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Abstract An ad hoc data formats any non-standard data format. Typ-

ically, such formats do not have parsing, querying, analysis, or
transformation tools readily available. Every day, network adminis-
trators, financial analysts, computer scientists, biologists, chemists,
astronomers, and physicists deal with ad hoc data in a myriad of
complex formats. Figure 1 gives a partial sense of the range and
or xML formats. In the calculus, each type describes the physical Pervasiveness of such data. Since off-the-shelf tools for processing
these ad hoc data formats do not exist or are not readily available,

layout and semantic properties of a data source. In the semantics,[ lented scientists. dat st d A te thei
we interpret types simultaneously as the in-memory representation aiented scientists, data analysts, and programmers must waste their
me on low-level chores like parsing and format translation to ex-

of the data described and as parsers for the data source. The parsin act the valuable information they need from their data. Though

functions are robust, automatically detecting and recording errors h f d ing | iaht b i
in the data stream without halting parsing. We show the parsers are!l'€ Syntax of everyday programming languages might be consid-
ered “ad hoc,” we explicitly exclude programming language syntax

type-correct, returning data whose type matches the simple-typef d in of int ¢
interpretation of the specification. We also prove the parsers are''0M our domain of interest. - . .
In addition to the inconvenience of having to build custom pro-

“error-correct,” accurately reporting the number of physical and se- g tools f wch. th tandard nat ¢ 2d hoc dat
mantic errors that occur in the returned data. We use the calculus toC€SSINg l00IS Irom scratch, the nonstandard nature of ad hoc data

describe the features of various data description languages, and wdreduently leads to other difficulties for its users. First, documenta-
discuss how we have used the calculus to improves ' tion for the format may not exist, or it may be out of date. For exam-

ple, acommon phenomenon is for a field in a data source to fall into

In the spirit of Landin, we present a calculus of dependent types to
serve as the semantic foundation for a family of languages called
data description languageSuch languages, which inclugaps,
DATASCRIPT, and PACKETTYPES are designed to facilitate pro-
gramming withad hoc datai.e., data not in well-behaved relational

Categories and Subject DescriptorsD.3.1 [Programming lan- disuse. After a while, a new piece of information becomes interest-
guagei Formal Definitions and Theory—Semantics ing, but compatibility issues prevent data suppliers from modifying

the shape of their data, so instead they hijack the unused field, often
General Terms Languages Theory failing to update the documentation in the process.

Second, such data frequently contain errors, for a variety of
reasons: malfunctioning equipment, programming errors, non-
standard values to indicate “no data available,” human error in
entering data, and unexpected data values caused by the lack of
1. The Challenge of Ad Hoc Data Formats good documentation. Detecting errors is important, because oth-

XML. HTML. CSV. JPEG. MPEG. These data formats represent €rwise they can corrupt “good” data. The appropriate response to
vast quantities of industrial, governmental, scientific, and private Such errors depends on the application. Some applications require
data. Because they have been standardized and are widely usedhe data to be error free: if an error is detected, processing needs to
many reliable, efficient, and convenient tools for processing data Stop immediately and a human must be alerted. Other applications
in these formats are readily available. For instance, your favorite ¢an repair the data, while still others can simply discard erroneous
programming language undoubtedly has libraries for parsing XML ©Of unexpected values. For some applications, errors in the data
and HTML as well as reading and transforming images in JPEG can be the most interesting part because they can signal where a
or movies in MPEG. Query engines are available for querying Monitored system is failing.

