ′ P ′ = P

Γ; ∆ ` R⇐ P
⇒⇐

Γ; ∆, x∧:A ` N ⇐ B

Γ; ∆ ` ∧λx.N ⇐ A −◦B
−◦I

Γ; ∆ ` N1 ⇐ A Γ; ∆ ` N2⇐ B

Γ; ∆ ` 〈N1, N2〉 ⇐ A& B
&I

Γ; ∆ ` 〈〉 ⇐ > >I

Γ; ∆ `Σ R⇒ A [Atomic object inference, revised and extended]

Γ; · ` c⇒ Σ(c)
c

Γ; · ` x⇒ Γ(x)
x

Γ; ∆ ` R⇒ Πx :A.B Γ; · ` N ⇐ A

Γ; ∆ ` R N ⇒ inst aA(x. B,N)
ΠE

Γ; x∧:A ` x⇒ A
x

Γ; ∆1 ` R⇒ A −◦B Γ; ∆2 ` N ⇐ A

Γ; ∆1,∆2 ` R∧N ⇒ B
−◦E

Γ; ∆ ` R⇒ A&B

Γ; ∆ ` π1R⇒ A
&E1

Γ; ∆ ` R⇒ A& B

Γ; ∆ ` π2R⇒ B
&E2

Finally, we are ready to extend the type system to the full CLF language. This requires
one more kind of context to record the types of patterns.

Definition 10 (Contexts, full CLF)

Ψ ::= · | p∧:S,Ψ Pattern contexts

There are additional judgments for the validity of pattern contexts and synchronous
types, and for typing expressions and monadic objects. Note that pattern contexts Ψ are
ordered but do not allow dependencies.

Definition 11 (Typing, full CLF)

Γ `Σ Ψ ok [Pattern context validity]

Γ `Σ · ok

Γ `Σ S ⇐ type Γ `Σ Ψ ok

Γ `Σ p∧:S,Ψ ok

Γ `Σ A⇐ type [Type checking, extended]

Γ ` S ⇐ type

Γ ` {S} ⇐ type
{}F

Γ `Σ S ⇐ type [Synchronous type checking]

Γ ` S1 ⇐ type Γ ` S2 ⇐ type

Γ ` S1 ⊗ S2 ⇐ type
⊗F

Γ ` 1⇐ type
1F

Γ ` A⇐ type Γ, x :A ` S ⇐ type

Γ ` ∃x :A. S ⇐ type
∃F
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Γ; ∆ `Σ N ⇐ A [Normal object checking, extended]

Γ; ∆ ` E ← S

Γ; ∆ ` {E} ⇐ {S} {}I

Γ; ∆ `Σ E ← S [Expression checking]

Γ; ∆1 ` R⇒ {S0} Γ; ∆2; p∧:S0 ` E ← S

Γ; ∆1,∆2 ` (let {p} = R in E)← S
{}E Γ; ∆ `M ⇐ S

Γ; ∆ `M ← S
⇐←

Γ; ∆; Ψ `Σ E ← S [Pattern expansion]

Γ; ∆ ` E ← S

Γ; ∆; · ` E ← S
←←

Γ; ∆; p1
∧:S1, p2

∧:S2,Ψ ` E ← S

Γ; ∆; p1 ⊗ p2
∧:S1 ⊗ S2,Ψ ` E ← S

⊗L
Γ; ∆; Ψ ` E ← S

Γ; ∆; 1∧:1,Ψ ` E ← S
1L

Γ, x :A; ∆; p∧:S0,Ψ ` E ← S

Γ; ∆; [x, p]∧:∃x :A. S0,Ψ ` E ← S
∃L

Γ; ∆, x∧:A; Ψ ` E ← S

Γ; ∆; x∧:A,Ψ ` E ← S
AL

Γ; ∆ `Σ M ⇐ S [Monadic object checking]

Γ; ∆1 `M1 ⇐ S1 Γ; ∆2 `M2 ⇐ S2

Γ; ∆1,∆2 `M1 ⊗M2 ⇐ S1 ⊗ S2
⊗I

Γ; · ` 1⇐ 1
1I

Γ; · ` N ⇐ A Γ; ∆ `M ⇐ inst sA(x. S, N )

Γ; ∆ ` [N,M ]⇐ ∃x :A. S
∃I

The rule [∃I] requires another kind of instantiation operator in order to instantiate the
dependent variable in a dependent pair type.

A summary of all the judgments and rules of CLF can be found in Appendix A.

2.3 Related work

As noted above, CLF includes the LF and LLF frameworks as fragments, where the CLF
counterpart of an LF or LLF object is its canonical form with type labels omitted. The
CLF extension is conservative; anyone who knows how to use LF or LLF can bring their
(canonical) specifications to CLF and use them without modification. There is a further
“modularity” property: given an LF or LLF signature Σ1 and a disjoint CLF signature Σ2,
both of which are valid, and a type A well-formed in Σ1, the set of objects of type A in
Σ1,Σ2 is the same as the set of objects of type A in Σ1 alone.1

The LLF framework was motivated as the largest fragment of intuitionistic linear logic
having a proof term assignment without commuting conversions [Cer96]. The equational
theory that would be associated with commuting conversions was seen as intractable.
Pfenning and Davies note that the commuting conversions of Moggi’s monadic metalan-
guage [Mog89, Mog91] can be eliminated by creating a new typing judgment associated
with a new class of object, the expressions [PD01]. They exhibit a compositional transla-
tion from the monadic metalanguage into their proof term assignment for lax logic [FM97].

1The modularity result does not hold for arbitrary disjoint CLF signatures Σ1 and Σ2. It could be
recovered by replacing the monadic type constructor with a countably infinite family of “tagged” monadic
type constructors and requiring that the sets of tags mentioned in Σ1 and Σ2 be disjoint.
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The translation takes monadic metalanguage terms related by commuting conversions into
identical terms of the target language. CLF exploits their idea to eliminate commuting
conversions that would otherwise be associated with the monadic type and the synchronous
types. The monadic type constructor {S} would be written ©S in lax logic.

Further remarks on how CLF relates to frameworks outside the LF family appear at the
end of the following section.

3 Toward a methodology for representing concurrent sys-
tems

The following are a few remarks on the methodology associated with the CLF language. For
further details, the reader may consult the companion report on applications [CPWW02].

A logical framework in the LF tradition is not only a type theory. It is also a methodology
for representing the deductive systems of interest within that type theory [Pfe99]. The
LF methodology represents object-language judgments by LF types and object-language
deductions by LF objects. Other syntactic entities of the object language (propositions,
expressions, types, etc.) are also represented by LF objects. In each case an adequacy
theorem establishes that there is a compositional bijection between well-formed entities of
the object language and well-typed canonical objects in LF (of a certain type). The higher
types and dependent types available in LF assist in this task: LF abstraction models object-
language binding, α-conversion, and substitution (“higher-order abstract syntax” [PE88]);
LF abstraction also models hypothetical and parametric judgments of the object language;
and LF dependent function types enforce well-formedness constraints on object-language
deductions.

For this reason, LF representations do not need to deal explicitly with matters of variable
binding and α-conversion, and certain kinds of errors in specification associated with such
binding constructs are impossible to make. Similarly, LF representations do not need to
explicitly encode the relation between an object-language deduction and the proposition
that it proves—the proposition that a deduction proves becomes an intrinsic part of its
(dependent) LF type. In this way, proof checking reduces to LF type checking, which is
decidable and efficient.

Linear LF seeks to expand these benefits to the case of linear hypothetical judgments.
Linear hypotheses make mutable state an intrinsic part of the framework. When represent-
ing an object system involving mutable state, it is not necessary to represent the state as
an explicit object, nor to explicitly specify operations for adding information to the state,
changing it, or withdrawing information from it. This idea takes on a particularly simple
form when the state consists of the presence or absence of any of a set of discrete resources,
as in the following example.

3.1 An example: Petri nets with labeled tokens

Here we consider a simple example of an object system involving state: a Petri net [Pet62]
with labeled tokens. Such a Petri net consists of a directed bipartite graph of places and
transitions. A state of the net consists of a mapping from a finite set of tokens, each uniquely
labeled, to the places.2 A computation step consists of choosing a transition, removing a

2One requirement of the LLF representation methodology, when applied to systems involving discrete
sets of resources, is that the resources be distinguishable. Hence the tokens of the Petri net must carry
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Figure 1: An example Petri net

token from each of its antecedent places, and adding a fresh token to each of its succedent
places. A transition cannot be chosen if any of its antecedent places has no tokens.

For example, Figure 1 shows a labeled Petri net with six places and four transitions.
Our simple representation of the net in the LLF fragment of CLF models the places by
LLF type constants and the transitions and tokens by LLF objects. Each token has a type
corresponding to the place in which it is located. (A more sophisticated representation
might model places as objects and introduce a two-place judgment “token x is in place
y.”) The transitions are linear functions in continuation-passing style, “consuming” linear
hypotheses associated with the antecedent places and introducing new linear hypotheses
associated with the succedent places. A type G represents the continuation. Thus we have
the following signature:

p, r, n, a, b, c : type
G : type

P : (r−◦ G)−◦ (p−◦ G)
R : (p−◦ n−◦ b−◦ G)−◦ (r−◦ G)
A : (c−◦ G)−◦ (b−◦ b−◦ a−◦ G)
C : (a−◦ G)−◦ (c−◦ G)

The adequacy theorem for this representation states:

Final state q1, . . . , qn can be reached from initial state p1, . . . , pm iff there is an
object N such that

·; · ` N ⇐ (q1 −◦ . . .−◦ qn −◦ G)−◦ (p1 −◦ . . .−◦ pm −◦ G)

Moreover, there is a bijection between sequences of firings of the transition rules
of the Petri net and such canonical objects.

