
The Next 700 Data Description Languages

Kathleen Fisher
AT&T Labs Research

kfisher@research.att.com

Yitzhak Mandelbaum
Princeton University

yitzhakm@cs.princeton.edu

David Walker
Princeton University

dpw@cs.princeton.edu

Abstract
In the spirit of Landin, we present a calculus of dependent types to
serve as the semantic foundation for a family of languages called
data description languages. Such languages, which includePADS,
DATASCRIPT, and PACKETTYPES, are designed to facilitate pro-
gramming withad hoc data, i.e., data not in well-behaved relational
or XML formats. In the calculus, each type describes the physical
layout and semantic properties of a data source. In the semantics,
we interpret types simultaneously as the in-memory representation
of the data described and as parsers for the data source. The parsing
functions are robust, automatically detecting and recording errors
in the data stream without halting parsing. We show the parsers are
type-correct, returning data whose type matches the simple-type
interpretation of the specification. We also prove the parsers are
“error-correct,” accurately reporting the number of physical and se-
mantic errors that occur in the returned data. We use the calculus to
describe the features of various data description languages, and we
discuss how we have used the calculus to improvePADS.

Categories and Subject DescriptorsD.3.1 [Programming lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages Theory

Keywords Data description language, domain-specific languages,
dependent types

1. The Challenge of Ad Hoc Data Formats
XML. HTML. CSV. JPEG. MPEG. These data formats represent
vast quantities of industrial, governmental, scientific, and private
data. Because they have been standardized and are widely used,
many reliable, efficient, and convenient tools for processing data
in these formats are readily available. For instance, your favorite
programming language undoubtedly has libraries for parsing XML
and HTML as well as reading and transforming images in JPEG
or movies in MPEG. Query engines are available for querying
XML documents. Widely-used applications like Microsoft Word
and Excel automatically translate documents between HTML and
other standard formats. In short, life is good when working with
standard data formats. In an ideal world, all data would be in such
formats. In reality, however, we are not nearly so fortunate.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13,2006,Charleston,South Carolina,USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

An ad hoc data formatis any non-standard data format. Typ-
ically, such formats do not have parsing, querying, analysis, or
transformation tools readily available. Every day, network adminis-
trators, financial analysts, computer scientists, biologists, chemists,
astronomers, and physicists deal with ad hoc data in a myriad of
complex formats. Figure 1 gives a partial sense of the range and
pervasiveness of such data. Since off-the-shelf tools for processing
these ad hoc data formats do not exist or are not readily available,
talented scientists, data analysts, and programmers must waste their
time on low-level chores like parsing and format translation to ex-
tract the valuable information they need from their data. Though
the syntax of everyday programming languages might be consid-
ered “ad hoc,” we explicitly exclude programming language syntax
from our domain of interest.

In addition to the inconvenience of having to build custom pro-
cessing tools from scratch, the nonstandard nature of ad hoc data
frequently leads to other difficulties for its users. First, documenta-
tion for the format may not exist, or it may be out of date. For exam-
ple, a common phenomenon is for a field in a data source to fall into
disuse. After a while, a new piece of information becomes interest-
ing, but compatibility issues prevent data suppliers from modifying
the shape of their data, so instead they hijack the unused field, often
failing to update the documentation in the process.

Second, such data frequently contain errors, for a variety of
reasons: malfunctioning equipment, programming errors, non-
standard values to indicate “no data available,” human error in
entering data, and unexpected data values caused by the lack of
good documentation. Detecting errors is important, because oth-
erwise they can corrupt “good” data. The appropriate response to
such errors depends on the application. Some applications require
the data to be error free: if an error is detected, processing needs to
stop immediately and a human must be alerted. Other applications
can repair the data, while still others can simply discard erroneous
or unexpected values. For some applications, errors in the data
can be the most interesting part because they can signal where a
monitored system is failing.

Today, many programmers tackle the challenge of ad hoc data
by writing scripts in a language like PERL. Unfortunately, this pro-
cess is slow, tedious, and unreliable. Error checking and recovery in
these scripts is often minimal or nonexistent because when present,
such error code swamps the main-line computation. The program
itself is often unreadable by anyone other than the original authors
(and usually not even them in a month or two) and consequently
cannot stand as documentation for the format. Processing code of-
ten ends up intertwined with parsing code, making it difficult to
reuse the parsing code for different analyses. Hence, in general,
software produced in this way is not the high-quality, reliable, effi-
cient and maintainable code one should demand.

1.1 Promising Solutions

To address these challenges, researchers have begun to develop
high-level languages for describing and processing ad hoc data. For

Name & Use Representation
Web server logs (CLF): Fixed-column ASCII records
Measure web workloads
AT&T provisioning data: Variable-width ASCII records
Monitor service activation
Call detail: Fraud detection Fixed-width binary records
AT&T billing data: Various Cobol data formats
Monitor billing process
Netflow: Data-dependent number of
Monitor network performance fixed-width binary records
Newick: Immune Fixed-width ASCII records
system response simulation in tree-shaped hierarchy
Gene Ontology: Variable-width ASCII records
Gene-gene correlations in DAG-shaped hierarchy
CPT codes: Medical diagnoses Floating point numbers
SnowMed: Medical clinic notes keyword tags

Figure 1. Selected ad hoc data sources.

Generated
Parser

Description
Compiler

Data Description
(Type T)

010010100100..

Parse
Descriptor
for Type T

Representation
for Type T

(Generic)
User
Code

Figure 2. Architecture ofPADS system.

instance, McCann and Chandra introducedPACKETTYPES[17], a
specification language designed to help systems programmers pro-
cess the binary data associated with networking protocols. God-
mar Back developedDATASCRIPT [1], a scripting language with
explicit support for specifying and parsing binary data formats.
DATASCRIPThas been used to manipulate Java jar files and ELF ob-
ject files. The developers of Erlang have also introduced language
extensions that they refer to asbinaries[20, 11] to aid in packet pro-
cessing and protocol programming. At CMU, Eger is in the process
of developing a language of Bit-Level Types (BLT) [4] for specify-
ing file formats such as ELF, JPEG, and MIDI as well as packet lay-
outs. Finally, we are part of a group developingPADS [6], another
system for specifying ad hoc data.PADS focuses on robust error
handling and tool generation. It is also unusual in that it supports
a variety of data encodings: ASCII formats used by financial ana-
lysts, medical professionals and scientists, EBCDIC formats used
in Cobol-based legacy business systems, binary data from network
applications, and mixed encodings as well.

While differing in many details, these languages derive their
power from a remarkable insight: Types can describe data in both
its external (on-disk) and internal (programmatic) forms. Figure 2
illustrates how systems such asPADS, DATASCRIPT, andPACKET-
TYPESexploit this dual interpretation of types. In the diagram, the
data consumer constructs a typeT to describe the syntax and se-
mantic properties of the format in question. A compiler converts

this description into parsing code, which maps raw data into a
canonical in-memoryrepresentation. This canonical representation
is guaranteed to be a data structure that itself has typeT, or perhaps
T’ , the closest relative ofT available in the host programming lan-
guage being used. In the case ofPADS, the parser also generates a
parse descriptor(PD), which describes the errors detected in the
data. A host language program can then analyze, transform or oth-
erwise process the data representation and PD.

This architecture helps programmers take on the challenges of
ad hoc data in multiple ways. First, format specifications in these
languages serve as high-level documentation that is more easily
read and maintained than the equivalent low-level PERL script
or C parser. Importantly,DATASCRIPT, PACKETTYPES, andPADS
all allow programmers to describe the physical layout of data as
well as its deeper semantic properties such as equality and range
constraints on values, sortedness, and other forms of dependency.
The intent is to allow analysts to capture all they know about a
data source in a data description. If a data source changes, as they
frequently do, by extending a record with an additional field or new
variant, one often only needs to make a single local change to the
declarative description to keep it up to date.

Second, basing the description language on type theory is es-
pecially helpful as ordinary programmers have built up strong in-
tuitions about types. The designers of data description languages
have been able to exploit these intuitions to make the syntax and
semantics of descriptions particularly easy to understand, even for
beginners. For instance, an array type is naturally used to describe
sequences of data objects. And, really, what else could an array type
describe? Similarly, union types are used to describe alternatives.

Third, programmers can write generic, type-directed programs
that produce tools for purposes other than just parsing. For in-
stance, McCann and Chandra suggest usingPACKETTYPESspec-
ifications to generate packet filters and network monitors automat-
ically. Back usedDATASCRIPT to generate infrastructure for visitor
patterns over parsed data.PADSgenerates a statistical data analyzer,
a pretty printer, anXML translator and an auxiliary library that en-
ables XQueries using the Galax query engine[5]. It is the declara-
tive, domain-specific nature of these data description languages that
makes it possible to generate all these value-added tools for pro-
grammers. The suite of tools, all of which can be generated from
a single description, provides additional incentive for programmers
to keep documentation up-to-date.

Fourth, these data description languages facilitate insertion of
error handling code. The generated parsers check all possible error
cases: system errors related to the input file, buffer, or socket; syn-
tax errors related to deviations in the physical format; and semantic
errors in which the data violates user constraints. Because these
checks appear only in generated code, they do not clutter the high-
level declarative description of the data source. Moreover, since
tools are generated automatically by a compiler rather than writ-
ten by hand, they are far more likely to be robust and far less likely
to have dangerous vulnerabilities such as buffer overflows.

In summary, data description languages such asDATASCRIPT,
PACKETTYPES, Erlang,BLT, andPADS meet the challenge of pro-
cessing ad hoc data by providing a concise and precise form of
“living” data documentation and producing reliable tools that han-
dle errors robustly.

1.2 The Next 700 Data Description Languages

The languages people use to communicate with computers
differ in their intended aptitudes, towards either a particu-
lar application area, or a particular phase of computer use
(high level programming, program assembly, job schedul-
ing, etc). They also differ in physical appearance, and more
important, in logical structure. The question arises, do the

idiosyncrasies reflect basic logical properties of the situa-
tions that are being catered for? Or are they accidents of his-
tory and personal background that may be obscuring fruitful
developments? This question is clearly important if we are
trying to predict or influence language evolution.

To answer it we must think in terms, not of languages,
but of families of languages. That is to say we must system-
atize their design so that a new language is a point chosen
from a well-mapped space, rather than a laboriously devised
construction.