XML documents. Widely-used applications like Microsoft Word Today, many programmers tackle the challenge of ad hoc data
and Excel automatically translate documents between HTML and DY Writing scripts in a language likegRRL. Unfortunately, this pro-
other standard formats. In short, life is good when working with C€SS is slow, tedious, and unreliable. Error checking and recovery in
standard data formats. In an ideal world, all data would be in such these scripts is often minimal or nonexistent because when present,

formats. In reality, however, we are not nearly so fortunate. such error code swamps the main-line computation. The program
itself is often unreadable by anyone other than the original authors

(and usually not even them in a month or two) and consequently
cannot stand as documentation for the format. Processing code of-
ten ends up intertwined with parsing code, making it difficult to

reuse the parsing code for different analyses. Hence, in general,
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[ Name & Use

Representation ]

Web server logs (CLF):
Measure web workloads

Fixed-column ASCII records

AT&T provisioning data:
Monitor service activation

Variable-width ASCII records

Call detail: Fraud detection

Fixed-width binary records

AT&T billing data:
Monitor billing process

Various Cobol data formats

Netflow:
Monitor network performance

Data-dependent number of
fixed-width binary records

Newick: Immune
system response simulation

Fixed-width ASCII records
in tree-shaped hierarchy

Gene Ontology:
Gene-gene correlations

Variable-width ASCII records
in DAG-shaped hierarchy

CPT codes: Medical diagnose
SnowMed: Medical clinic notes

5 Floating point numbers
keyword tags

Figure 1. Selected ad hoc data sources.
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Figure 2. Architecture ofPADS system.

instance, McCann and Chandra introdueadKETTYPES[17], a
specification language designed to help systems programmers pro
cess the binary data associated with networking protocols. God-
mar Back develope®ATASCRIPT [1], a scripting language with
explicit support for specifying and parsing binary data formats.
DATASCRIPThas been used to manipulate Java jar files and ELF ob-
ject files. The developers of Erlang have also introduced language
extensions that they refer to bimaries[20, 11] to aid in packet pro-
cessing and protocol programming. At CMU, Eger is in the process
of developing a language of Bit-Level Types (BLT) [4] for specify-
ing file formats such as ELF, JPEG, and MIDI as well as packet lay-
outs. Finally, we are part of a group developirwps [6], another
system for specifying ad hoc dateaps focuses on robust error
handling and tool generation. It is also unusual in that it supports
a variety of data encodings: ASCII formats used by financial ana-
lysts, medical professionals and scientists, EBCDIC formats used

in Cobol-based legacy business systems, binary data from network

applications, and mixed encodings as well.

While differing in many details, these languages derive their
power from a remarkable insight: Types can describe data in both
its external (on-disk) and internal (programmatic) forms. Figure 2
illustrates how systems such BsDS, DATASCRIPT, andPACKET-
TyPESexploit this dual interpretation of types. In the diagram, the
data consumer constructs a typeo describe the syntax and se-
mantic properties of the format in question. A compiler converts

this description into parsing code, which maps raw data into a
canonical in-memoryepresentationThis canonical representation

is guaranteed to be a data structure that itself hasTypeperhaps

T’ , the closest relative o available in the host programming lan-
guage being used. In the caserPas, the parser also generates a
parse descripto(PD), which describes the errors detected in the
data. A host language program can then analyze, transform or oth-
erwise process the data representation and PD.

This architecture helps programmers take on the challenges of
ad hoc data in multiple ways. First, format specifications in these
languages serve as high-level documentation that is more easily
read and maintained than the equivalent low-leveRP script
or C parser. ImportantlypATASCRIPT, PACKETTYPES andPADS
all allow programmers to describe the physical layout of data as
well as its deeper semantic properties such as equality and range
constraints on values, sortedness, and other forms of dependency.
The intent is to allow analysts to capture all they know about a
data source in a data description. If a data source changes, as they
frequently do, by extending a record with an additional field or new
variant, one often only needs to make a single local change to the
declarative description to keep it up to date.

Second, basing the description language on type theory is es-
pecially helpful as ordinary programmers have built up strong in-
tuitions about types. The designers of data description languages
have been able to exploit these intuitions to make the syntax and
semantics of descriptions particularly easy to understand, even for
beginners. For instance, an array type is naturally used to describe
sequences of data objects. And, really, what else could an array type
describe? Similarly, union types are used to describe alternatives.