Two examples of such objects are as follows. The first represents the firing of R following
by the firing of A in the shown initial state. The second shows the same firings in the

opposite order. Here the abbreviation
∧
λx1, x2, . . . , xn. N stands for a curried sequence of

linear λ-abstractions. The outermost λ-abstractions have been elided.

unique labels. It is possible that proof irrelevance [Pfe01a] could offer a way of modeling indistinguishability.
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∆ = f∧:(c−◦ b−◦ b−◦ n−◦ n−◦ n−◦ p−◦ G),
r1
∧:r, n1

∧:n, n2
∧:n, b1

∧:b, b2
∧:b, b3

∧:b, a1
∧:a

·; ∆ ` R∧(
∧
λp1, n3, b4.A

∧(
∧
λc1. f

∧c1
∧b3
∧b4
∧n1
∧n2

∧n3
∧p1)∧b1

∧b2
∧a1)∧r1 ⇐ G

·; ∆ ` A∧(
∧
λc1.R

∧(
∧
λp1, n3, b4. f

∧c1
∧b3
∧b4
∧n1
∧n2

∧n3
∧p1)∧r1)∧b1

∧b2
∧a1 ⇐ G

The benefit of the LLF methodology is clear: it is not necessary to explicitly manage a
“list” of tokens and axiomatize operations for adding and removing tokens from the list, as
one would have to do in LF. In LF one would also have to prove various interaction laws for
the token-list-managing operations; in LLF, the required principles are proved once and for
all as structural laws of the framework’s linear hypothetical judgment. However, there is also
room for improvement. We might have hoped for an adequacy theorem relating LLF objects
to concurrent computations of the Petri net, that is, equivalence classes of computations
under rearragement of independent steps. But this strengthened adequacy theorem does not
hold. For example, the two LLF terms above correspond to computations differing only in
the order of independent R and A steps: no labeled token indexing the R step is involved in
the A step, and vice versa. But the structure of the LLF representation nonetheless requires
that the two orderings be represented by different terms. In essence, the continuation-
passing style of the representation forces a sequentialization of the computation.

3.2 Representing LPNs in CLF

It is tempting to think that this issue can be solved by adding more connectives to the
framework. Why not work with a framework containing a full complement of linear logical
operators (including 1, A ⊗B, !A) and replace

ck : (q1 −◦ . . .−◦ qn −◦ G)−◦ (p1 −◦ . . .−◦ pm −◦ G)

with the apparently more straightforward

c′k : p1 ⊗ . . .⊗ pm −◦ q1 ⊗ . . .⊗ qn ?

Unfortunately, such an extension would not be conservative over the LF and LLF frag-
ments of the type language. In fact, it would have a catastrophic effect on adequacy results
for even very simple LF encodings. Consider a simple LF representation of the natural
numbers together with an additional constant c of multiplicative unit type:

nat : type
z : nat

s : nat→ nat
c : 1

The problem is that terms such as (let 1 = c in z : nat) destroy the bijective correspondence
of the type nat with the set of natural numbers.3 Similar examples would arise in the
presence of a constant of type A⊗B, !A, A⊕B, or 0. So the adequacy of the LF encoding
is destroyed by the presence of even a single object constant having a type given by one of
the new type constructors.

The underlying problem is that the destructors associated with these synchronous types
involve “polymorphic” binding constructs that do not constrain the type of the object

3Examples such as (
∧
λx. let 1 = x in z : 1−◦ nat) show that the term above cannot simply be equal to z.
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resulting from the binding. CLF’s monadic type extracts us from this difficulty by restricting
the awkward binding constructs to the monad. This encapsulation protects the pure LF
and LLF fragments of CLF from the new constructs. All encodings already devised for
LF or LLF remain adequate, and their adequacy proofs can remain exactly the same.
Furthermore, as has already been noted, the separation between expressions and object
rules out commuting conversions, simplifying the equational theory.

Using CLF’s multiplicative conjunction ⊗, our transition rule can be rewritten as

c′′k : p1 −◦ . . .−◦ pm −◦ {q1 ⊗ . . .⊗ qn}

where currying eliminates the use of ⊗ on the left-hand side. The multiplicative unit 1
covers the case n = 0. Though it does not arise here, a modified model of Petri nets might
also have transitions generating elements of persistent (unrestricted) type. In that case we
would have exponentials !q on the right as well. (Exponentials on the left can be curried
away using the unrestricted function type.)

As an aside, while one might think that the presence of the exponential type constructor !
would render the intuitionistic function type A → B definable by {!A} −◦ B, this is not
in fact the case. As a simple counterexample we may see that while a → a (a being an
uninhabited atomic type) is inhabited by λx. x, the type {!a} −◦ a is not inhabited. The

type {!a} −◦ {a} is inhabited by
∧
λx. {let {!y} = x in y}, however.

Thus, in CLF, the Petri net example is represented almost as in intuitionistic linear
logic, except that the right-hand sides of the linear implications use the monad.

P : p−◦ {r}
R : r−◦ {p⊗ n⊗ b}
A : b−◦ b−◦ a−◦ {c}
C : c−◦ {a}

The two example Petri net executions shown above in the LLF encoding correspond to
the following objects in the new encoding:

∆ = r1
∧:r, n1

∧:n, n2
∧:n, b1

∧:b, b2
∧:b, b3

∧:b, a1
∧:a

S = c⊗ b⊗ b⊗ n⊗ n⊗ n⊗ p

·; ∆ ` {let {p1 ⊗ n3 ⊗ b4} = R∧r1 in let {c1} = A∧b1
∧b2
∧a1 in

c1 ⊗ b3 ⊗ b4 ⊗ n1 ⊗ n2 ⊗ n3 ⊗ p1} ⇐ {S}
·; ∆ ` {let {c1} = A∧b1

∧b2
∧a1 in let {p1 ⊗ n3 ⊗ b4} = R∧r1 in

c1 ⊗ b3 ⊗ b4 ⊗ n1 ⊗ n2 ⊗ n3 ⊗ p1} ⇐ {S}

It is now easy to see that the two executions are equal. This idea is crystallized as an
improved adequacy theorem:

Final state q1, . . . , qn can be reached from initial state p1, . . . , pm iff there is a
object N such that

·; · ` N ⇐ p1 −◦ . . .−◦ pm −◦ {q1 ⊗ . . .⊗ qn}

Moreover, there is a bijection between concurrent executions of the transition
rules of the Petri net and equivalence classes of such objects modulo =.



3 REPRESENTING CONCURRENT SYSTEMS 15

While at first this may seem a minor modification, it has far-reaching consequences.
Experience with logical frameworks has shown many times that natural encodings lead to
deeper understanding of the underlying logical and computational principles, while con-
trived encodings often do not shed much light on the subject of study. These advantages
are multiplied when considering algorithms for manipulating the representations, for proof
search, and for meta-theoretic reasoning, because the principles embodied in and provided
by the framework have been factored out and do not need to be re-implemented for each
encoding.

The representation principle for CLF, then, can be summarized by “concurrent com-
putations as monadic expressions.” Each computation step in a concurrent computation
becomes a binding let {p} = R in E possibly “consuming” some linear hypotheses in R

and “producing” more linear hypotheses in p, which will be available in the rest of the
computation E.

While there is not space here to discuss more interesting examples of CLF represen-
tations, the companion technical report [CPWW02] contains examples including a fuller
discussion of Petri net encodings; synchronous and asynchronous π-calculi; an ML-like
language with references and concurrency in the style of CML; and the security protocol
language MSR.

3.3 Related work

The LF representation methodology is discussed in detail in the handbook article on log-
ical frameworks by Pfenning [Pfe99]. Further examples of CLF representations, includ-
ing a full development of the Petri net example, are in the technical report by Cervesato
et al. [CPWW02]. The idea of representing Petri nets by linear hypothetical judgments has
a long history, going back to Mart́ı-Oliet and Meseguer [MOM91].

Monadic encapsulation in the context of functional programming and type theory begins
with Moggi’s monadic metalanguage [Mog89, Mog91]. Prawitz describes a proof theory for
modal logics [Pra65], from which Moggi’s presentation of the monadic metalanguage in-
herits. Pfenning and Davies [PD01] revisit the question of proof theory for modal logic,
reinterpreting it on the basis of a judgmental approach in the style promulgated by Martin-
Löf [ML96]. Their approach improves on the original formulation of the monadic metalan-
guage in that commuting conversions are no longer needed. Their judgmental analysis of
the modal operator of lax logic is the basis for CLF’s modal type constructor and the as-
sociated CLF judgments. They do not, however, consider the existence of canonical forms,
and their proof term language, unlike CLF, relies on βη-conversion.

There have been many other formalisms proposed for the representation of concurrent
systems, many having elements in common with the CLF approach. Abramsky’s “proofs-
as-processes” relates classical linear logic with the synchronous π-calculus [Abr93, BS94].
Here concurrent computation corresponds to proof normalization (cut elimination), giving
the system a functional flavor. Concurrent computations (traces) are thus not reified as
objects, as they are in CLF.