— P. J. Landin,The Next 700 Programming Lan-
guages, 1966 [16].

Landin asserts that principled programming language design
involves thinking in terms of “families of languages” and choosing
from a “well-mapped space.” However, so far, when it comes to the
domain of processing ad hoc data, there is no well-mapped space
and no systematic understanding of the family of languages one
might be dealing with.

The primary goal of this paper is to begin to understand the
family of ad hoc data processing languages. We do so, as Landin
did, by developing a semantic framework for defining, comparing,
and contrasting languages in our domain. This semantic framework
revolves around the definition of a data description calculus (DDC).
This calculus uses types from a dependent type theory to describe
various forms of ad hoc data: base types to describe atomic pieces
of data and type constructors to describe richer structures. We show
how to give a denotational semantics toDDC by interpreting types
as parsing functions that map external representations (bits) to data
structures in a typed lambda calculus. More precisely, these parsers
produce both internal representations of the external data and parse
descriptors that pinpoint errors in the original source.

For many domains, researchers have a solid understanding of
what makes a “reasonable” or “unreasonable” language. For in-
stance, a reasonable typed language is one in which values of a
given type have a well-defined canonical form and “programs don’t
go wrong.” On the other hand, when we began this research, it was
not at all clear how to decide whether our data description language
and its interpretation were “reasonable” or “unreasonable.” A con-
ventional sort of canonical forms property, for instance, is not rel-
evant as the input data source is not under system control, and, as
mentioned above, is frequently buggy. Consequently, we have had
to define and formalize a new correctness criterion for the language.
In a nutshell, rather than requiring input data to be error-free, we
require that the internal data structures produced by parsing sat-
isfy their specification wherever the parse descriptor says they will.
Our invariant allows data consumers to rely on the integrity of the
internal data structures marked as error-free.

To study and comparePADS, DATASCRIPT, and/or some other
data description language, we advocate translating the language
into DDC. The translation decomposes the relatively complex, high-
level descriptions of the language in question into a series of lower-
level DDC descriptions, which have all been formally defined. We
have done this decomposition forIPADS, an idealized version of the
PADS language that captures the essence of the actual implementa-
tion. We have also analyzed many of the features ofPACKETTYPES
and DATASCRIPT using our model. The process of giving seman-
tics to these languages highlighted features that were ambiguous or
ill-defined in the documentation we had available to us.

To our delight, the process of givingPADS a semantics in this
framework has had additional benefits. In particular, since we de-
fined the semantics by reviewing the existing implementation, we
found (and fixed!) a couple of subtle bugs. The semantics has also
raised several design questions that we are continuing to study.
It has also helped us explore important extensions. In particular,
driven by examples found in biological data [9, 18], we decided to

add recursion toPADS. We used our semantic framework to study
the ramifications of this addition.

In summary, this paper makes the following theoretical and
practical contributions:

• We define a semantic framework for understanding and compar-
ing data description languages such asPADS, PACKETTYPES,
DATASCRIPT, andBLT. No one has previously given a formal
semantics to any of these languages. In fact, as far as we are
aware, no one has developed a general and complete “theory of
front-ends” that encompasses both a semantics for recognition
of concrete, external syntax and a semantics for internal repre-
sentation of this data within a rich, strongly-typed programming
language.

• At the center of the framework isDDC, a calculus of data de-
scriptions based on dependent type theory. We give a denota-
tional semantics toDDC by interpreting types both as parsers
and, more conventionally, as classifiers for parsed data.

• We define an important correctness criterion for our language,
stating that all errors in the parsed data are reported in the parse
descriptor. We proveDDC parsers establish this property.

• We defineIPADS, an idealized version of thePADS program-
ming language that captures its essential features, and show
how to give it a semantics by translating it intoDDC. The pro-
cess of defining the semantics led to the discovery of several
bugs in the actual implementation.

• We have given semantics to features from several other data de-
scription languages includingPACKETTYPESandDATASCRIPT.
As Landin asserts, this process helps us understand the families
of languages in this domain and the totality of their features, so
that we may engage in principled language design as opposed to
falling prey to “accidents of history and personal background.”

• We useIPADS and DDC to experiment with a definition and
implementation strategy for recursive data types, a feature not
found in any existing ad hoc data description language that we
are aware of. Recursive types are essential for representing tree-
shaped hierarchical data [9, 18]. We have integrated recursion
into PADS, using our theory as a guide.

Section 2 usesIPADS to gently introduce data description lan-
guages. Sections 3, 4, and 5 explain the syntax, semantics, and
metatheory ofDDC. Section 6 discusses encodings ofIPADS, PACK-
ETTYPES, andDATASCRIPT in DDC and Section 7 explains how we
have already made use of our semantics in practice. Sections 8 and
9 discuss related work and conclude.

2. IPADS: An Idealized DDL
In this section, we defineIPADS, an idealized data description lan-
guage.IPADS captures the essence ofPADS in a fashion similar to
the way that MinML [12] captures the essence of ML or Feather-
weight Java [14] captures the essence of Java. The main goal of
this section is to introduce the reader to the form and function of
IPADS by giving its syntax and walking through a couple of ex-
amples. Though the syntax differs, the structure ofPADS’ relatives
BLT, PACKETTYPES, andDATASCRIPT are similar. Later sections
will show how to give a formal semantics toIPADS.

Preliminary Concepts. Like PADS, PACKETTYPES, DATASCRIPT,
and BLT, IPADS data descriptions are types. These types specify
both the external data format (a sequence of bits or characters) and
a mapping into a data structure in the host programming language.
In PADS, the host language is C; inIPADS, the host language is an
extension of the polymorphic lambda calculus. For the most part,
however, the specifics of the host language are unimportant.

A completeIPADS description is a sequence of type definitions
terminated by a single type. This terminal type describes the en-
tirety of a data source, making use of the previous type definitions
to do so.IPADS type definitions can have one of two forms. The
form (α = t) introduces the type identifierα and binds it toIPADS
type t. The type identifier may be used in subsequent types. The
second form (Prec α = t) introduces a recursive type definition.
In this case,α may appear int.

ComplexIPADS descriptions are built by using type constructors
to glue together a collection of simpler types. In our examples, we
assumeIPADS contains a wide variety of base types including inte-
gers (Puint32 is an ASCII representation of an unsigned integer
that may be represented internally in 32 bits), characters (Pchar),
strings (Pstring), dates (Pdate), IP addresses (Pip), and oth-
ers. In general, these base types may parameterized. For instance,
we will assumePstring is parameterized by an argument that
signals termination of the string. For example,Pstring (" ") de-
scribes any sequence of characters terminated by a space. (Note that
we do not consider the space to be part of the parsed string; it will
be part of the next object.) Similarly,Puint16 FW(3) is an un-
signed 16-bit integer described in exactly3 characters in the data
source. In general, we writeC(e) for a base type parameterized by
a (host language) expressione.

When interpreted as a parser, each of these base types reads the
external data source and generates a pair of data structures in the
host language. The first data structure is theinternal representation
and the second is theparse descriptor, which contains meta-data
collected during parsing. For instance,Puint32 reads a series of
digits and generates an unsigned 32-bit integer as its internal rep-
resentation.Pstring generates a host language string.Pdate
might read dates in a multitude of different formats, but always
generates a tuple with time, day, month, and year fields as its inter-
nal representation. Whenever anIPADS parser encounters an unex-
pected character or bit-sequence, it sets the internal representation
to none (i.e.null) and notes the error in the parse descriptor.

An IPADS Example. IPADS contains a rich collection of type
constructors for creating sophisticated descriptions of ad hoc data.
We present these constructors through a series of examples. The
first example, shown in Figure 3, describes the Common Web Log
Format [15], which web servers use to log the requests they receive.
Figure 4 shows two sample records. Briefly, each line in a log file
represents one request; a complete log may contain any number
of requests. A request begins with an IP address followed by two
optional ids. In the example, the ids are missing and dashes stand
in for them. Next is a date, surrounded by square brackets. A string
in quotation marks follows, describing the request. Finally, a pair
of integers denotes the response code and the number of bytes
returned to the client.

The IPADS description of web logs is most easily read from bot-
tom to top. The terminal type, which describes an entire web log,
is an array type. Arrays inIPADS take three arguments: a descrip-
tion of the array elements (in this case,entry t), a description of
the separator that appears between elements (in this case, a newline
markerPnl), and a description of the terminator (in this case, the
end-of-file marker).PADS itself provides a much wider selection
of separators and termination conditions, but these additional vari-
ations are of little semantic interest so we omit them fromIPADS.
The host language representation for an array is a sequence of ele-
ments. We do not represent separators or terminators internally.

We use aPstruct to describe the contents of each line in a
web log. Like an array, aPstruct describes a sequence of objects
in a data source. We represent the result of parsing aPstruct
as a tuple in the host language. The elements of aPstruct are
either named fields (e.g. client : Pip) or anonymous fields
(e.g." ["). ThePstruct entry t declares that the first thing

authid_t = Punion {
unauthorized : "-";
id : Pstring (" ");

};

response_t =
Pfun (x:int) =

Puint16_FW (x) Pwhere y.100 <= y and y < 600;

entry_t = Pstruct {
client : Pip ; " ";
remoteid : authid_t; " ";
localid : authid_t; " [";
date : Pdate ("]"); "] \"";
request : Pstring (" \""); " \" ";
response : response_t 3; " ";
length : Puint32 ;
academic : Pcompute

(getdomain client) == "edu" : bool;
};

entry_t Parray (Pnl , Peof)

Figure 3. IPADS Common Web Log Format Description

on the line is an IP address (Pip) followed by a space character
(" "). Next, the data should contain anauthid t followed by
another space,etc.

The last field ofentry t is quite different from the others. It
has aPcompute type, meaning it does not match any characters in
the data source, but it does form a part of the internal representation
used by host programs. The argument of aPcompute field is an
arbitrary host language expression (and its type) that determines the
value of the associated field. In the example, the fieldacademic
computes a boolean that indicates whether the web request came
from an academic site. Notice that the computation depends upon
a host language value constructed earlier — the value stored in the
client field. IPADS Pstruct s are a form of dependent record
and, in general, later fields may refer to the values contained in
earlier ones.