Third, programmers can write generic, type-directed programs
that produce tools for purposes other than just parsing. For in-
stance, McCann and Chandra suggest USIOKETTYPES Spec-
ifications to generate packet filters and network monitors automat-
ically. Back useATASCRIPTto generate infrastructure for visitor
patterns over parsed dataDS generates a statistical data analyzer,

a pretty printer, axMmL translator and an auxiliary library that en-
ables XQueries using the Galax query engine[5]. It is the declara-
tive, domain-specific nature of these data description languages that
makes it possible to generate all these value-added tools for pro-
grammers. The suite of tools, all of which can be generated from
a single description, provides additional incentive for programmers
to keep documentation up-to-date.

Fourth, these data description languages facilitate insertion of
error handling code. The generated parsers check all possible error
cases: system errors related to the input file, buffer, or socket; syn-
tax errors related to deviations in the physical format; and semantic
errors in which the data violates user constraints. Because these
checks appear only in generated code, they do not clutter the high-
level declarative description of the data source. Moreover, since
tools are generated automatically by a compiler rather than writ-
ten by hand, they are far more likely to be robust and far less likely
to have dangerous vulnerabilities such as buffer overflows.

In summary, data description languages SucCbh/A&\SCRIPT,
PACKETTYPES Erlang,BLT, andPADS meet the challenge of pro-
cessing ad hoc data by providing a concise and precise form of
“living” data documentation and producing reliable tools that han-
dle errors robustly.

1.2 The Next 700 Data Description Languages

The languages people use to communicate with computers
differ in their intended aptitudes, towards either a particu-
lar application area, or a particular phase of computer use
(high level programming, program assembly, job schedul-
ing, etc). They also differ in physical appearance, and more
important, in logical structure. The question arises, do the



idiosyncrasies reflect basic logical properties of the situa- add recursion t®@ADS. We used our semantic framework to study
tions that are being catered for? Or are they accidents of his-  the ramifications of this addition.

tory and personal background that may be obscuring fruitful In summary, this paper makes the following theoretical and
developments? This question is clearly important if we are practical contributions:

trying to predict or influence language evolution.

To answer it we must think in terms, not of languages, . We define aser_nqnticframework for understanding and compar-
but of families of languages. That is to say we must system- ing data description languages suchPa®s, PACKETTYPES
atize their design so that a new language is a point chosen DATASCRIPT, andBLT. No one has previously given a formal
from a well-mapped space, rather than a laboriously devised semantics to any of these languages. In fact, as far as we are
construction. aware, no one has developed a general and complete “theory of
— P. J. LandinThe Next 700 Programming Lan- front-ends” that encompasses both a semantics for recognition
guages 1966 [16]. of concrete, external syntax and a semantics for internal repre-

sentation of this data within a rich, strongly-typed programming
Landin asserts that principled programming language design  language.
involves thinking in terms of “families of languages” and choosing o At the center of the framework iBDC, a calculus of data de-
from a “well-mapped space.” However, so far, when itcomes tothe  g¢riptions based on dependent type theory. We give a denota-
domain of processing ad hoc data, there is no well-mapped space  tjpnal semantics t@bc by interpreting types both as parsers
and no systematic understanding of the family of languages one  gnd more conventionally, as classifiers for parsed data.

might be dealing with. ¢ We define an important correctness criterion for our language,

fam-li-lheo?gg]?gcg dO;;LOfrérggsg%pelraﬁ tl?abeeglr:/\;g (;Jg(iirsinfatnh dein stating that all errors in the parsed data are reported in the parse
Amily ; p >SIng languages. Ve ¢ ’ . descriptor. We proveDc parsers establish this property.
did, by developing a semantic framework for defining, comparing,

and contrasting languages in our domain. This semantic framework ® We definelPADS, an idealized version of theaps program-
revolves around the definition of a data description calcubmsj. ming language that captures its essential features, and show
This calculus uses types from a dependent type theory to describe oW 0 give it a semantics by translating it imoc. The pro-
various forms of ad hoc data: base types to describe atomic pieces ¢€sS of defining the semantics led to the discovery of several
of data and type constructors to describe richer structures. We show ~ Pugs in the actual implementation.