Closer to the CLF view are approaches in which logical formulas are identified with
processes and proofs with concurrent computations. Thus, these are nearer to logic pro-
gramming in the sense of proof search [MNPS91] than to functional programming. For
example, Miller outlines a translation from the π-calculus into linear logic: processes be-
come LL propositions and π-calculus reduction becomes LL entailment [Mil92]. These ideas
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are generalized and reformulated as a logical framework in Miller’s proposal for the specifi-
cation logic Forum [Mil96, Chi95]. Forum offers a paradigm for viewing logic programming
as concurrent computation, and so it is likely that the logic programming interpretation
for CLF will draw heavily from it. However, in Forum proofs cannot be manipulated as
first-class objects—not even cut elimination is treated, let alone an equational theory on
proofs. The same is true of LinLog [And92], LO [AP91], ACL [KY93], Lygon [HPW96],
and LLP [HWTK98], all of which treat logic programming over other fragments of classical
or intuitionistic linear logic.

Perrier describes how the basic idea of linear logic programming as concurrent compu-
tation can be improved by adopting proof nets [Gir87] rather than sequent calculus proofs
as the fundamental computational objects [Per98]. Again, however, proof nets are treated
only meta-theoretically—they are not first-class terms of the process language. The key
foundational idea of Elf, that proofs should be just like any other objects of the framework,
does not apply.

Barber proposes a very general type theory based on linear operators and proves decid-
ability in the general framework [Bar97]. Since the generalization includes the DILL type
theory and the action calculus as special cases, this immediately entails the decidability
of the DILL type theory. However, there is no treatment of dependent types, nor would
DILL be adequate for LF-style representations for the reasons outlined in Section 3.2. Also,
the presentation does not seem to lend itself to concrete implementation as a mechanized
framework. Finally, Barber’s reliance on proof nets would seem to render the extension
to additive sum types problematic, while for CLF it is straightforward, because the issue
of commuting conversions (other than an appropriate generalization of the permutative
conversions) does not arise.

Honsell et al. develop perhaps the most significant application of a logical framework
in the sphere of concurrency [HMS01]. They present an encoding of the π-calculus in the
Coq system, a framework based on a higher-order type theory with (co)inductive types,
and work out some rather advanced meta-theory using the encoding. But this should be
regarded as a tour de force, given that Coq offers no intrinsic support for reasoning about
concurrency. Of course, even in CLF, abstract relations like the strong late bisimularity
treated in their development would need to be treated explicitly. CLF’s concurrent equality
simplifies such reasoning; it does not obviate the need for it.

4 Some meta-theoretic results

The design of CLF is based on the idea that every syntactically well-formed term should be
“canonical,” and that the notion of βη-conversion should be eliminated, in favor of simple
inductively defined instantiation operators for instantiating a variable in a term with an
object. Thus, in developing the meta-theory of CLF there is no need to consider issues such
as confluence and normalizability per se. Instead, we define the instantiation operators
by a manifestly terminating recurrence, and we focus on the simple algebraic laws that
the instantiation operators satisfy, and on their interaction with the framework’s notion of
equality.

Another new element of this approach is an expansion operator taking an atomic object
to the corresponding normal object at higher type. This is necessary because the coercion
rule [⇒⇐] from atomic objects to normal objects can only be applied at base type. The
expansion operator thus replaces the idea of η-conversion.
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Once the instantiation and expansion operators have been defined, and their algebraic
properties characterized, it is possible to describe their relationship to the judgments for
typing. It so happens that the instantiation operators witness the familiar substitution
principles for typing (the transitivity of entailment, from the proof-theoretic point of view),
and the expansion operator witnesses the identity principles for typing (the reflexivity of
entailment).

4.1 Instantiation

The recurrence defining instantiation is based on the observation, exploited in cut elimina-
tion proofs on the logical side [Pfe00], but not so well known on the type theoretic side,
that the canonical result of substituting one canonical term into another can be defined by
induction on the type of the term being substituted. Accordingly, the instantiation oper-
ators are defined as a family parameterized over the type of the object being substituted.
In the notation inst cA(x.X,N ) this type A appears as a subscript. Here c is replaced by a
mnemonic for the particular syntactic category to which the instantiation operator applies.
The variable x is to be considered bound within the term X (of whatever category) being
substituted into. The operators defined in this section should be thought of as applying to
equivalence classes of concrete terms modulo α-equivalence on bound variables.

Together with the instantiation operators, and defined by mutual recursion with them,
is a reduction operator reduceA(x. R,N ) that computes the canonical object resulting from
the instantiation of x with N in the case that the head variable head(R) of the atomic
object R is x. Thus, roughly speaking, it corresponds to the idea of weak head reduction
for systems with β-reduction. The instantiation operator inst rA(x. R,N ), by contrast, is
only defined if the head of R is not x. Another distinguishing feature is that reduction on
an atomic object yields a normal object, while instantiation on an atomic object yields an
atomic object.

Finally, there is a type reduction operator treduceA(x. R) that computes the putative
type of R given that the head of R is x and the type of x is A.4 Type reduction is used in
side conditions that ensure that the recurrence defining instantiation is well-founded.

The first definition covers the LF fragment of CLF.

Definition 12 (Instantiation, LF fragment)

treduceA(x. R) ≡ B [Type reduction]

treduceA(x. x) ≡ A
treduceA(x. R N ) ≡ C if treduceA(x. R) ≡ Πy :B.C

reduceA(x. R,N0) ≡ N ′ [Reduction]

reduceA(x. x, N0) ≡ N0

reduceA(x. R N,N0) ≡ inst nB(y. N ′, inst nA(x.N,N0))

if treduceA(x. R) ≡ Πy :B.C and reduceA(x. R,N0) ≡ λy. N ′

4Actually, to be more precise, the type of R will be a substitution instance of treduceA(x.R). The
instantiation operators do not keep track of dependencies within the type subscript.
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inst rA(x. R,N0) ≡ R′ [Atomic object instantiation]

inst rA(x. c, N0) ≡ c
inst rA(x. y, N0) ≡ y if y is not x

inst rA(x. R N,N0) ≡ (inst rA(x. R,N0)) (inst nA(x.N,N0))

inst nA(x.N,N0) ≡ N ′ [Normal object instantiation]

inst nA(x. λy. N,N0) ≡ λy. inst nA(x.N,N0) if y /∈ FV(N0)

inst nA(x. R,N0) ≡ inst rA(x. R,N0) if head(R) is not x

inst nA(x. R,N0) ≡ reduceA(x. R,N0) if treduceA(x. R) ≡ P

inst pA(x. P, N0) ≡ P ′ [Atomic type constructor instantiation]
inst aA(x. A,N0) ≡ A′ [Type instantiation]
inst kA(x.K,N0) ≡ K ′ [Kind instantiation]

(Analogous.)

The recurrence defining these operators is based on a structural induction. There is an
outer induction on the type subscripting the operators, and an inner simultaneous induction
on the two arguments. Noting first that if treduceA(x. R) is defined, it is a subterm of A,
the fact that the recurrence relations respect this induction order can be verified almost by
inspection. The only slightly subtle case is the equation for reduceA(x. R N,N0), which is the
only case in which the subscripting type changes. Here the side condition treduceA(x. R) ≡
Πx :B.C ensures that B must be a strict subterm of A for the reduction to be defined. An
instantiation such as inst nA(x. x x, λx. x x) is guaranteed to fail the side condition after
only finitely many expansions of the recurrence.

Another way in which an instance of the instantiation operators might fail to be defined
would be if the recursive instantiation inst rA(x. R,N0) in the same equation failed to result
in a manifest lambda abstraction λy. N ′. In fact, this could only happen if the term N0 failed
to have the ascribed type A.5 So instantiation always terminates, regardless of whether its
arguments are well typed, but it is not defined in all cases. After the meta-theory is further
developed, it can be shown that instantiation is always defined on well-typed terms when
the types match in the appropriate way.

No substantially new issues arise in the extension to the LLF fragment.

Definition 13 (Instantiation, LLF fragment)

treduceA(x. R) ≡ B [Type reduction, extended]

treduceA(x. R∧N ) ≡ C if treduceA(x. R) ≡ B −◦ C
treduceA(x. π1R) ≡ B1 if treduceA(x. R) ≡ B1 &B2

treduceA(x. π2R) ≡ B2 if treduceA(x. R) ≡ B1 &B2

reduceA(x. R,N0) ≡ N ′ [Reduction, extended]

reduceA(x. R∧N,N0) ≡ inst nB(y. N ′, inst nA(x.N,N0))

if treduceA(x. R) ≡ B −◦ C and reduceA(x. R,N0) ≡
∧
λy. N ′

reduceA(x. π1R,N0) ≡ N ′1 if reduceA(x. R,N0) ≡ 〈N ′1, N ′2〉
reduceA(x. π2R,N0) ≡ N ′2 if reduceA(x. R,N0) ≡ 〈N ′1, N ′2〉

5Or a substitution instance of A.
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inst rA(x. R,N0) ≡ R′ [Atomic object instantiation, extended]

inst rA(x. R∧N,N0) ≡ (inst rA(x. R,N0))
∧(inst rA(x.N,N0))

inst rA(x. π1R,N0) ≡ π1(inst rA(x. R,N0))

inst rA(x. π2R,N0) ≡ π2(inst rA(x. R,N0))

inst nA(x.N,N0) ≡ N ′ [Normal object instantiation, extended]

inst nA(x.
∧
λy. N,N0) ≡

∧
λy. inst nA(x.N,N0) if y /∈ FV(N0)

inst nA(x. 〈N1, N2〉, N0) ≡ 〈inst nA(x.N1, N0), inst nA(x.N2, N0)〉
inst nA(x. 〈〉, N0) ≡ 〈〉

In order to extend this idea to the full CLF language, with its pattern-oriented destructor
for the monadic type, it is necessary to introduce matching operators match cS(p. E,X),
where X is either an expression or a monadic object. The matching operator computes
the result of instantiating E according to the substitution on the variables of p generated
by matching p against X . (The variables in p should be considered bound in E.) In the
case that X is a monadic object M0, this is straightforward: the syntax of monadic objects
corresponds precisely to that of patterns. But in the case that X is a let binding, an
interesting issue arises:

match eS(p. let {p1} = R1 in E1, let {p2} = R2 in E2) ≡ ?