Theentry t description uses the typeauthid t to describe
the two fieldsremoteid andlocalid . Theauthid t type is
a Punion with two branches. Unions are represented internally
as sum types. If the data source can be described by the first
branch (a dash), then the internal representation is the first injection
into the sum. If the data source cannot be described by the first
branch, but can be described by the second branch then the internal
representation is the second injection. Otherwise, there is an error.

Finally, the response t type is aPfun , a user-defined pa-
rameterized type. The parameter ofresponse t is a host lan-
guage integer. The body of thePfun is a Puint16 FWwhere
x , the fixed width, is the argument of the function. In addition,
the value of the fixed-width integer is constrained by thePwhere
clause. In this case, thePwhere clause demands that the fixed-
width integery that is read from the source lie between 100 and
599. Any value outside this range will be considered a semantic
error. In general, aPwhere clause may be attached to any type
specification. It closely resembles the semantic constraints found
in parser generators such asANTLR [19].

A RecursiveIPADS Example. Figure 5 presents a secondIPADS
example. In this case,IPADS describes the Newick format, a flat
representation of tree-structured data. The leaves of the trees are
names that describe an “entity.” In our variant of Newick, leaf
names may be omitted. If the leaf name does appear, it is followed
by a colon and a number. The number describes the “distance”
from the parent node. Microbiologists use distances to describe

207.136.97.49 - - [15/Oct/1997:18:46:51 -0700]
"GET /tk/p.txt HTTP/1.0" 200 30
tj62.aol.com - - [16/Oct/1997:14:32:22 -0700]
"POST /scpt/confirm HTTP/1.0" 200 941

Figure 4. Sample Common Web Log Data. We inserted a newline
into each record to fit the data in a column on this page.

node_t = Popt Pstruct {
name : Pstring (":"); ":";
dist : Puint32 ;

};

Prec tree_t = Punion {
internal : Pstruct {

"("; branches : tree_t Parray (",",")");
"):"; dist : Puint32 ;

};
leaf : node_t;

};

Pstruct { body : tree_t; ";"; }

(* Example: (B:3,(A:5,C:10,E:2):12,D:0):32; *)

Figure 5. IPADS Newick Format Description

Types t ::= C(e) | Plit c
| Pfun (x : σ) = t | t e

| Pstruct {−→
x:t} | Punion {−→

x:t}
| t Pwhere x.e | Popt t | t Parray (t, t)
| Pcompute e:σ | α | Prec α.t

Programs p ::= t | α = t; p | Prec α = t; p

Figure 6. IPADS Syntax

the number of genetic mutations that must occur to move from the
parent to the child. An internal tree node may have any number of
(comma-separated) children within parentheses. Distances follow
the close-paren of the internal tree node.

The Newick format and other formats that describe tree-shaped
hierarchies [9, 18] provide strong motivation for including recur-
sion inIPADS. We have not been able to find any useable description
of Newick data as simple sequences (Pstruct s andParray s)
and alternatives (Punion s); some kind of recursive description ap-
pears essential. The definition of the typetree t introduces recur-
sion. It also uses the typePopt t, a trivial union that either parses
t or nothing at all.

Formal Syntax. Figure 6 summarizes the formal syntax ofIPADS.
Expressionse and typesσ are taken from the host language, de-
scribed in Section 3.2. In the examples, we have abbreviated the
syntax in places. For instance, we omit the operator “Plit ” and
formal labelx when specifying constant types inPstruct s, writ-
ing “c;” instead of “x : Plit c;”. In addition, all base typesC
formally have a single parameter, but we have omitted parameters
for base types such asPuint32 .

3. A Data Description Calculus
At the heart of our work is a data description calculus (DDC), de-
signed to capture the core features of data description languages.
Consequently, the syntax ofDDC is at a significantly lower level of
abstraction than that ofIPADS. Like IPADS, however,DDC presents
a type-based model. EachDDC type describes the external repre-

Kinds κ ::= T | σ → κ
Types τ ::= unit | bottom | C(e) | λx.τ | τ e

| Σ x:τ.τ | τ + τ | τ & τ | {x:τ | e} | τ seq(τ, e, τ)
| α | µα.τ | compute(e:σ) | absorb(τ) | scan(τ)

Figure 7. DDC Syntax

sentation of a piece of data and implicitly specifies how to trans-
form that external representation into an internal one. The internal
representation includes both the transformed value and aparse de-
scriptor that characterizes the errors that occurred during parsing.
Syntactically, the primitives of the calculus are similar to the types
found in many dependent type systems, with a number of additions
specific to the domain of data description. We base our calculus on
a dependent type theory because as we have seen, it is common in
data description languages for expressions to appear within types.

3.1 DDC Syntax

Figure 7 shows the syntax ofDDC. As with IPADS, expressionse
and typesσ belong to the host language, defined in Section 3.2. The
most basic types areunit andbottom, both of which consume
no input. The difference between them is that the former always
succeeds, while the latter always fails, a distinction recorded in
the associated parse descriptors. The syntaxC(e) denotes a base
typeC parameterized by expressione. The syntaxα denotes a type
variable introduced in a recursive type.

We provide abstractionλx.τ and applicationτ e so that we may
parameterize types by expressions. Dependent sum typesΣ x:τ1.τ2
describe a sequence of values in which the second type may refer to
the value of the first. Sum typesτ1+τ2 express flexibility in the data
format, as they parse data matching eitherτ1 or τ2. Unlike regular
expressions or context-free grammars, which allow nondetermin-
istic choice, sum-type parsers are deterministic, transforming the
data according toτ1 when possible andonlyattempting to useτ2 if
there is an error inτ1. Intersection typesτ1 & τ2 describe data that
match bothτ1 andτ2. They transform a single set of bits to produce
a pair of values, one from each type. Constrained types{x:τ | e}
transform data according to the underlying typeτ and then check
that the constrainte holds whenx is bound to the parsed value.

The typeτ seq(τs, e, τt) represents a sequence of values of type
τ . The typeτs specifies the type of the separator found between
elements of the sequence. For sequences without separators, we
useunit as the separator type. Expressione is a boolean-valued
function that examines the parsed sequence after each element is
read to determine if the sequence has completed. For example,
a function that checks if the sequence has100 elements would
terminate a sequence when it reaches length100. The typeτt is
used when characters following the array will signal termination.
For example, if a semi-colon signals the end of the array, then
τt should be{x:Pchar | x =′;′ }. If no character or string of
characters signals the end of the array, we usebottom for τt.

Recursive typesµα.τ describe recursive data formats. The
nameα can be used inτ to refer to the recursive type and causes a
recursive call toτ ’s parser wherever it appears.

DDC also has a number of “active” types. These types describe
actions to be taken during parsing rather than strictly describing
the data format. Typecompute(e:σ) allows us to include a value
in the output that does not appear in the data stream (although it
is likely dependent on values that do), based on the expressione.
Conversely, typeabsorb(τ) parses data according to typeτ but
does not return its result. This behavior is useful for data that is
important for parsing, but uninteresting to users of the data, such as
a separator. The last of the “active” types isscan(τ), which scans
the input for data that can be successfully transformed according

Bits B ::= · | 0 B | 1 B
Constants c ::= () | true | false | 0 | 1 | −1 | . . .

| none | B | ω | ok | err | fail | . . .
Values v ::= c | fun f x = e | (v, v)

| inl v | inr v | [~v]
Operators op ::= = | < | not | . . .
Expressions e ::= c | x | op(e) | fun f x = e | e e

| let x = e in e | if e then e else e
| (e, e) | πi e | inl e | inr e
| case e of (inlx ⇒ e | inrx ⇒ e)
| [~e] | e @ e | e [e]

Base Types a ::= unit | bool | int | none
| bits | offset | errcode

Types σ ::= a | α | σ → σ | σ ∗ σ | σ + σ
| σ seq | ∀α.σ | µα.σ

Figure 8. Host Language

to τ . This type provides a form of error recovery as it allows us to
discard unrecognized data until we find the “recovery” typeτ .

3.2 Host Language

In Figure 8, we present the host language ofDDC, an extension of
the simple-typed polymorphic lambda calculus. We use this host
language both to encode the parsing semantics ofDDC and to write
the expressions that can appear withinDDC itself.

As the calculus is largely standard, we highlight only its unusual
features. The constants include bit stringsB; offsetsω, represent-
ing locations in bit strings; and error codesok, err, andfail, in-
dicating success, success with errors, and failure, respectively. We
use the constantnone to indicate a failed parse. Because of its spe-
cific meaning, we forbid its use in user-supplied expressions ap-
pearing inDDC types. Our expressions include arbitrary length se-
quences[~e], sequence appende @ e′, and sequence indexinge [e].

The typenone is the singleton type of the constantnone. Types
errcode andoffset classify error codes and bit string offsets, re-
spectively. The remaining types have standard meanings: function
types, product types, sum types, sequence typesτ seq; polymor-
phic types∀α.σ and type variablesα; and recursive typesµα.σ.

We extend the formal syntax with some syntactic sugar for use
in the rest of the paper: anonymous functionsλx.e for fun f x = e,
with f 6∈ FV(e); function bindingsletfun f x = e in e′

for let f = fun f x = e in e′; span for offset ∗ offset.
We often use pattern-matching syntax for pairs in place of explicit
projections, as inλ(B, ω).e andlet (ω, r, p) = e in e′. Although
we have no formal records with named fields, we use a dot notation
for commonly occurring projections. For example, for a pairx of
a representation and a PD, we usex.rep andx.pd for the left and
right projections ofx, respectively. Also, sums and products are
right-associative.

We use standard judgments for the static semantics (Γ ` e : σ)
and operational semantics (e ↪→ e′) of the host language. Details
appear in Appendix A.

3.3 Example

As an example, we present in Figure 9 an abbreviated description
of the common log format as it might appear inDDC. For brevity,
this description does not fully capture the semantics of theIPADS
description from Section 2. Additionally, we use the standard ab-
breviationτ ∗ τ ′ for non-dependent products and introduce a num-
ber of type abbreviations in the formname = τ before giving the
type that describes the data source.