The key is found in Pfenning and Davies’ non-standard substitutions for the proof terms
of the modal logics of possibility and laxity [PD01]. These analyze the structure of the
object being substituted, not, as in the usual case, the term being substituted into. The
effect is similar to a commuting conversion:

match eS(p. let {p1} = R1 in E1, let {p2} = R2 in E2) ≡
(let {p2} = R2 in match eS(p. let {p1} = R1 in E1, E2))

It is interesting that both non-standard substitution and pattern matching—the latter
not present in Pfenning and Davies’ system—rely in this way on an analysis of the object
being substituted rather than the term being substituted into. In a sense, this commonality
is what makes the harmonious interaction between CLF’s modality and its synchronous
types possible.

Definition 14 (Instantiation, full CLF)

inst nA(x.N,N0) ≡ N ′ [Normal object instantiation, extended]

inst nA(x. {E}, N0) ≡ {inst eA(x. E,N0)}

inst mA(x.M,N0) ≡M ′ [Monadic object instantiation]

inst mA(x.M1 ⊗M2, N0) ≡ inst mA(x.M1, N0)⊗ inst mA(x.M2, N0)

inst mA(x. 1, N0) ≡ 1

inst mA(x. [N,M ],N0) ≡ [inst nA(x.N,N0), inst mA(x.M,N0)]

inst mA(x.N,N0) ≡ inst nA(x.N,N0)
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inst eA(x. E,N0) ≡ E ′ [Expression instantiation]

inst eA(x. let {p} = R in E,N0) ≡ (let {p} = inst rA(x. R,N0) in inst eA(x. E,N0))

if head(R) is not x,

and FV(p) ∩ FV(N0) is empty

inst eA(x. let {p} = R in E,N0) ≡ match eS(p. inst eA(x. E,N0), E
′)

if treduceA(x. R) ≡ {S}, reduceA(x. R,N0) ≡ {E ′},
and FV(p) ∩ FV(N0) is empty

inst eA(x.M,N0) ≡ inst mA(x.M,N0)

match mS(p. E,M0) ≡ E ′ [Match monadic object]

match mS1⊗S2(p1 ⊗ p2. E,M1⊗M2) ≡ match mS2(p2.match mS1(p1. E,M1),M2)

if FV(p2) ∩ FV(M1) is empty

match m1(1. E, 1)≡ E
match m∃x :A.S([x, p]. E, [N,M ])≡ match mS(p. inst eA(x. E,N ),M)

if FV(p) ∩ FV(N ) is empty

match mA(x. E,N)≡ inst eA(x. E,N )

match eS(p. E, E0) ≡ E ′ [Match expression]

match eS(p. E, let {p0} = R0 in E0) ≡ let {p0} = R0 in match eS(p. E, E0)

if FV(p0) ∩ FV(E) and FV(p) ∩ FV(E0) are empty

match eS(p. E,M0) ≡ match mS(p. E,M0)

inst sA(x. S, N0) ≡ S ′ [Synchronous type instantiation]

(Analogous.)

We interpret these recurrences as inductive definitions (adopting the least solution to
the recurrence). The first theorem ensures that type reduction has been properly defined.
There are also two lemmas, one of which, mentioned earlier, ensures that type reduction
makes a type smaller. All are immediate by structural induction on the argument.

Theorem 1 (Definability of type reduction)

The recurrence for type reduction uniquely determines a least partial function solving the
recurrence.

Lemma 2
If treduceA(x. R) is defined, then head(R) is x.

Lemma 3
If treduceA(x. R) ≡ B, then B is a subterm of A.

Now we can conclude that instantiation has been properly defined.

Theorem 4 (Definability of instantiation)

The recurrence for the reduction, instantiation, and matching operators uniquely determines
the least partial functions (up to α-equivalence) solving them.

Proof. The proof is by an outer structural induction on the type subscript, and an inner
simultaneous structural induction on the two arguments.
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4.2 Expansion

The expansion operator is specified by the following equations. In some cases, new bound
variables are introduced on the right-hand side of an equation. Any new variables in an
instance of such an equation are required to be distinct from one another and from any
other variables in the equation instance.

Definition 15 (Expansion)

expandA(R) ≡ N [Expansion]

expandP (R) ≡ R
expandA−◦B(R) ≡ ∧λx. expandB(R∧(expandA(x))) if x /∈ FV(R)

expandΠx :A.B(R) ≡ λx. expandB(R (expandA(x))) if x /∈ FV(R)

expandA&B(R) ≡ 〈expandA(π1R), expandB(π2R)〉
expand>(R) ≡ 〈〉
expand{S}(R) ≡ (let {p} = R in pexpandS(p))

pexpandS(p) ≡M [Pattern expansion]

pexpandS1⊗S2
(p1 ⊗ p2) ≡ pexpandS1

(p1)⊗ pexpandS2
(p2)

pexpand1(1) ≡ 1

pexpand∃x :A.S([x, p])≡ [expandA(x), pexpandS(p)]

pexpandA(x) ≡ expandA(x)

Theorem 5 (Definability of expansion) 1. If pexpandS(p1) and pexpandS(p2) are
both defined then p1 and p2 are the same up to variable renaming.

2. Given S, there is a pattern p, fresh with respect to any given set of variables, such
that pexpandS(p) is defined.

3. The recurrence for expansion uniquely determines it as a total function up to α-
equivalence.

Proof. The first part is by induction on S. The second and third parts are by induction
on the type subscript, using the first part to ensure that the result of expand{S}(R) is unique
up to α-equivalence.

4.3 On decidability

The next few meta-theoretic observations are on the decidability of the fundamental oper-
ators and judgments of the theory. We begin with equality. Recall that equality is totally
independent of typing and is syntax directed.

Theorem 6 (Decidability of equality) 1. Given R1 and R2, it is decidable whether
R1 = R2.

2. Given N1 and N2, it is decidable whether N1 = N2.

3. Given M1 and M2, it is decidable whether M1 = M2.
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4. Given E1 and E2, it is decidable whether E1 =c E2.

5. Given E1 and E2, it is decidable whether E1 = E2.

6. Given P1 and P2, it is decidable whether P1 = P2.

Proof. The proof is by simultaneous structural induction on the subjects of the judgments.
The judgments have been placed in the proper order of precedence in view of the trivial
coercions from R to N to M to E. For example, R1 = R2 is below N1 = N2 only if each
of R1 and R2 is a subterm of either N1 or N2, but N1 = N2 is below R1 = R2 only if each
of N1 and N2 is a strict subterm of either R1 or R2. In the case of E1 =c E2 it suffices to
note that any E2 can be decomposed as ε[E ′2] in only finitely many ways.

The next theorems are on the decidability of instantiation and expansion. Instantiation
and expansion are both syntax directed and terminate on arbitrary terms and type sub-
scripts. There is no requirement that the terms or type subscript be valid or that the type
subscript have any particular relationship to the terms. The proofs are immediate by the
same induction schemes as for the definability theorems.

Theorem 7 (Decidability of instantiation)

It is decidable whether any instance of the instantiation and matching operators is defined,
and if so, it can be effectively computed.

Theorem 8 (Decidability of expansion) 1. Given S, a pattern p can be effectively
computed such that pexpandS(p) is defined and can be effectively computed. The pat-
tern p can be chosen fresh with respect to any given set of variables.

2. Given A and R, the result of expandA(R) can be effectively computed.

The fact that instantiation and equality are decidable leads directly to the decidability
of typing in the framework, since the typing rules are syntax directed and appeal only to
instantiation and equality.

Lemma 9 (Unicity of inference) 1. There is a partial function typeof(Γ; ∆ ` R)
such that whenever Γ; ∆ ` R ⇒ A holds, A ≡ typeof(Γ; ∆ ` R). Given Γ, ∆, and
R, it is decidable whether typeof(Γ; ∆ ` R) is defined, and if so, it can be effectively
computed.

2. There is a partial function kindof(Γ ` P ) such that whenever Γ ` P ⇒ K holds,
K ≡ kindof(Γ ` P ). Given Γ and P , it is decidable whether kindof(Γ ` P ) is defined,
and if so, it can be effectively computed.

Proof. Immediate by the facts that typing is syntax directed, instantiation is a partial
function, and instantiation is computable.

Lemma 10
Suppose that for all Γ′ and ∆′ it is decidable whether Γ′; ∆′ ` E ← S. Then it is decidable
whether Γ; ∆; Ψ ` E ← S.

Proof. The induction is on the number of type constructors in Ψ.

Theorem 11 (Decidability of typing) 1. Given Γ, ∆, R, and A, it is decidable whether
Γ; ∆ ` R⇒ A.
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2. Given Γ, ∆, N , and A, it is decidable whether Γ; ∆ ` N ⇐ A.

3. Given Γ, ∆, M , and S, it is decidable whether Γ; ∆ `M ⇐ S.

4. Given Γ, ∆, E, and S, it is decidable whether Γ; ∆ ` E ← S.

5. Given Γ, P , and K, it is decidable whether Γ ` P ⇒ K.

6. Given Γ and A, it is decidable whether Γ ` A⇐ type.

7. Given Γ and K, it is decidable whether Γ ` K ⇐ kind.

8. Given Σ, it is decidable whether ` Σ ok.

9. Given Γ, it is decidable whether ` Γ ok.

10. Given Γ and ∆, it is decidable whether Γ ` ∆ ok.

11. Given Γ and Ψ, it is decidable whether Γ ` Ψ ok.

Proof. The proof is by structural induction on the subject of each judgment. In order to
decide Γ; ∆ ` R⇐ P , we test whether typeof(Γ; ∆ ` R) is atomic, typeof(Γ; ∆ ` R) ≡ P ,
and Γ; ∆ ` R ⇒ typeof(Γ; ∆ ` R). In order to decide Γ; ∆ ` R N ⇒ A, we first test
whether typeof(Γ; ∆ ` R) ≡ Πx :B.C for some B and C, whether Γ; ∆ ` R ⇒ Πx :B.C,
whether Γ; · ` N ⇐ B, and finally whether inst aB(x. C,N) ≡ A. In order to decide
Γ; ∆ ` let {p} = R in E ← S there is an appeal to the lemma. Similar comments apply
in other cases. In order to decide multiplicatives, it suffices—efficiency concerns aside—to
test every possible decomposition of the linear context ∆ into ∆1,∆2.

It is characteristic of this approach to the type theory that such decidability theorems
can be proved before any of the other meta-theory is developed, and that they do not
depend in any way on the various terms involved being valid. The most important reason
is that every judgment and algorithm of the theory is syntax directed.

4.4 Composition

A novel element of the meta-theory is the need for composition theorems for the instantiation
and expansion operators. These correspond to the usual categorical axioms of left and right
identity and associativity (slightly modified because we instantiate a single variable at a
time rather than all free variables). In a language admitting non-canonical forms these are
trivial, since the identity principle is witnessed trivially, and there is a composition law for
syntactic substitution:

[M1/x1][M2/x2]M3 ≡ [[M1/x1]M2][M1/x1]M3

The main theorem of this section is a corresponding law for instantiation. We begin
with a number of lemmas.

Lemma 12 (Trivial instantiation) 1. If x /∈ FV(R), then inst rA(x. R,N0) ≡ R.

2. If x /∈ FV(N ), then inst nA(x.N,N0) ≡ N .

3. If x /∈ FV(M), then inst mA(x.M,N0) ≡M .

4. If x /∈ FV(E), then inst eA(x. E,N0) ≡ E.

5. If x /∈ FV(P ), then inst pA(x. P, N0) ≡ P .

6. If x /∈ FV(B), then inst aA(x. B,N0) ≡ B.
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7. If x /∈ FV(S), then inst sA(x. S, N0) ≡ S.

8. If x /∈ FV(K), then inst kA(x.K,N0) ≡ K.

Proof. A straightforward induction on the first argument.

Lemma 13
If inst rA(x. R,N0) is defined, then head(inst rA(x. R,N0)) is head(R).

Lemma 14
If x and y are distinct, treduceA(x. R) ≡ A′, and inst rB(y. R,N0) is defined, then

treduceA(x. inst rB(y. R,N0)) ≡ A′.

Lemma 15
The free variables in a term resulting from instantiating x with N0 are a subset of the free
variables of the original term, excepting x.

The free variables in a term resulting from matching p with E0 or M0 are a subset of
the free variables of the original term, excepting the variables of p.

Note that the following theorem holds without assuming that the terms involved are
well-typed.

Theorem 16 (Composition of instantiations)

Suppose that x and y are distinct or x /∈ FV(p), and y /∈ FV(N0) or FV(p) ∩ FV(N0) is
empty, as the case may be. For each of the following equations, if the inner instantiations
are defined, then the outermost instantiations on each side are both defined and are α-
equivalent.

1. reduceA0(x. inst rA(y. R1, N2), N0) ≡ inst nA(y. reduceA0(x. R1, N0), inst nA0(x.N2, N0))

2. inst nA0(x. reduceA(y. R1, N2), N0) ≡ reduceA(y. inst rA0(x. R1, N0), inst nA0(x.N2, N0))

3. inst rA0(x. inst rA(y. R1, N2), N0) ≡ inst rA(y. inst rA0(x. R1, N0), inst nA0(x.N2, N0))

4. inst nA0(x. inst nA(y.N1, N2), N0) ≡ inst nA(y. inst nA0(x.N1, N0), inst nA0(x.N2, N0))

5. inst mA0(x. inst mA(y.M1, N2), N0) ≡ inst mA(y. inst mA0(x.M1, N0), inst nA0(x.N2, N0))

6. inst eA0(x. inst eA(y. E1, N2), N0) ≡ inst eA(y. inst eA0(x. E1, N0), inst nA0(x.N2, N0))

7. inst eA0(x.match mS(p. E1,M2), N0) ≡ match mS(p. inst eA0(x. E1, N0), inst mA0(x.M2, N0))

8. inst eA0(x.match eS(p. E1, E2), N0) ≡ match eA(p. inst eA0(x. E1, N0), inst eA0(x. E2, N0))

9. match mS0(p0.match eS(p. E1, E2),M0)

≡ match eS(p.match mS0(p0. E1,M0),match mS0(p0. E2,M0))

10. match eS0(p0.match eS(p. E1, E2), E0) ≡ match eS(p. E1,match eS0(p0. E2, E0))

(Supposing no variable bound by p0 is free in E1.)

11. inst pA0
(x. inst pA(y. P1, N2), N0) ≡ inst pA(y. inst pA0

(x. P1, N0), inst nA0(x.N2, N0))

12. inst aA0(x. inst aA(y. A1, N2), N0) ≡ inst aA(y. inst aA0(x. A1, N0), inst nA0(x.N2, N0))

13. inst sA0(x. inst sA(y. S1, N2), N0) ≡ inst sA(y. inst sA0(x. S1, N0), inst nA0(x.N2, N0))

14. inst kA0(x. inst kA(y.K1, N2), N0) ≡ inst kA(y. inst kA0(x.K1, N0), inst nA0(x.N2, N0))

Proof. The proof has many cases but is straightforward.
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4.5 On equality

The following theorems show that the framework’s equality is an equivalence relation.

Theorem 17 (Reflexivity of equality) 1. Given R, we have R = R.

2. Given N , we have N = N .

3. Given M , we have M = M .

4. Given E, we have E =c E.

5. Given E, we have E = E.

6. Given P , we have P = P .

Proof. The proof is by structural induction on the subject of the judgment.

Lemma 18
If E1 =c (let {p} = R2 in E ′2), then E1 ≡ ε[let {p} = R1 in E ′1] for some R1, ε and E ′1 such
that R1 = R2 and ε[E ′1] =c E

′
2. Furthermore, no variable free in R1 is bound in ε.

Proof. The proof is by structural induction on the derivation of the assumption.

Theorem 19 (Symmetry of equality) 1. If R1 = R2, then R2 = R1.

2. If N1 = N2, then N2 = N1.

3. If M1 = M2, then M2 = M1.

4. If E1 =c E2, then E2 =c E1.

5. If E1 = E2, then E2 = E1.

6. If P1 = P2, then P2 = P1.

Proof. The proof is by structural induction on the second subject of the assumed equality.
In the case E1 =c (let {p} = R2 in E ′2) we appeal to the lemma. Then E ′2 =c ε[E

′
1] and

R2 = R1 by the induction hypothesis. Then (let {p} = R2 in E ′2) =c ε[let {p} = R1 in E ′1] ≡
E1 by an inference rule.

In order to prove the transitivity of concurrent equality, we first need to consider a few
trivial properties of concurrent contexts (somewhat tedious to prove syntactically).

Lemma 20
If ε[E1] ≡ ε[E2], then E1 ≡ E2.

Proof. The result follows by induction on ε.

Lemma 21
If ε1[E] ≡ ε2[E], then ε1 ≡ ε2.

Proof. The result follows by induction on ε1.

Lemma 22
Suppose that no variable free in R is bound in ε2. If ε1[E1] ≡ ε2[let {p} = R in E2], then
either

1. ε1 ≡ ε2[let {p} = R in ε′] for some ε′, or
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2. E1 ≡ ε′[let {p} = R in E2] for some ε′.

Proof. The result follows by induction on ε1.

Now we prove a general inversion principle for concurrent equality.

Lemma 23 (Inversion principle for concurrent equality)

Suppose that no variable free in R1 is bound by ε1. If ε1[let {p} = R1 in E ′1] =c E2, then
E2 ≡ ε2[let {p} = R2 in E ′2] for some ε2, R2, and E ′2 such that R1 = R2 and ε1[E ′1] =c ε2[E ′2].
Furthermore, no variable free in R2 is bound by ε2.

Proof. The result follows by induction on ε1.

Now we can prove the transitivity theorem itself.

Theorem 24 (Transitivity of equality) 1. If R1 = R2 and R2 = R3, then R1 = R3.

2. If N1 = N2 and N2 = N3, then N1 = N3.

3. If M1 = M2 and M2 = M3, then M1 = M3.

4. If E1 =c E2 and E2 =c E3, then E1 =c E3.

5. If E1 = E2 and E2 = E3, then E1 = E3.

6. If P1 = P2 and P2 = P3, then P1 = P3.

Proof. The proof is by structural induction on the derivation of the first assumption. For
the part involving concurrent equality we appeal to the inversion principle.