In the example, we define type constructorS to encode liter-
als with a constrained type. We also use the following informal
translations:Pwhere becomes a constrained type,Pstruct a se-

S = λstr.{s:Pstring FW(1) | s = str}

authid t = S(“ − ”) + Pstring(“ ”)

response t = λx.{y:Puint16 FW(x) | 100 ≤ y and y < 600}

entry t =
Σ client:Pip. S(“ ”) ∗
Σ remoteid:authid t. S(“ ”) ∗
Σ response:response t 3.
compute(getdomain client = “edu”:bool)

entry t seq(S(“\n”), λx.false, bottom)

Figure 9. Example Description inDDC

ries of dependent sums,Punion a series of sums, andParray
a sequence. As the array terminates at the end of the file, we use
λx.false andbottom to indicate the absence of termination con-
dition and terminator, respectively.

4. DDC Semantics
The primitives ofDDC are deceptively simple. Each captures a sim-
ple concept, often familiar from type theory. However, in reality,
each primitive is multi-faceted. Each simultaneously describes a
collection of valid bit strings, two datatypes in the host language –
one for the data representation itself and one for its parse descrip-
tor – and a transformation from bit strings, including invalid ones,
into data and corresponding meta-data. We give semantics toDDC
types using three semantic functions, each of which precisely con-
veys a particular facet of a type’s meaning. The functions[[·]]rep and
[[·]]PD describe therepresentation semanticsof DDC, detailing the
types of the data’s in-memory representation and parse descriptor.
The function[[·]] describes theparsing semanticsof DDC, defin-
ing a host language function for each type that parses bit strings to
produce a representation and parse descriptor. We define the set of
valid bit strings for each type to be those strings for which the PD
indicates no errors when parsed.

We first define a kinding judgment that checks if a type is well
formed. We then formalize the three-fold semantics ofDDC types.

4.1 DDC Kinding

The kinding judgment defined in Figure 10 determines well-formed
DDC types, assigning kindT to basic types and kindσ → κ to type
abstractions. We use two contexts to express our kinding judgment:

Γ ::= · | Γ, x:σ
M ::= · | M, α=µα.τ

ContextΓ is a finite partial map that binds expression variables
to their types. Context M is an ordered list of mappings between
type variables and recursive types. This context serves two pur-
poses: first, to ensure the well-formedness of types with free type
variables; and second, to provide mappings between recursive type
variables and their associated types. This second purpose leads us
to treat a context M as a substitution from type variables to types.
We use the notation M(τ) to denote applying such a substitution.

To ensure that recursive types have properly-shaped parse de-
scriptors with a valid PD header (a condition necessary for the
type safety of generated parsers), we disallow types such asµα.α.
More generally, we ensure that recursive type variables are sepa-
rated from their binder by at least one basic primitive, such as a
product or sum, a condition calledcontractiveness. To this end, we
annotate every judgment with a contractiveness indicator, one ofy,
n, or c. A y indicates the type is contractive, ann indicates it is not,
and ac indicates it may be either. We considern < y.

M; Γ `c τ : κ

` Γ ok
M; Γ `y unit : T

Unit
` Γ ok

M; Γ `y bottom : T
Bottom

Γ ` e : σ (Bkind(C) = σ → T)

M; Γ `y C(e) : T
Const

M; Γ, x:σ `c τ : κ

M; Γ `c λx.τ : σ → κ
Abs

M; Γ `c τ : σ → κ Γ ` e : σ

M; Γ `c τ e : κ
App

M; Γ `c τ : T M; Γ, x:[[M(τ)]]rep ∗ [[M(τ)]]PD `c′ τ ′ : T

M; Γ `y Σ x:τ.τ ′ : T
Prod

M; Γ `c τ : T M; Γ `c′ τ ′ : T

M; Γ `y τ + τ ′ : T
Sum

M; Γ `c τ : T M; Γ `c′ τ ′ : T

M; Γ `y τ & τ ′ : T
Intersection

M; Γ `c τ : T Γ, x:[[M(τ)]]rep ∗ [[M(τ)]]PD ` e : bool

M; Γ `y {x:τ | e} : T
Con

M; Γ `c τ : T M; Γ `cs τs : T M; Γ `ct τt : T
Γ ` e : [[τm]]rep ∗ [[τm]]PD → bool (τm = M(τ seq(τs, e, τt)))

M; Γ `y τ seq(τs, e, τt) : T
Seq

` Γ ok α ∈ dom(M)
M; Γ `n α : T

Var
M, α=µα.τ ; Γ `y τ : T

M; Γ `y µα.τ : T
Rec

Γ ` e : σ

M; Γ `y compute(e:σ) : T
Compute

M; Γ `c τ : T

M; Γ `y absorb(τ) : T
Absorb

M; Γ `c τ : T

M; Γ `y scan(τ) : T
Scan

Figure 10. DDC Kinding Rules

[[τ]]rep = σ

[[unit]]rep = unit
[[bottom]]rep = none
[[C(e)]]rep = Btype(C) + none
[[λx.τ]]rep = [[τ]]rep
[[τ e]]rep = [[τ]]rep
[[Σ x:τ1.τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep
[[τ1 + τ2]]rep = [[τ1]]rep + [[τ2]]rep
[[τ1 & τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep
[[{x:τ | e}]]rep = [[τ]]rep + [[τ]]rep
[[τ seq(τsep, e, τterm)]]rep = int ∗ ([[τ]]repseq)
[[α]]rep = α
[[µα.τ]]rep = µα.[[τ]]rep
[[compute(e:σ)]]rep = σ
[[absorb(τ)]]rep = unit + none
[[scan(τ)]]rep = [[τ]]rep + none

Figure 11. Representation Types

As the rules are otherwise mostly straightforward, we highlight
just two of them. We use the functionBkind to assign kinds to
base types. While their kind does not differentiate them from type
abstractions, base types are not well formed when not applied.
Once applied, all base types have kindT. The dependent sum rule
shows that the name of the first component is bound to a pair of
a representation and corresponding PD. The semantic functions
defined in the next section determine the type of this pair. Note that
we apply M to the type of the first component before translation,
thereby closing it, as openDDC types do not translate into well-
formed host types.

4.2 Representation Semantics

In Figure 11, we present the representation type of eachDDC prim-
itive. While the primitives are dependent types, the mapping to the
host language erases the dependency because the host language
does not have dependent types. ForDDC types in which expres-
sions appear, the translation drops the expressions to remove the
dependency. With these expressions gone, variables become use-
less, so we drop variable bindings as well, as in product and con-

strained types. Similarly, as type abstraction and application are
only relevant for dependency, we translate them according to their
underlying types.

In more detail, theDDC typeunit consumes no input and pro-
duces only theunit value. Correspondingly,bottom consumes no
input, but uniformly fails, producing the valuenone. The func-
tion Btype maps each base type to a representation for successfully
parsed data. Note that this representation does not depend on the ar-
gument expression. As base type parsers can fail, we sum this type
with none to produce the actual representation type. Intersection
types produce a pair of values, one for each sub-type, because the
representations of the subtypes need not be identical nor even com-
patible. Constrained types produce sums, where a left branch indi-
cates the data satisfies the constraint and the right indicates it does
not. In the latter case, the parser returns the offending data rather
thannone because the error is semantic rather than syntactic. Se-
quences produce a host language sequence paired with its length.
Recursive types generate recursive representations. Note that the
host type uses the same variable name as theDDC type, and so the
type corresponding to the type variableα is exactlyα. The output
of a compute is exactly the computed value, and therefore shares
its type. The output ofabsorb is a sum indicating whether parsing
the underlying type succeeded or failed. The type ofscan is sim-
ilar, but also returns an element of the underlying type in case of
success.

In Figure 12, we give the parse descriptor type for eachDDC
type. Each PD type has a header and body. This common shape
allows us to define functions that polymorphically process PDs
based on their headers. Each header stores the number of errors
encountered during parsing, an error code indicating the degree
of success of the parse – success, success with errors, or failure
– and the span of data described by the descriptor. Formally, the
type of the header (pd hdr) is int ∗ errcode ∗ span. Each body
consists of subdescriptors corresponding to the subcomponents of
the representation and any type-specific meta-data. For types with
neither subcomponents nor special meta-data, we useunit as the
body type.

We discuss a few of the more complicated parse descriptors
in detail. The parse descriptor body for sequences contains the
parse descriptors of its elements, the number of element errors,
and the sequence length. Note that the number of element errors is
distinct from the number of sequence errors, as sequences can have
errors that are not related to their elements (such as errors reading

[[τ]]PD = σ

[[unit]]PD = pd hdr ∗ unit
[[bottom]]PD = pd hdr ∗ unit
[[C(e)]]PD = pd hdr ∗ unit
[[λx.τ]]PD = [[τ]]PD
[[τ e]]PD = [[τ]]PD
[[Σ x:τ1.τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[τ1 + τ2]]PD = pd hdr ∗ ([[τ1]]PD + [[τ2]]PD)
[[τ1 & τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[{x:τ | e}]]PD = pd hdr ∗ [[τ]]PD
[[τ seq(τsep, e, τterm)]]PD = pd hdr ∗ (arr pd [[τ]]PD)
[[α]]PD = α
[[µα.τ]]PD = µα.[[τ]]PD
[[compute(e:σ)]]PD = pd hdr ∗ unit
[[absorb(τ)]]PD = pd hdr ∗ unit
[[scan(τ)]]PD = pd hdr ∗ ((int ∗ [[τ]]PD) + unit)

Figure 12. Parse Descriptor Types

[[τ :κ]]PT = σ

[[τ :T]]PT = bits ∗ offset → offset ∗ [[τ]]rep ∗ [[τ]]PD

[[τ :σ → κ]]PT = σ → [[τ :κ]]PT

Figure 13. Host Language Types for Parsing Functions

fun Runit () = ()
fun Punit ω = ((0, ok, (ω, ω)), ())
fun Rbottom () = none

fun Pbottom ω = ((1, fail, (ω, ω)), ())

fun RΣ (r1, r2) = (r1, r2)
fun HΣ (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in
let ec = max ec h1.ec h2.ec in
let sp = (h1.sp.begin, h2.sp.end) in

(nerr, ec, sp)
fun PΣ (p1, p2) = (HΣ(p1.h, p2.h), (p1, p2))

Figure 15. Selected Constructor Functions. The type of PD head-
ers isint ∗ errcode ∗ span. We refer to the projections using dot
notation asnerr, ec andsp, respectively. A span is a pair of off-
sets, referred to asbegin andend, respectively. The full collection
of such constructor functions appears in Appendix B.

separators). We introduce an abbreviation for array PD body types,
arr pd σ = int ∗ int ∗ (σ seq). Theabsorb PD type isunit
as with its representation. We assume that just as the user does not
want the representation to be kept, so too the parse descriptor. The
scan parse descriptor is eitherunit, in case no match was found,
or records the number of bits skipped before the type was matched
along with the type’s corresponding parse descriptor.