It is the restriction to canonical forms inherent in the syntax of CLF that makes it
possible to define equality and prove such a result without any reference to the typing
judgments.

Now we go on to show that all of the primitive operators and judgments of the the-
ory factor through the equivalence relation on well-typed terms induced by the equality
judgment. (Recall that we do not ascribe any particular meaning to the equality judgment
unless the terms involved are well-typed.) This licenses us to think of them as being defined
on the equivalence classes.

First, however, we introduce a stronger version of concurrent equality, needed to stage
the proofs. Strong concurrent equality only allows rearranging let bindings at the top level
structure of an expression, rather than deep within it.

Definition 16 (Strong concurrent equality)

E1 =s E2 [Strong concurrent equality]

M =s M

E1 =s ε[E2]

(let {p} = R in E1) =s ε[let {p} = R in E2]
*

Again the rule marked (*) is subject to the side condition that no variable bound by
p be free in the conclusion or bound by the context ε, and that no variable free in R be
bound by the context ε. We have that strong concurrent equality is reflexive, symmetric,
and transitive, by essentially the same arguments as for the original concurrent equality.

Theorem 25
Strong concurrent equality is an equivalence relation.
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Strong concurrent equality, as the name suggests, is a special case of concurrent equality.
This follows from the reflexivity of framework equality.

Theorem 26
If E1 =s E2, then E1 =c E2.

We also have the following lemmas.

Lemma 27
Given S, p, E, ε, and E0, we have match eS(p. E, ε[E0]) ≡ ε[match eS(p. E, E0)], supposing
one or the other side is defined.

Proof. The result follows by induction on ε.

Lemma 28
Suppose that p and p′ bind disjoint variables, and no variable free in R′ is bound by p, and
no variable free in E0 or M0 is bound by p′. Then the following equations hold, assuming
one or the other side is defined.

1. match mS(p. let {p′} = R′ in E,M0) ≡ (let {p′} = R′ in match mS(p. E,M0))

2. match eS(p. let {p′} = R′ in E,E0) =s (let {p′} = R′ in match eS(p. E, E0))

Proof. The first part follows by induction on S, and then the second part follows by
induction on E0.

Lemma 29
Suppose that p1 and p2 bind disjoint variables, and that no variable free in E1 is bound
by p2, and no variable free in E2 is bound by p1. Then

match eS1(p1.match eS2(p2. E, E2), E1) =s match eS2(p2.match eS1(p1. E, E1), E2)

as long as one or the other side is defined.

Proof. The proof is by induction on E1. In the caseE1 ≡M1 we appeal to the composition
law for instantiation. Otherwise we appeal to the preceding lemma.

The utility of strong concurrent equality is that the following theorem can be proved
immediately.

Theorem 30
In each of the following cases, the resulting equality holds assuming that one side or the
other is defined.

1. If no variable free in R is bound by ε, and ε and p bind disjoint sets of variables, then
inst eA(x. let {p} = R in ε[E], N0) =s inst eA(x. ε[let {p} = R in E], N0).

2. If E =s E
′, then inst eA(x. E,N0) =s inst eA(x. E ′, N0).

3. If E =s E
′, then match mS(p. E,M0) =s match mS(p. E ′,M0).

4. If E =s E
′, then match eS(p. E, E0) =s match eS(p. E ′, E0).
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Proof. The proof is by an outer induction on the type subscript. The first part also
uses an inner induction on ε, the second part uses an inner induction on the derivation
of E =s E

′, and the last part uses an inner induction on E0.

We are now in a position to prove the “functionality” of instantiation with respect to
equivalence classes modulo the framework’s equality. We extend equality to types and kinds
by the natural congruence rules.

Theorem 31 (Functionality for instantiation)

In each of the following cases, the resulting equality holds assuming that one side or the
other is defined.

1. If R = R′ and N0 = N ′0, then reduceA(x. R,N0) = reduceA(x. R′, N ′0).

2. If R = R′ and N0 = N ′0, then inst rA(x. R,N0) = inst rA(x. R′, N ′0).

3. If N = N ′ and N0 = N ′0, then inst nA(x.N,N0) = inst nA(x.N ′, N ′0).

4. If M = M ′ and N0 = N ′0, then inst mA(x.M,N0) = inst mA(x.M ′, N ′0).

5. If E = E ′ and N0 = N ′0, then inst eA(x. E,N0) = inst eA(x. E ′, N ′0).

6. If E = E ′ and M0 = M ′0, then match mS(p. E,M0) = match mS(p. E ′,M ′0).

7. If E = E ′ and E0 = E ′0, then match eS(p. E, E0) = match eS(p. E ′, E ′0).

8. If P = P ′ and N0 = N ′0, then inst pA(x. P, N0) = inst pA(x. P ′, N ′0).

9. If B = B′ and N0 = N ′0, then inst aA(x. B,N0) = inst aA(x. B′, N ′0).

10. If S = S ′ and N0 = N ′0, then inst sA(x. S, N0) = inst sA(x. S ′, N ′0).

11. If K = K ′ and N0 = N ′0, then inst kA(x.K,N0) = inst kA(x.K ′, N ′0).

Proof. The proof is by an outer induction on the type subscript and an inner simultaneous
induction on the derivations of the two assumed equalities.

In most cases the result follows immediately by congruence rules. The critical parts are
the ones given by induction over expressions. For match eS(p. E, E0) =c match eS(p. E ′, E ′0)
we appeal to Lemma 27.

For inst eA(x. E,N0) =c inst eA(x. E ′, N ′0) we reason as follows. If E ≡ M , the result
is immediate by the induction hypothesis. Otherwise E ≡ (let {p} = R in E1), E ′ ≡
ε[let {p} = R′ in E ′1], R = R′, and E1 =c ε[E

′
1]. Then

inst eA(x. E1, N0) =c inst eA(x. ε[E ′1], N
′
0)

by the induction hypothesis. It follows that

inst eA(x. let {p} = R in E1, N0) =c inst eA(x. let {p} = R′ in ε[E ′1], N ′0)

by another appeal to the induction hypothesis. But by the preceding theorem,

inst eA(x. let {p} = R′ in ε[E ′1], N ′0) =s inst eA(x. ε[let {p} = R′ in E ′1], N ′0).

The result then follows by transitivity.

A similar result holds for the expansion operator.
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Theorem 32 (Functionality for expansion)

If R = R′, then expandA(R) = expandA(R′).

Proof. The proof is by induction on A.

The functionality of instantiation immediately leads to a similar result for the typeof
and kindof operators of Lemma 9. We extend equality to contexts and signatures in the
obvious way.

Lemma 33
If Σ = Σ′, Γ = Γ′, and ∆ = ∆′, then typeof(Γ; ∆ `Σ R) = typeof(Γ′; ∆′ `Σ′ R) and
kindof(Γ `Σ P ) = kindof(Γ′ `Σ′ P ), supposing one or the other side is defined.

It is characteristic of the syntax-directed approach that the following theorem holds even
when the contexts, etc. are not valid.

Theorem 34 (Type conversion)

Suppose that Σ = Σ′, Γ = Γ′, ∆ = ∆′, A = A′, and S = S ′.

1. Γ; ∆ `Σ R⇒ typeof(Γ; ∆ `Σ R) iff Γ′; ∆′ `Σ′ R⇒ typeof(Γ′; ∆′ `Σ′ R).

2. Γ; ∆ `Σ N ⇐ A iff Γ′; ∆′ `Σ′ N ⇐ A′.

3. Γ; ∆ `Σ M ⇐ S iff Γ′; ∆′ `Σ′ M ⇐ S ′.

4. Γ; ∆ `Σ E ← S iff Γ′; ∆′ `Σ′ E ← S ′.

5. Γ `Σ P ⇒ kindof(Γ `Σ P ) iff Γ′ `Σ′ P ⇒ kindof(Γ′ `Σ′ P ).

6. Γ `Σ A⇐ type iff Γ′ `Σ′ A⇐ type.

7. Γ `Σ S ⇐ type iff Γ′ `Σ′ S ⇐ type.

8. Γ `Σ K ⇐ kind iff Γ′ `Σ′ K ⇐ kind.

Proof. The theorem is proved by induction over the assumed typing derivation, using
Lemma 9.

4.6 On typing

Now we can go on to prove the substitution and identity principles for CLF, and that they
are witnessed by the instantiation and expansion operators. The instantiation operators are
extended to contexts in the obvious way. Again, the theorem holds even when the contexts
are not valid.

Theorem 35 (Substitution principles)

If ΓL; · ` N0 ⇐ A is derivable, ΓL, x :A,ΓR; ∆ ` N ⇐ C is derivable, inst aA(x.ΓR, N0) ≡
Γ′R, inst aA(x.∆, N0) ≡ ∆′, and inst aA(x. C,N0) ≡ C′, the following hold:

1. The instantiation inst nA(x.N,N0) is defined.

2. The judgment ΓL,Γ
′
R; ∆′ ` inst nA(x.N,N0)⇐ C′ is derivable.

If Γ; ∆1 ` N0 ⇐ A and Γ; ∆2, x
∧:A ` N ⇐ C are derivable, the following hold:

1. The instantiation inst nA(x.N,N0) is defined.
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2. The judgment Γ; ∆1,∆2 ` inst nA(x.N,N0)⇐ C is derivable.