4.3 Parsing Semantics of theDDC

The parsing semantics of a typeτ is a function that transforms
some amount of input into a pair of a representation and a parse
descriptor, the types of which are determined byτ . Figure 13
specifies the host language types of the parsers generated from
well-kindedDDC types. Note that parameterizedDDC types require
their arguments before they can parse any input.

Figure 14 shows the parsing semantics function. For each type,
the input to the corresponding parser is a bit string and an off-
set which indicates the point in the bit string at which parsing
should commence. The output is a new offset, a representation of
the parsed data, and a parse descriptor. As the bit string input is
never modified, it is not returned as an output. In addition to spec-
ifying how to handle correct data, each function describes how to
transform corrupted bit strings, marking detected errors in a parse
descriptor. The semantics function is partial, applying only to well-
formedDDC types.

For any type, there are three steps to parsing: parse the subcom-
ponents of the type (if any), assemble the resultant representation,
and tabulate meta-data based on subcomponent meta-data (if any).
For the sake of clarity, we have factored the latter two steps into
separate representation and PD constructor functions which we de-
fine for each type. For some types, we additionally factor the PD
header construction into a separate function. For example, the rep-
resentation and PD constructors forunit areRunit andPunit, re-
spectively, and the header constructor for products isHΣ. Selected
constructors are shown in Figure 15. We have also factored out
some commonly occuring code into “built-in” functions, explained
as needed and defined formally in Appendix B.

The PD constructors determine the error code and calculate the
error count. There are three possible error codes:ok, err, and
fail, corresponding to the three possible results of a parse: it
can succeed, parsing the data without errors; it can succeed, but
discover errors in the process; or, it can find an unrecoverable error
and fail. The error count is determined by subcomponent error
counts and any errors associated directly with the type itself.

With this background, we can now discuss selected portions of
the semantics. The semantics ofunit andbottom show that they
do not consume any input,i.e., they do not change the offset. A
look at their constructors shows that the parse descriptor forunit
always indicates no errors and a correspondingok code, while that
of bottom always indicates failure with an error count of one and
thefail error code. The semantics of base types applies the imple-
mentation of the base type’s parser, provided by the functionBimp,
to the appropriate arguments. Abstraction and application are de-
fined directly in terms of host language abstraction and application.
Dependent sums read the first element atω and then the second at
ω′, the offset returned from parsing the first element. Notice that
we bind the pair of the returned representation and parse descrip-
tor to the variablex before parsing the second element, implicitly
mapping theDDC variablex to the host language variablex in the
process. Finally, we combine the results using the constructor func-
tions, returningω′′ as the final offset of the parse.

Sequences have the most complicated semantics because the
number of subcomponents depends upon a combination of the data,
the termination predicate, and the terminator type. Consequently,
the sequence parser uses mutually recursive functionsisDone
and continue to implement this open-ended semantics. Func-
tion isDone determines if the parser should terminate by checking
whether the end of the source has been reached, the termination
conditione has been satisfied, or the terminator type can be read
from the stream without errors atω. Functioncontinue takes four
arguments: two offsets, a sequence representation, and a sequence
PD. The two offsets are the starting and ending offset of the previ-
ous round of parsing. They are compared to determine whether the
parser is progressing in the source, a check that is critical to ensur-
ing that the parser terminates. Next, the parser checks whether the
sequence is finished, and if so, terminates. Otherwise, it attempts to
read a separator followed by an element and then continues parsing
the sequence with a call tocontinue.

[[τ]] = e

[[unit]] = λ(B, ω).(ω, Runit(), Punit(ω))
[[bottom]] = λ(B, ω).(ω, Rbottom(), Pbottom(ω))
[[C(e)]] = λ(B, ω).Bimp(C) (e) (B, ω)
[[λx.τ]] = λx.[[τ]]
[[τ e]] = [[τ]] e

[[Σ x:τ.τ ′]] =
λ(B, ω).
let (ω′, r, p) = [[τ]] (B, ω) in
let x = (r, p) in
let (ω′′, r′, p′) = [[τ ′]] (B, ω′) in
(ω′′, RΣ(r, r′), PΣ(p, p′))

[[τ + τ ′]] =
λ(B, ω).
let (ω′, r, p) = [[τ]] (B, ω) in
if isOk(p) then (ω′, R+left(r), P+left(p))
else let (ω′, r, p) = [[τ ′]] (B, ω) in
(ω′, R+right(r), P+right(p))

[[τ & τ ′]] =
λ(B, ω).
let (ω′, r, p) = [[τ]] (B, ω) in
let (ω′′, r′, p′) = [[τ ′]] (B, ω) in
(max(ω′, ω′′), R&(r, r′), P&(p, p′))

[[{x:τ | e}]] =
λ(B, ω).
let (ω′, r, p) = [[τ]] (B, ω) in
let x = (r, p) in
let c = e in
(ω′, Rcon(c, r), Pcon(c, p))

[[τ seq(τs, e, τt)]] =
λ(B, ω).
letfun isDone (ω, r, p) =
EoF(B, ω) or e (r, p) or
let (ω′, r′, p′) = [[τt]](B, ω) in
isOk(p′)

in
letfun continue (ω, ω′, r, p) =
if ω = ω′ or isDone (ω′, r, p) then (ω′, r, p)
else let (ωs, rs, ps) = [[τs]] (B, ω′) in
let (ωe, re, pe) = [[τ]] (B, ωs) in
continue (ω, ωe, Rseq(r, re), Pseq(p, ps, pe))

in
let r = Rseq init() in
let p = Pseq init(ω) in
if isDone (ω, r, p) then (ω, r, p)
else let (ωe, re, pe) = [[τ]] (B, ω) in
continue (ω, ωe, Rseq(r, re), Pseq(p, Punit(ω), pe))

[[α]] = fα

[[µα.τ]] =
fun fα (B, ω) =
let (ω′, r, p) = [[τ]] (B, ω) in

(ω′, r, p)
[[compute(e:σ)]] =

λ(B, ω).(ω, Rcompute(e), Pcompute(ω))
[[absorb(τ)]] =
λ(B, ω).
let (ω′, r, p) = [[τ]] (B, ω) in
(ω′, Rabsorb(p), Pabsorb(p))

[[scan(τ)]] =
λ(B, ω).
letfun try i =
let (ω′, r, p) = [[τ]] (B, ω + i) in
if isOk(p) then
(ω′, Rscan(r), Pscan(i, p)) else
if i = scanMax then
(ω, Rscan err(), Pscan err(ω)) else
try (i + 1)

in try 0

Figure 14. DDC Semantics

We translate recursive types into recursive functions with a
special function name corresponding to the name of the bound type
variable. Recursive type variables translate to these special names.

Thescan type attempts to parse the underlying type from the
stream at an increasing scan-offset,i, from the original offsetω,
until success is achieved or a predefined maximum scan-offset
(scanMax) is reached. In the semantics we give here, offsets are
incremented one bit at a time — a practical implementation would
choose some larger increment (e.g.,32 bits at a time).

5. Meta-theory
One of the most difficult, and perhaps most interesting, challenges
of our work onDDC was determining what properties we wanted
to hold. What are the “correct” invariants of data description lan-
guages? While there are many well-known desirable invariants for
programming languages, the meta-theory of data description lan-
guages has been uncharted. We present the following two proper-
ties as critical invariants of our theory. We feel that they should
hold, in some form, for any data description language.

• Parser Type Correctness: For aDDC typeτ , the representation
and PD output by the parsing function ofτ will have the types
specified by[[τ]]rep and[[τ]]PD, respectively.

• Parser Error Correlation : For any representation and PD out-
put by a parsing function, the errors reported in the PD will be
correlated with the errors present in the representation.

To prove our type correctness theorem by induction, we must
account for the fact that any free recursive type variables in aDDC
typeτ will become free function variables in[[τ]]. To that end, we
define the function[[M]]PT, which maps recursive variable contexts
M to typing contextsΓ:

[[·]]PT = ·
[[M, α=µα.τ]]PT = [[M]]PT, fα:[[M(µα.τ):T]]PT

We also apply M toτ to close any open references to recursive
types before determining the corresponding parser type.

Normalized
Types

ν ::= unit | bottom | C(e) | λx.τ | Σ x:τ.τ
| τ + τ | τ & τ | {x:τ | e} | τ seq(τ, e, τ)
| compute(e:σ) | absorb(τ) | scan(τ)

Types τ ::= ν | τ e | α | µα.τ

τ ↪→ τ ′

τ e ↪→ τ ′ e

e ↪→ e′

ν e ↪→ ν e′ (λx.τ) v ↪→ τ [v/x] µα.τ ↪→ τ [µα.τ/α]

Figure 16. DDC Weak-Head Normal Types and Normalization

Theorem 1 (Type Correctness)
If Γ ` M ok and M; Γ `c τ : κ then Γ, [[M]]PT ` [[τ]] : [[M(τ):κ]]PT.

PROOF. By induction on the height of the second derivation.

Corollary 2 (Type Correctness of Closed Types)
If `y τ : κ then ` [[τ]] : [[τ :κ]]PT.

We start our formalization of the error-correlation property by
defining representation and PD correlation. Informally, a represen-
tation and a PD are correlated when the number of errors recorded
in the PD is at least as many as the number of errors in the repre-
sentation and semantic errors,i.e., constraint violations, are prop-
erly reported. Formally, we define correlation using two mutually
recursive definitions. The first,Corr∗

τ (r, p), defines error corre-
lation between a representationr and a parse descriptorp at type
τ . It does so by computing a weak-head normal formν for τ and
then using the subsidiary relationCorrν(r, p), which is defined for
all weak-head normal typesν with base kindT. Types with higher
kind such as abstractions are excluded from this definition as they
cannot directly produce representations and PDs. Figure 16 defines
the weak-head normal typesν and give normalization rules while
the following definitions specify error correlation. Below, we ab-
breviatep.h.nerr asp.nerr. and usepos to denote the function
which returns zero when passed zero and one otherwise.

Definition 3
Corr∗

τ (r, p) iff if τ ↪→∗ ν then Corrν(r, p).

Definition 4 (Representation and PD Correlation Relation)
Corrν(r, p) iff exactly one of the following is true:

• ν = unit and r = () and p.nerr = 0.
• ν = bottom and r = none and p.nerr = 1.
• ν = C(e) and r = inl c and p.nerr = 0.
• ν = C(e) and r = inr none and p.nerr = 1.
• ν = Σ x:τ1.τ2 and r = (r1, r2) and p = (h, (p1, p2)) and

h.nerr = pos(p1.nerr) + pos(p2.nerr), Corr∗
τ1(r1, p1)

and Corr∗
τ2[(r,p)/x](r2, p2).

• ν = τ1 + τ2 and r = inl r′ and p = (h, inl p′) and
h.nerr = pos(p′.nerr) and Corr∗

τ1(r
′, p′).

• ν = τ1 + τ2 and r = inr r′ and p = (h, inr p′) and
h.nerr = pos(p′.nerr) and Corr∗

τ2(r
′, p′).

• ν = τ1 & τ2, r = (r1, r2) and p = (h, (p1, p2)), and
h.nerr = pos(p1.nerr) + pos(p2.nerr), Corr∗

τ1(r1, p1)
and Corr∗

τ2(r2, p2).
• ν = {x:τ ′ | e}, r = inl r′ and p = (h, p′), and h.nerr =
pos(p′.nerr), Corr∗

τ ′(r′, p′) and e[(r′, p′)/x] ↪→∗ true.
• ν = {x:τ ′ | e}, r = inr r′ and p = (h, p′), and h.nerr = 1+
pos(p′.nerr), Corr∗

τ ′(r′, p′) and e[(r′, p′)/x] ↪→∗ false.
• ν = τe seq(τs, e, τt,), r = (len, [~ri]), p = (h, (neerr, len′, [~pi])),

len = len′, neerr =
Plen

i=1 pos(pi.nerr), Corr∗
τe(ri, pi),

(for i = 1 . . . len), and h.nerr ≥ pos(neerr).
• ν = compute(e:σ) and p.nerr = 0.
• ν = absorb(τ ′), r = inl (), and p.nerr = 0.
• ν = absorb(τ ′), r = inr none, and p.nerr > 0.
• ν = scan(τ ′), r = inl r′, p = (h, inl (i, p′)), h.nerr =
pos(i) + pos(p′.nerr), and Corr∗

τ ′(r′, p′).
• ν = scan(τ ′), r = inr none, p = (h, inr ()), and h.nerr =

1.

Definition 5 specifies the property we require of parsing func-
tions. At base kind, any representation and PD returned by a parser
must be correlated. At higher kind, the function must preserve er-
ror correlation. Hence, the definition is a simple form of logical
relation. Lemma 6 states that any well-formed type of base kind is
error-correlated.

Definition 5 (Error Correlation Relation)
EC(τ : κ) iff exactly one of the following is true:

• κ = T and if [[τ]] (B, ω) ↪→∗ (ω′, r, p) then Corr∗
τ (r, p)

• κ = σ → κ′ and if ` v : σ then EC(τ v : κ′)

Lemma 6 (Error Correlation at Base Kind)
If `y τ : T and [[τ]] (B, ω) ↪→∗ (ω′, r, p) then Corr∗

τ (r, p).

PROOF. By induction on the height of the second derivation.

Theorem 7 (Error Correlation)
If `y τ : κ then EC(τ : κ).

PROOF. By induction on the size of the kindκ.

Corollary 8
If Corr∗

τ (r, p) and p.h.nerr = 0 then there are no syntactic or
semantic errors in the representation data structure r.

6. EncodingDDLs in DDC

We can better understand the data description languages mentioned
earlier by translating their constructs into the types ofDDC. We start
with the translation ofIPADS, which captures many of the common
features ofDDLs. We then discuss features ofPADS, DATASCRIPT,
andPACKETTYPESthat are not found inIPADS.

prog ⇓ τ prog

t ⇓ τ

t ⇓ τ prog

p[t/α] ⇓ τ prog

α = t; p ⇓ τ prog

p[Prec α.t/α] ⇓ τ prog

Prec α = t; p ⇓ τ prog

t ⇓ τ

ti ⇓ τi

Punion {x1:t1 . . . xn:tn} ⇓ τ1 + · · · + τn + bottom

t ⇓ τ

t Pwhere x.e ⇓ {x:τ | if isOk(x.pd) then e else true}

t ⇓ τ tsep ⇓ τs tterm ⇓ τt (f = λx.false)

t Parray (tsep, tterm) ⇓ τ seq(scan(τs), f, τt)

t ⇓ τ

Popt t ⇓ τ + unit

Ty(c) = τ

Plit c ⇓ scan(absorb({x:τ | x = c}))

Figure 17. Selected Rules for EncodingIPADS in DDC. The full
collection appears in Appendix C.

6.1 IPADS Translation

We formalize the translation fromIPADS to DDC, described infor-
mally in Section 3.3, with two judgments:p ⇓ τ prog indicates that
the IPADS programp is encoded asDDC typeτ , while t ⇓ τ does
the same forIPADS typest.

Much of the translation is straightforward, so we present only
selected rules in Figure 17. We addbottom as the last branch of
theDDC sum when translatingPunion so that the parse will fail if
none of the branches match. In the translation ofPwhere , we only
check the constraint if the underlying value parsed with no errors.
For Parray s, we add simple error recovery by scanning for the
separator type. This behavior allows us to skip erroneous elements.
We use thescan type in the same way forPlit , as literals often
appear as field separators inPstruct s. We absorb the literal as
its value is known statically, using the functionTy(c) to determine
the type of the particular literal.

6.2 BeyondIPADS

We now give semantics to three features not found inIPADS: PADS
switched unions,PACKETTYPESoverlays, andDATASCRIPTarrays.

A switched union, like aPunion , indicates variability in the
data format with a set of alternative formats (branches). How-
ever, instead of trying each branch in turn, the switched union
takes an expression that determines which branch to use. Typi-
cally, this expression depends upon data read earlier in the parse.
Each branch is preceded by a tag, and the first branch whose tag
matches the expression is selected. If no branch matches then the
default branchtdef is chosen. The syntax of a switched union is
Pswitch e {−−−−−→

e ⇒ x:t tdef}.
To aid in our translation ofPswitch , we define a type

if e then t1 else t2 that allows us to choose between two
types conditionally:

t1 ⇓ τ1 t2 ⇓ τ2 (c = compute(if e then 1 else 2 :Pint))

if e then t1 else t2 ⇓
c ∗ (({x:unit | not e} + τ1)& ({x:unit | e} + τ2))

The computed valuec records which branch of the conditional is
selected. If the conditione is true,c will be 1, the left-hand side of
the intersection will parseτ1, and the right side will parse nothing.
Otherwise,c will be 2, the left-hand side will parse nothing, and
the rightτ2.

We can encodePswitch as a cascade of conditional types:
Pswitch e {

e1 ⇒ x1:t1
. . .
en ⇒ xn:tn
tdef}

=

if e = e1 then t1 else
. . .
if e = en then t1 else
tdef

Note that we can safely replicatee as the host language is pure.
Next, we consider theoverlay construct found inPACKET-

TYPES. An overlay allows us “to merge two type specifications
by embedding one within the other, as is done when one protocol is
encapsulatedwithin another. Overlay[s] introduce additional sub-
structure to an already existing field.” [17]. For example, consider a
network packet from a fictional protocol FP, where the packet body
is represented as a simple byte array.

FPPacket = Pstruct {
header : FPHeader;
body : Pbyte Parray (Pnosep , Peof);

}

IPinFP = Poverlay FPPacket.body with IPPacket

Type Pnosep indicates that there are no separators between ele-
ments of the array. It can be encoded asPcompute (():unit) ,
as this type consumes no data and produces a unit value without er-
rors. The overlay creates a new typeIPinFP where the body field
is anIPPacket rather than a simple byte array.

We have defined a translation of overlays intoDDC (omitted
because of space constraints). Although overlays are conceptually
intuitive, we discovered a critical subtlety, not mentioned by the
authors, when formalizing their semantics. Any expressions in the
original type that refer to the overlaid field may no longer be well
typed after applying the overlay. Thus the translation must check
the new type for well formedness after the overlay process.

Finally, we introduceDATASCRIPT-style arrays for binary data,
t [length]. Such arrays are parameterized by an optional length
field, instead of a separator and terminator. If the user supplies the
length of the sequence, the array parser reads exactly that number
of elements. Otherwise, the parser continues until an element con-
straint is violated or the input is completely consumed.

We can encode fixed-length arrays withDDC sequences:
t ⇓ τ (f = λ((len, elts), p).len = length)

t [length] ⇓ τ seq(unit, f, bottom)

As these arrays have neither separators nor terminators, we use
unit (always succeeds, parsing nothing) andbottom (always fails,
parsing nothing), respectively, for separator and terminator. The
functionf takes a pair of array representation and PD and compares
the sequence length recorded in the representation tolength.

Unbounded arrays are more difficult to encode as they must
check the next element for parse errors without consuming it from
the data stream. A termination predicate cannot encode this check
as it cannot perform lookahead. Therefore, we must use the ter-
minator type to look ahead for an element parse error. For this
purpose, we construct a type (abbreviatednot(τ)) which succeeds
whereτ fails and fails whereτ succeeds:

{x:τ + unit | case x.rep of (inl ⇒ false | inr ⇒ true)}
We can now encode unbounded arrays with element typeτ as
sequences with terminatornot(τ).

While there are many more features that we can encode, space
prevents us from detailing them here. To give a sense of what is
possible, we briefly list those features ofDATASCRIPT andPACK-
ETTYPESfor which we have found encodings inDDC:

• PACKETTYPES: arrays, where clauses, structures, overlays, and
alternation.

• DATASCRIPT: constrained types (enumerations and bitmasks),
arrays, constraints, value-parameterized types (which they call
“type parameters”), and (monotonically increasing) labels.

We know of some features of data description languages that we
cannot currently implement inDDC. An example is a label construct
that permits the user to rewind the input. We do not view such
limitations as troublesome. Like the lambda or the pi calculus, we
intendDDC to capture common language features and to provide a
convenient basis for extension with new features.

7. Applications of the Semantics
The development ofDDC and defining a semantics forIPADS has
had a substantial impact on thePADS implementation.