This result is mutually dependent on many other substitution theorems for the other
syntactic categories. Space considerations preclude the incorporation of the proof here. It
is notable that although the theorem as a whole does not assume the contexts are valid,
in each case “just enough” information about the validity of various terms is available in
order to make the induction go through.

Note that the presence of the type subscript to the instantiation operators is redundant
if the objects involved are known to be well typed, since the types generated as reduce
decomposes a well-typed object will always be what they are required to be. An optimized
type checker can take advantage of this by staging the process of type checking so that it
is an invariant that whenever an instantiation is applied the objects involved are known
to be well typed. The fact that this is possible is evident upon examination of the flow of
information through the typing rules.

The following theorem can be proved by a simple structural induction.

Lemma 36 (Expansion)

If Γ; ∆ ` R⇒ A then Γ; ∆ ` expandA(R)⇐ A.

As an immediate corollary, we have the following identity property.

Theorem 37 (Identity principles)

Any instance of Γ, x :A; · ` expandA(x)⇐ A or Γ; x∧:A ` expandA(x)⇐ A is derivable.

It is worth recalling that the substitution and identity principles are are needed to ensure
that the type theory makes sense, since the syntatic restrictions inherent in CLF make it
impossible to generate proofs of A→ A or to compose proofs of A→ B and B → C in any
other way.

4.7 Related work

With one exception [Fel91], prior presentations of LF and LLF have been based on a syntax
in which not every term is canonical. A difficulty is that equality cannot then be axiomatized
in a manifestly decidable, syntax-directed way. In their original presentation of LF, Harper
et al. define equality in terms of β-convertibility, and do not address η-conversions [HHP93].
Strong normalization ensures that this notion of equality is decidable. However, the η-
conversions pose a special difficulty because of the lack of confluence for βη-reduction in
the case of non-well-typed terms. Since LF typing is dependent on equality, the attempt to
define an equality based on βη-reduction leads to a Catch-22.

Coquand [Coq91] tests βη-convertibility in LF using untyped β-reduction and exten-
sionality, which is applied when comparing a λ-abstraction to a non-abstraction. However,
this method fails when a unit type is present—as in LLF—because it may be necessary
to apply extensionality even when neither of the terms being compared is a manifest unit
introduction.

Cervesato’s presentation of LLF avoids the η-conversion problem by restricting the syn-
tax to η-long terms [Cer96]. The equality of the framework is still defined in terms of
β-reduction. This is possible because the β-reducts of η-long terms are η-long.

Goguen proposes an elegant theory based on a typed notion of reduction [Gog94, Gog99].
An operational semantics based on this typed reduction is then shown to be decidable, and
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equivalent to a (not manifestly decidable) axiomatization of equality from first principles
such as extensionality. However, being based on η-reduction, this approach does not decide
equality by an analysis of canonical forms, which are η-long. This conflicts with the LF rep-
resentation methodology, which emphasizes the primacy of canonical forms in constructing
representations and proving their adequacy.

Ghani [Gha97] uses a typed rewriting relation similar to Goguen’s operational semantics
but with η-expansion rather than η-reduction. This leads to a more pleasant theory, espe-
cially given that normal forms with respect to Ghani’s rewrite rule are canonical. Harper
and Pfenning [HP00] also adopt an approach similar to Goguen’s, in that equality is defined
axiomatically and shown to be equivalent to a decision procedure. Their method improves
on Goguen’s in that the decision procedure is based on transforming a pair of terms simul-
taneously into canonical form. It offers the further advantage that the transformation into
canonical form is incremental and can be aborted as soon as it is evident that the canonical
forms of the two terms being compared will not be the same, an important concern for
efficient implementation.

Felty has described a canonical LF in which only canonical forms are well-typed [Fel91].
This offers a number of advantages over other approaches: equality itself need not be ax-
iomatized at all, because terms are equal just when they are identical (up to α-equivalence).
And the representation methodology has an attractive simplicity: one establishes a compo-
sitional bijection between object-language terms and LF objects of a given type. One need
not restrict the range of the bijection to “canonical LF terms” because every term in canon-
ical LF is “canonical.” However, Felty’s development falls back on untyped β-reduction
in order to define the typing judgment on canonical terms, so a syntax of non-canonical
terms ends up being reintroduced after all, and strong normalization and confluence for the
non-canonical forms must be proved. Thus, the canonical language cannot be considered
foundational.

Relative to these prior developments, a contribution of this work is to elaborate a foun-
dation for LF and LLF that preserves the attractive features of Felty’s canonical LF, while
eliminating entirely its dependence on non-canonical terms and β-reduction, in favor of a
instantiation operator taking canonical terms into canonical terms. The key observation is
that the instantiation operator can be defined in a manifestly terminating, syntax-directed
way, even over ill-typed terms. This essentially eliminates the mutual dependence of typing
and equality—since extensionality principles depend on typing—that is inherent in Goguen’s
or Harper and Pfenning’s work. However, it is important to stress that this approach pro-
vides only a foundation. An efficient implementation would need to reintroduce defined
constants and explicit substitutions, each of which would make the equality on the LF frag-
ment non-trivial again. But in contrast to previous approaches, the framework is defined
without any reference to such “non-canonical” forms: it can scale up to include them, but
its foundation is independent of them.

5 Conclusion

We have seen that representations of concurrent systems can be succinctly and straight-
forwardly constructed using a logical framework with a notion of equality that models
concurrency. We have shown that the framework is decidable and investigated its meta-
theory. We hope that the result of this work will be a concrete language in which it is as
unnecessary to specify or think about the low-level mechanics of the representation of con-
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current computations as it would be to specify or think about matters of α-conversion and
capture-avoiding substitution in LF. Furthermore, it is to be hoped that the direct, modular
and scalable account of the type theory proposed here will provide a solid foundation for
future explorations within the LF family of frameworks, of ideas such as proof irrelevance
and ordered hypothetical judgments.

A Syntax and judgments of CLF

A.1 Syntax

Definition 17 (Type constructors)

A,B, C ::= A −◦B | Πx :A.B | A&B | > | {S} | P Asynchronous types

P ::= a | P N Atomic type constructors

S ::= S1 ⊗ S2 | 1 | ∃x :A. S | A Synchronous types

Definition 18 (Kinds)

K,L ::= type | Πx :A.K Kinds

Definition 19 (Objects)

N ::=
∧
λx.N | λx.N | 〈N1, N2〉 | 〈〉 | {E} | R Normal objects

R ::= c | x | R∧N | R N | π1R | π2R Atomic objects

E ::= let {p} = R in E |M Expressions

M ::= M1 ⊗M2 | 1 | [N,M ] | N Monadic objects

p ::= p1 ⊗ p2 | 1 | [x, p] | x Patterns

A.2 Equality

Definition 20 (Concurrent contexts)

ε ::= | let {p} = R in ε Concurrent contexts

Definition 21 (Equality)

E1 =c E2 [Concurrent equality]

M1 = M2

M1 =c M2

R1 = R2 E1 =c ε[E2]

(let {p} = R1 in E1) =c ε[let {p} = R2 in E2]
*

E1 = E2 [Expression equality]

E1 =c E2

E1 = E2
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N1 = N2 R1 = R2 M1 = M2 P1 = P2 [Other equalities]

(All congruences.)

The rule marked (*) is subject to the side condition that no variable bound by p be free
in the conclusion or bound by the context ε, and that no variable free in R2 be bound by
the context ε.

A.3 Instantiation

Definition 22 (Instantiation)

treduceA(x. R) ≡ B [Type reduction]

treduceA(x. x) ≡ A
treduceA(x. R N ) ≡ C if treduceA(x. R) ≡ Πy :B.C

treduceA(x. R∧N ) ≡ C if treduceA(x. R) ≡ B −◦ C
treduceA(x. π1R) ≡ B1 if treduceA(x. R) ≡ B1 &B2

treduceA(x. π2R) ≡ B2 if treduceA(x. R) ≡ B1 &B2

reduceA(x. R,N0) ≡ N ′ [Reduction]

reduceA(x. x, N0) ≡ N0

reduceA(x. R N,N0) ≡ inst nB(y. N ′, inst nA(x.N,N0))

if treduceA(x. R) ≡ Πy :B.C and reduceA(x. R,N0) ≡ λy. N ′

reduceA(x. R∧N,N0) ≡ inst nB(y. N ′, inst nA(x.N,N0))

if treduceA(x. R) ≡ B −◦ C and reduceA(x. R,N0) ≡
∧
λy. N ′

reduceA(x. π1R,N0) ≡ N ′1 if reduceA(x. R,N0) ≡ 〈N ′1, N ′2〉
reduceA(x. π2R,N0) ≡ N ′2 if reduceA(x. R,N0) ≡ 〈N ′1, N ′2〉

inst rA(x. R,N0) ≡ R′ [Atomic object instantiation]

inst rA(x. c, N0) ≡ c
inst rA(x. y, N0) ≡ y if y is not x

inst rA(x. R N,N0) ≡ (inst rA(x. R,N0)) (inst nA(x.N,N0))

inst rA(x. R∧N,N0) ≡ (inst rA(x. R,N0))
∧(inst rA(x.N,N0))

inst rA(x. π1R,N0) ≡ π1(inst rA(x. R,N0))

inst rA(x. π2R,N0) ≡ π2(inst rA(x. R,N0))

inst nA(x.N,N0) ≡ N ′ [Normal object instantiation]

inst nA(x. λy. N,N0) ≡ λy. inst nA(x.N,N0) if y /∈ FV(N0)

inst nA(x.
∧
λy. N,N0) ≡

∧
λy. inst nA(x.N,N0) if y /∈ FV(N0)