7.1 Bug Hunting

We developed our semantics in part by thoroughly reviewing key
parts of thePADS implementation to uncover implicit invariants.
In the process of formalizing these invariants, we realized that our
error accounting methodology was inconsistent, particularly in the
case of arrays. When we identified the problem, we were able to
formulate a clear rule to apply universally: each subcomponent
adds one to the error count of its parent if and only if the sub-
component has errors. If we had not formalized our semantics, we
most likely would not have made the error accounting rule precise,
leaving our implementation buggy and inconsistent.

The semantics also helped us avoid potential non-termination
of array parsers. In the original implementation ofPADS arrays, it
was possible to write non-terminating arrays, a bug that was only
uncovered when it hung a real program. We have fixed the bug and
used the semantics to verify our fix.1

7.2 Principled Implementation Extension: Recursion

Unlike the rest ofPADS, the semantics of recursive types preceded
the implementation. We used the semantics to guide our design
decisions in the implementation, particularly in preventing the user
from writing down non-contractive types and in implementing the
parsers with recursive functions.

7.3 Distinguishing the Essential from the Accidental

In his 1965 paper, P. J. Landin asks “Do the idiosyncrasies [of a
language] reflect basic logical properties of the situations that are
being catered for? Or are they accidents of history and personal
background that may be obscuring fruitful developments?”

The semantics helped us answer this question with regard to the
Pomit andPcompute qualifiers ofPADS. Originally, these quali-
fiers were only intended to be used on fields withinPstruct s. By
an accident of the implementation, they appeared inPunion s as
well, but spread no further. However, when designingDDC, we fol-
lowed theprinciple of orthogonality, which suggests that every lin-
guistic concept be defined independently of every other. In particu-
lar, we observed that “omitting” data from, or including (“comput-
ing”) data in, the internal representation is not dependent upon the
idea of structures or unions. Furthermore, we found that develop-
ing these concepts as first-class constructorsabsorb andcompute
in DDC allowed us to encode the semantics of otherPADS features
(e.g., literals) elegantly.

Another accident in thePADS implementation is that it does not
guarantee that certain features are “safe.” In part, this omission
arises from the fact that thePADS host language is C and in part

1 The typeunit array(unit,eof) would not terminate in the orig-
inal system. A careful reading of theDDC semantics of arrays, which we
have now implemented inPADS, shows that array parsing terminates after
an iteration in which the array parser reads nothing.

from the desire to implement certain optimizations. As an example,
when a semantic error in aPwhere clause is detected, the parser
sets a flag. However, the C programmer is not forced to check this
flag before using the value in question and therefore can unknow-
ingly process invalid data. The semantics ofDDC deviates from the
C implementation here as it suggests constrained types be imple-
mented as values with a sum type. A typed lambda calculus pro-
grammer is required to perform a case on the sum and hence will
always be informed of an error. In such cases, the C implementa-
tion does not serve as a proper guide for the integration ofPADS
ideas with a safe language like ML. For this purpose, theDDC is a
much more appropriate starting point.

We conclude with an example of another feature to which
Landin’s question applies, but for which we do not yet know the an-
swer. ThePunion construct chooses between branches by search-
ing for the first one without errors. However, this semantics ignores
situations in which the correct branch in fact has errors. Often,
this behavior leads to parsing nothing and panicking, rather than
parsing the correct branch to the extent possible. The process of
developing a semantics brought this fact to our attention. It now
seems clear that we should provide a more robustPunion , but we
are not yet sure how best to do so.

8. Related Work
To our knowledge, we are the first to attempt to specify a semantics
for type-based data description languages such asPACKETTYPES,
DATASCRIPT, or PADS.

Of course, there are other formalisms for defining parsers, most
famously, regular expressions and context-free grammars. In terms
of recognition power, these formalisms differ from our type the-
ory in that they have nondeterministic choice, but do not have de-
pendency or constraints. We have found that dependency and con-
straints are essential for describing the ad hoc data sources we
have studied. Perhaps more importantly, unlike standard theories of
context-free grammars, we do not treat our type theory merely as a
recognizer for a collection of strings. Our type-based descriptions
definebothexternal data formatsandrich invariants on the internal
parsed data structures. This dual interpretation of types lies at the
heart of tools such asPADS, DATASCRIPT, andPACKETTYPES.

Parsing Expression Grammars(PEGs), studied in the early sev-
enties [2] and revitalized more recently by Ford [8], evolved from
context-free grammars but have deterministic, prioritized choice
like DDC as opposed to nondeterministic choice. Though PEGs
have syntactic lookahead operators, they may be parsed in linear
time through the use of “packrat parsing” techniques [7, 10]. Once
again, the dual interpretation of types inDDC as both data descrip-
tions and classifiers for internal representations make our theory
substantially different from the theory of PEGs.

ANTLR [19], a popular programming language parsing tool,
uses top-down recursive descent parsing and appears roughly sim-
ilar in recognition power to PEGs andDDC. ANTLR also allows
programmers to place annotations in the grammar definitions to
guide construction of an abstract syntax tree. However, all nodes
in the abstract syntax tree have a single type, hence the guidance is
coarse when compared with the richly-typed structures that can be
constructed usingDDC.

There are many parallels betweenDDC and parser combina-
tors [3, 13]. In particular,DDC’s dependent sum construct is rem-
iniscent of the bind operator in the monadic formulation of parser
combinators. Indeed, we can model dependent sums in Haskell as:

sigma :: P s -> (s->P t) -> P (s,t)
sigma m q = do {x <- m; y <- q x; return (x,y)}

Parser combinators, however, are a general approach to specifying
recursive descent parsing, whereas we have targetedDDC to the do-
main of parsing ad hoc data. This focus leads to many features not
found in parser combinators, including the implicit type/value cor-
respondence, the error response mechanism, and arrays. Each of
these features is as fundamental toDDC as dependent sums. These
two approaches demonstrate the idea of a spectrum of domain-
specificity in languages. The relationship between parser combi-
nators andDDC is like the relationship between a general purpose
language and parser combinators themselves. That is, while parser
combinators form an (embedded) domain-specific language,DDC
constructs form a language that is even more domain-specific.

9. Conclusion
Ad hoc data is pervasive and valuable: in industry, in medicine, and
in scientific research. Such data tends to have poor documentation,
to contain various kinds of errors, and to be voluminous. Unlike
well-behaved data in standardized relational orXML formats, such
data has little or no tool support, forcing data analysts and scien-
tists to waste valuable time writing brittle custom code, even if all
they want to do is convert their data into a well-behaved format.
To improve the situation, various researchers have developed data
description languages such asPADS, DATASCRIPT, and PACKET-
TYPES. Such languages allow analysts to write terse, declarative
descriptions of ad hoc data. A compiler then generates a parser and
customized tools. Because these languages are tailored to their do-
main, they can provide useful services automatically while a more
general purpose tool, such as lex/yacc or PERL, cannot.

In the spirit of Landin, we have taken the first steps toward
specifying a semantics for this class of languages by defining the
data description calculusDDC. This calculus, which is a dependent
type theory with a simple set of orthogonal primitives, is expres-
sive enough to describe the features ofPADS, DATASCRIPT, and
PACKETTYPES. In keeping with the spirit of the data description
languages, our semantics is transformational: instead of simply rec-
ognizing a collection of input strings, we specify how to transform
those strings into canonical in-memory representations annotated
with error information. Furthermore, we prove that the error infor-
mation is meaningful, allowing analysts to rely on the error sum-
maries rather than having to re-vet the data by hand.

We have already used the semantics to identify bugs in the im-
plementation ofPADS and to highlight areas wherePADS sacrifices
safety for speed. In addition, when various biological data sources
motivated adding recursion toPADS, we usedDDC for design guid-
ance. After adding recursion,PADScan now describe the biological
data sources. FinallyDDC has provided insight into how to design
a safe overlay concept.

Acknowledgments
Thanks to Andrew Appel for suggesting we refer to Landin’s sem-
inal paper on the next 700 programming languages and to John
Launchbury for useful discussions about parser combinators. We
also appreciate the thoughtful reviews of the POPL program com-
mittee.

References
[1] G. Back. DataScript: A specification and scripting language for

binary data. InGPCE, volume 2487, pages 66–77. LNCS, 2002.
[2] A. Birman and J. D. Ullman. Parsing algorithms with backtrack.

Information and Control, 23(1), Aug. 1973.
[3] W. Burge. Recursive Programming Techniques. Addison Wesley,

1975.
[4] D. Eger. Bit level types.www-2.cs.cmu.edu/˜eger/ .

[5] M. F. Ferńandez, J. Siḿeon, B. Choi, A. Marian, and G. Sur.
Implementing XQuery 1.0: The Galax experience. InVLDB, pages
1077–1080. ACM Press, 2003.

[6] K. Fisher and R. Gruber. PADS: A domain specific language for
processing ad hoc data. InPLDI, pages 295–304. ACM Press, 2005.

[7] B. Ford. Packrat parsing: Simple, powerful, lazy, linear time. In
ICFP, pages 36–47. ACM Press, Oct. 2002.

[8] B. Ford. Parsing expression grammars: A recognition-based syntactic
foundation. InPOPL, pages 111–122. ACM Press, Jan. 2004.

[9] Gene Ontology Project.www.geneontology.org .
[10] R. Grimm. Practical packrat parsing. Technical Report TR2004-854,

New York University, Mar. 2004.
[11] P. Gustafsson and K. Sagonas. Adaptive pattern matching on binary

data. InESOP, pages 124–139. Springer, Mar. 2004.
[12] R. Harper.Programming Languages: Theory and Practice.Unpub-

lished, 2005.www-2.cs.cmu.edu/˜rwh/ .
[13] G. Hutton and E. Meijer. Monadic parsing in Haskell.JFP, 8(4):437–

444, July 1998.
[14] A. Igarashi, B. Pierce, and P. Wadler. Featherwieght Java: A minimal

core calculus for Java and GJ. InOOPSLA, pages 132–146. ACM
Press, 1999.

[15] B. Krishnamurthy and J. Rexford.Web Protocols and Practice.
Addison Wesley, 2001.

[16] P. J. Landin. The next 700 programming languages.CACM, 9(3):157
– 166, Mar. 1966.

[17] P. McCann and S. Chandra. PacketTypes: Abstract specification of
network protocol messages. InSIGCOMM, pages 321–333. ACM
Press, August 2000.

[18] Tree formats. Workshop on molecular evolution.workshop.
molecularevolution.org/resources/fileformats/
tree_formats.php .

[19] T. J. Parr and R. W. Quong. ANTLR: A predicated-ll(k) parser
generator.Software Practice and Experience, 25(7):789–810, July
1995.

[20] C. Wikstr̈om and T. Rogvall. Protocol programming in Erlang using
binaries. InErlang/OTP User Conference, Oct. 1999.

A. Host Language
A.1 Well-Formedness Rules

∆ ` σ ok

∆ ` a ok
∆ ` σ ok ∆ ` σ′ ok

∆ ` σ → σ′ ok
∆ ` σ ok ∆ ` σ′ ok

∆ ` σ ∗ σ′ ok

∆ ` σ ok ∆ ` σ′ ok
∆ ` σ + σ′ ok

∆ ` σ ok
∆ ` σ seq ok

∆ ` σ ok
∆ ` σ error ok

∆, α ` σ ok
∆ ` ∀α.σ ok

α ∈ ∆
∆ ` α ok

∆, α ` σ ok
∆ ` µα.σ ok

∆ ` Γ ok

∆ ` · ok

∆ ` Γ ok x 6∈ dom(Γ) ∆ ` σ ok

∆ ` Γ, x : σ ok

Γ ` M ok

Γ ` · ok

Γ ` M ok α 6∈ dom(M) M; Γ `y µα.τ : T

Γ ` M, α = µα.τ ok

A.2 Typing Rules

Constants are assigned types with the interfaceBcty and operators with
Bopty. Some example constants and their types are show below.

Bcty(true) = bool Bcty(false) = bool
Bcty(none) = none Bcty(B) = bits
Bcty(ω) = offset

∆ ` Γ ok
∆; Γ ` c : Bcty(c)

Const
∆ ` Γ ok Γ(x) = σ

∆; Γ ` x : σ
Var

Bopty(op) = σ′ ⇀ σ ∆; Γ ` e : σ′

∆; Γ ` op(e) : σ
Op

∆; Γ, f :σ′ → σ, x:σ′ ` e : σ

∆; Γ ` fun f x = e : σ′ → σ
Fun

∆; Γ ` e : σ′ → σ
∆; Γ ` e′ : σ′

∆;Γ ` e e′ : σ
App

∆; Γ ` e′ : σ′ ∆; Γ, x:σ′ ` e : σ

∆; Γ ` let x = e′ in e : σ
Let

∆; Γ ` e : bool ∆; Γ ` e1 : σ ∆; Γ ` e2 : σ

∆; Γ ` if e then e1 else e2 : σ
Cond

∆; Γ ` e1 : σ1 ∆; Γ ` e2 : σ2

∆; Γ ` (e1, e2) : σ1 ∗ σ2
Pair

∆; Γ ` e : σ1 ∗ σ2

∆; Γ ` πi e : σi
Proj

∆; Γ ` e : σ ∆ ` σ′ ok

∆; Γ ` inl e : σ + σ′ InL
∆; Γ ` e : σ′ ∆ ` σ ok

∆; Γ ` inr e : σ + σ′ InR

∆;Γ ` e : σl + σr ∆; Γ, x:σl ` el : σ ∆; Γ, y:σr ` er : σ

∆; Γ ` case e of (inlx ⇒ el | inr y ⇒ er) : σ
Case

∆ ` Γ ok ∆ ` σ ok
∆; Γ ` [] : σ seq

Empty

∆ ` Γ ok ∆; Γ ` ei : σ (for i = 1 . . . n)

∆; Γ ` [e1 · · · en] : σ seq
Seq

∆; Γ ` e : σ seq ∆; Γ ` e′ : σ seq

∆; Γ ` e @ e′ : σ seq
Append

∆; Γ ` e : σ seq ∆; Γ ` e′ : int

∆; Γ ` e [e′] : σ + unit
Sub

∆; Γ ` e : σ[µα.σ/α]
∆; Γ ` e : µα.σ

Roll
∆; Γ ` e : µα.σ

∆; Γ ` e : σ[µα.σ/α]
Unroll

∆, α; Γ ` v : σ (α 6∈ FTV(Γ))
∆; Γ ` v : ∀α.σ

Generalize

∆; Γ ` e : ∀α.σ

∆; Γ ` e : σ[σ′/α]
Instantiate

A.3 Evaluation Rules
Evaluation E ::= [] | op(E) | E e | v E
Contexts | let x = E in e

| if E then e1 else e2
| (E, e) | (v, E) | πi E
| inl E | inr E
| case E of (inlx ⇒ e | inrx ⇒ e′)
| [~v E ~e] | E @ e | v @ E
| e [E] | v [E]

We specify the implementation of an operator withO(op, v).

O(op, v) = v′

op(v) ↪→ v′ Op
(v = fun f x = e)

v v′ ↪→ e[v/f][v′/x]
App

let x = v in e ↪→ e[v/x]
Let

if true then e else e′ ↪→ e
IfTrue

if false then e else e′ ↪→ e′ IfFalse

π1 (v, v′) ↪→ v
Proj1

π2 (v, v′) ↪→ v′ Proj2

case inl v of (inlx ⇒ el | inr y ⇒ er) ↪→ el[v/x]
CaseL

case inr v of (inlx ⇒ el | inr y ⇒ er) ↪→ er[v/y]
CaseR

[~v1] @ [~v2] ↪→ [~v1 ~v2]
Append

[] [i] ↪→ inr ()
EmptySub

0 ≤ i < n

[v0 . . . vn−1] [i] ↪→ inl vi
SubIn

i ≥ n

[v0 . . . vn−1] [i] ↪→ inr ()
SubOut

e ↪→ e′

E[e] ↪→ E[e′]
Step

B. Helper Functions
Generic Helpers:

Eof : bits ∗ offset → bool

scanMax : int
fun max (m, n) = if m > n then m else n

fun pos n = if n = 0 then 0 else 1

fun isOk p = pos(p.h.nerr) = 0

fun isErr p = pos(p.h.nerr) = 1

fun max ec (ec1, ec2) =
if ec1 = fail or ec2 = fail then fail
else if ec1 = err or ec2 = err then err
else ok

Type-Specific Helpers:

fun Runit () = ()
fun Punit ω = ((0, ok, (ω, ω)), ())

fun Rbottom () = none

fun Pbottom ω = ((1, fail, (ω, ω)), ())

fun RΣ (r1, r2) = (r1, r2)
fun HΣ (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in
let ec = max ec h1.ec h2.ec in
let sp = (h1.sp.begin, h2.sp.end) in

(nerr, ec, sp)
fun PΣ (p1, p2) = (HΣ(p1.h, p2.h), (p1, p2))

fun R+left r = inl r

fun R+right r = inr r

fun H+ h = (pos(h.nerr), h.ec, h.sp)
fun P+left p = (H+ p.h, inl p)
fun P+right p = (H+ p.h, inr p)

fun R& (r, r′) = (r, r′)
fun H& (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in
let ec = max ec h1.ec h2.ec in
let sp = (h1.sp.begin, max(h1.sp.end, h2.sp.end)) in

(nerr, ec, sp)
fun P& (p1, p2) = (H& (p1.h, p2.h), (p1, p2))

fun Rcon (c, r) = if c then inl r else inr r

fun Pcon (c, p) =
if c then ((pos(p.h.nerr), p.h.ec, p.h.sp), p)
else ((1 + pos(p.h.nerr), max ec err p.h.ec, p.h.sp), p)

fun Rseq init () = (0, [])
fun Pseq init ω = ((0, ok, (ω, ω)), (0, 0, []))
fun Rseq (r, re) = (r.len + 1, r.elts @ [re])
fun Hseq (h, hs, he) =
let eerr = if h.neerr = 0 and he.nerr > 0
then 1 else 0 in

let nerr = h.nerr + pos(hs.nerr) + eerr in
let ec = if he.ec = fail then fail
else max ec h.ec he.ec in

let sp = (h.sp.begin, he.sp.end) in
(nerr, ec, sp)

fun Pseq (p, ps, pe) =
(Hseq (p.h, ps.h, pe.h),
(p.neerr + pos(pe.h.nerr), p.len + 1, p.elts @ [pe]))

fun Rcompute r = r

fun Pcompute ω = ((0, ok, (ω, ω)), ())

fun Rabsorb p = if isOk(p) then inl () else inr none

fun Pabsorb p = (p.h, ())

fun Rscan r = inl r

fun Pscan (i, p) =
let nerr = pos(i) + pos(p.h.nerr) in
let ec = if nerr = 0 then ok else err in
let hdr = (nerr, ec, (p.sp.begin − i, p.sp.end)) in

(hdr, inl (i, p))
fun Rscan err () = inr none

fun Pscan err ω = let hdr = (1, fail, (ω, ω)) in
(hdr, inr ())

C. Complete IPADS Encoding in DDC

prog ⇓ τ prog

t ⇓ τ

t ⇓ τ prog

p[t/α] ⇓ τ prog

α = t; p ⇓ τ prog

p[Prec α.t/α] ⇓ τ prog

Prec α = t; p ⇓ τ prog

t ⇓ τ

C(e) ⇓ C(e)
t ⇓ τ

Pfun (x : σ) = t ⇓ λx.τ

t ⇓ τ

t e ⇓ τ e

ti ⇓ τi

Pstruct {x1:t1 . . . xn:tn} ⇓
Σ x1:τ1. · · · Σ xn−1:τn−1.τn

ti ⇓ τi

Punion {x1:t1 . . . xn:tn} ⇓
τ1 + · · · + τn + bottom

ti ⇓ τi

Palt {x1:t1 . . . xn:tn} ⇓ τ1& . . . &τn

t ⇓ τ

Popt t ⇓ τ + unit

t ⇓ τ

t Pwhere x.e ⇓
{x:τ | if isOk(x.pd) then e else true}

t ⇓ τ tsep ⇓ τs tterm ⇓ τt (f = λx.false)

t Parray (tsep, tterm) ⇓ τ seq(scan(τs), f, τt)

Pcompute e:σ ⇓
compute(e:σ)

Ty(c) = τ

Plit c ⇓ scan(absorb({x:τ | x = c}))

α ⇓ α

t ⇓ τ

Prec α.t ⇓ µα.τ