inst nA(x. 〈N1, N2〉, N0) ≡ 〈inst nA(x.N1, N0), inst nA(x.N2, N0)〉
inst nA(x. 〈〉, N0) ≡ 〈〉
inst nA(x. {E}, N0) ≡ {inst eA(x. E,N0)}
inst nA(x. R,N0) ≡ inst rA(x. R,N0) if head(R) is not x

inst nA(x. R,N0) ≡ reduceA(x. R,N0) if treduceA(x. R) ≡ P
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inst mA(x.M,N0) ≡M ′ [Monadic object instantiation]

inst mA(x.M1 ⊗M2, N0) ≡ inst mA(x.M1, N0)⊗ inst mA(x.M2, N0)

inst mA(x. 1, N0) ≡ 1

inst mA(x. [N,M ],N0) ≡ [inst nA(x.N,N0), inst mA(x.M,N0)]

inst mA(x.N,N0) ≡ inst nA(x.N,N0)

inst eA(x. E,N0) ≡ E ′ [Expression instantiation]

inst eA(x. let {p} = R in E,N0) ≡ (let {p} = inst rA(x. R,N0) in inst eA(x. E,N0))

if head(R) is not x,

and FV(p) ∩ FV(N0) is empty

inst eA(x. let {p} = R in E,N0) ≡ match eS(p. inst eA(x. E,N0), E
′)

if treduceA(x. R) ≡ {S}, reduceA(x. R,N0) ≡ {E ′},
and FV(p) ∩ FV(N0) is empty

inst eA(x.M,N0) ≡ inst mA(x.M,N0)

match mS(p. E,M0) ≡ E ′ [Match monadic object]

match mS1⊗S2(p1 ⊗ p2. E,M1⊗M2) ≡ match mS2(p2.match mS1(p1. E,M1),M2)

if FV(p2) ∩ FV(M1) is empty

match m1(1. E, 1)≡ E
match m∃x :A.S([x, p]. E, [N,M ])≡ match mS(p. inst eA(x. E,N ),M)

if FV(p) ∩ FV(N ) is empty

match mA(x. E,N)≡ inst eA(x. E,N )

match eS(p. E, E0) ≡ E ′ [Match expression]

match eS(p. E, let {p0} = R0 in E0) ≡ let {p0} = R0 in match eS(p. E, E0)

if FV(p0) ∩ FV(E) and FV(p) ∩ FV(E0) are empty

match eS(p. E,M0) ≡ match mS(p. E,M0)

inst pA(x. P, N0) ≡ P ′ [Atomic type constructor instantiation]
inst aA(x. A,N0) ≡ A′ [Type instantiation]
inst sA(x. S, N0) ≡ S ′ [Synchronous type instantiation]
inst kA(x.K,N0) ≡ K ′ [Kind instantiation]

(Analogous.)

A.4 Expansion

Definition 23 (Expansion)
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expandA(R) ≡ N [Expansion]

expandP (R) ≡ R
expandA−◦B(R) ≡ ∧λx. expandB(R∧(expandA(x))) if x /∈ FV(R)

expandΠx :A.B(R) ≡ λx. expandB(R (expandA(x))) if x /∈ FV(R)

expandA&B(R) ≡ 〈expandA(π1R), expandB(π2R)〉
expand>(R) ≡ 〈〉
expand{S}(R) ≡ (let {p} = R in pexpandS(p))

pexpandS(p) ≡M [Pattern expansion]

pexpandS1⊗S2
(p1 ⊗ p2) ≡ pexpandS1

(p1)⊗ pexpandS2
(p2)

pexpand1(1) ≡ 1

pexpand∃x :A.S([x, p])≡ [expandA(x), pexpandS(p)]

pexpandA(x) ≡ expandA(x)

A.5 Typing

Definition 24 (Signatures and contexts)

Σ ::= · | Σ, a :K | Σ, c :A Signatures

Γ ::= · | Γ, x :A Unrestricted contexts

∆ ::= · | ∆, x∧:A Linear contexts

Ψ ::= · | p∧:S,Ψ Pattern contexts

Definition 25 (Typing)

` Σ ok [Signature validity]

` · ok
` Σ ok · `Σ K ⇐ kind

` Σ, a :K ok

` Σ ok · `Σ A⇐ type

` Σ, c :A ok

`Σ Γ ok [Context validity]

`Σ · ok

`Σ Γ ok Γ `Σ A⇐ type

`Σ Γ, x :A ok

Γ `Σ ∆ ok [Linear context validity]

Γ `Σ · ok

Γ `Σ ∆ ok Γ `Σ A⇐ type

Γ `Σ ∆, x∧:A ok

Γ `Σ Ψ ok [Pattern context validity]

Γ `Σ · ok

Γ `Σ S ⇐ type Γ `Σ Ψ ok

Γ `Σ p∧:S,Ψ ok
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Γ `Σ K ⇐ kind [Kind checking]

Γ ` type ⇐ kind
typeKF

Γ ` A⇐ type Γ, x :A ` K ⇐ kind

Γ ` Πx :A.K ⇐ kind
ΠKF

Γ `Σ A⇐ type [Type checking]

Γ ` A⇐ type Γ, x :A ` B ⇐ type

Γ ` Πx :A.B⇐ type
ΠF

Γ ` P ⇒ type

Γ ` P ⇐ type
⇒type⇐

Γ ` A⇐ type Γ ` B ⇐ type

Γ ` A−◦ B ⇐ type
−◦F

Γ ` A⇐ type Γ ` B ⇐ type

Γ ` A&B ⇐ type
&F

Γ ` > ⇐ type
>F

Γ ` S ⇐ type

Γ ` {S} ⇐ type
{}F

Γ `Σ S ⇐ type [Synchronous type checking]

Γ ` S1 ⇐ type Γ ` S2 ⇐ type

Γ ` S1 ⊗ S2 ⇐ type
⊗F

Γ ` 1⇐ type
1F

Γ ` A⇐ type Γ, x :A ` S ⇐ type

Γ ` ∃x :A. S ⇐ type
∃F

Γ `Σ P ⇒ K [Atomic type constructor inference]

Γ ` a⇒ Σ(a)
a

Γ ` P ⇒ Πx :A.K Γ; · ` N ⇐ A

Γ ` P N ⇒ inst kA(x.K,N )
ΠKE

Γ `Σ N ⇐ A [Normal object checking]

Γ, x :A; ∆ ` N ⇐ B

Γ; ∆ ` λx.N ⇐ Πx :A.B
ΠI

Γ; ∆ ` R⇒ P ′ P ′ = P

Γ; ∆ ` R⇐ P
⇒⇐

Γ; ∆, x∧:A ` N ⇐ B

Γ; ∆ ` ∧λx.N ⇐ A −◦B
−◦I

Γ; ∆ ` N1 ⇐ A Γ; ∆ ` N2⇐ B

Γ; ∆ ` 〈N1, N2〉 ⇐ A& B
&I

Γ; ∆ ` 〈〉 ⇐ > >I

Γ; ∆ ` E ← S

Γ; ∆ ` {E} ⇐ {S} {}I

Γ `Σ R⇒ A [Atomic object inference]

Γ; · ` c⇒ Σ(c)
c

Γ; · ` x⇒ Γ(x)
x

Γ; ∆ ` R⇒ Πx :A.B Γ; · ` N ⇐ A

Γ; ∆ ` R N ⇒ inst aA(x. B,N)
ΠE

Γ; x∧:A ` x⇒ A
x

Γ; ∆1 ` R⇒ A −◦B Γ; ∆2 ` N ⇐ A

Γ; ∆1,∆2 ` R∧N ⇒ B
−◦E

Γ; ∆ ` R⇒ A&B

Γ; ∆ ` π1R⇒ A
&E1

Γ; ∆ ` R⇒ A& B

Γ; ∆ ` π2R⇒ B
&E2
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Γ; ∆ `Σ E ← S [Expression checking]

Γ; ∆1 ` R⇒ {S0} Γ; ∆2; p∧:S0 ` E ← S

Γ; ∆1,∆2 ` (let {p} = R in E)← S
{}E Γ; ∆ `M ⇐ S

Γ; ∆ `M ← S
⇐←

Γ; ∆; Ψ `Σ E ← S [Pattern expansion]

Γ; ∆ ` E ← S

Γ; ∆; · ` E ← S
←←

Γ; ∆; p1
∧:S1, p2

∧:S2,Ψ ` E ← S

Γ; ∆; p1 ⊗ p2
∧:S1 ⊗ S2,Ψ ` E ← S

⊗L
Γ; ∆; Ψ ` E ← S

Γ; ∆; 1∧:1,Ψ ` E ← S
1L

Γ, x :A; ∆; p∧:S0,Ψ ` E ← S

Γ; ∆; [x, p]∧:∃x :A. S0,Ψ ` E ← S
∃L

Γ; ∆, x∧:A; Ψ ` E ← S

Γ; ∆; x∧:A,Ψ ` E ← S
AL

Γ; ∆ `Σ M ⇐ S [Monadic object checking]

Γ; ∆1 `M1 ⇐ S1 Γ; ∆2 `M2 ⇐ S2

Γ; ∆1,∆2 `M1 ⊗M2 ⇐ S1 ⊗ S2
⊗I

Γ; · ` 1⇐ 1
1I

Γ; · ` N ⇐ A Γ; ∆ `M ⇐ inst sA(x. S, N )

Γ; ∆ ` [N,M ]⇐ ∃x :A. S
∃I
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