how to give a denotational semanticsipc by interpreting types ¢ We have given semantics to features from several other data de-
as parsing functions that map external representations (bits) to data ~ Scription languages includirgpCKETTYPESandDATASCRIPT.
structures in a typed lambda calculus. More precisely, these parsers ~ As Landin asserts, this process helps us understand the families
produce both internal representations of the external data and parse  of languages in this domain and the totality of their features, so
descriptors that pinpoint errors in the original source. that we may engage in principled language design as opposed to

For many domains, researchers have a solid understanding of ~ falling prey to “accidents of history and personal background.”
what makes a “reasonable” or “unreasonable” language. For in- e We uselPADS and DDC to experiment with a definition and
stance, a reasonable typed language is one in which values of a implementation strategy for recursive data types, a feature not
given type have a well-defined canonical form and “programs don’t found in any existing ad hoc data description language that we
go wrong.” On the other hand, when we began this research, itwas  are aware of. Recursive types are essential for representing tree-
not at all clear how to decide whether our data description language  shaped hierarchical data [9, 18]. We have integrated recursion
and its interpretation were “reasonable” or “unreasonable.” A con- into PADS, using our theory as a guide.
ventional sort of canonical forms property, for instance, is not rel- ) ) o
evant as the input data source is not under system control, and, as Section 2 usesPADS to gently introduce data description lan-
mentioned above, is frequently buggy. Consequently, we have hadguages. Sections 3, 4, and 5 explain the syntax, semantics, and
to define and formalize a new correctness criterion for the language. Metatheory obpc. Section 6 discusses encodingsrs{ps, PACK-

In a nutshell, rather than requiring input data to be error-free, we ETTYPES andDATASCRIPTIn DDC and Section 7 explains how we
require that the internal data structures produced by parsing sat-have already made use of our semantics in practice. Sections 8 and
isfy their specification wherever the parse descriptor says they will. 9 discuss related work and conclude.

Our invariant allows data consumers to rely on the integrity of the

internal data structures marked as error-free. .

To study and compareaDsS, DATASCRIPT, and/or some other 2. 1PADS: An Idealized DDL
data description language, we advocate translating the languagen this section, we defin®PADS, an idealized data description lan-
into bDC. The translation decomposes the relatively complex, high- guage.PADs captures the essence®fDs in a fashion similar to
level descriptions of the language in question into a series of lower- the way that MinML [12] captures the essence of ML or Feather-
level bDC descriptions, which have all been formally defined. We weight Java [14] captures the essence of Java. The main goal of
have done this decomposition i@aDs, an idealized version of the  this section is to introduce the reader to the form and function of
PADS language that captures the essence of the actual implementaiPADS by giving its syntax and walking through a couple of ex-
tion. We have also analyzed many of the feature=saafKETTYPES amples. Though the syntax differs, the structureaibs relatives
and DATASCRIPT using our model. The process of giving seman- BLT, PACKETTYPES andDATASCRIPT are similar. Later sections
tics to these languages highlighted features that were ambiguous omwill show how to give a formal semantics teADS.
ill-defined in the documentation we had available to us.

To our delight, the process of givirgaDs a semantics in this Preliminary Concepts. Like PADS, PACKETTYPES DATASCRIPT,
framework has had additional benefits. In particular, since we de- and BLT, IPADS data descriptions are types. These types specify
fined the semantics by reviewing the existing implementation, we both the external data format (a sequence of bits or characters) and
found (and fixed!) a couple of subtle bugs. The semantics has alsoa mapping into a data structure in the host programming language.
raised several design questions that we are continuing to study.ln PADS, the host language is C; iRADS, the host language is an
It has also helped us explore important extensions. In particular, extension of the polymorphic lambda calculus. For the most part,
driven by examples found in biological data [9, 18], we decided to however, the specifics of the host language are unimportant.



A completelPADS description is a sequence of type definitions
terminated by a single type. This terminal type describes the en-
tirety of a data source, making use of the previous type definitions
to do so.IPADS type definitions can have one of two forms. The
form (a = t) introduces the type identifier and binds it tapADS
type t. The type identifier may be used in subsequent types. The
second formPrec « = t) introduces a recursive type definition.

In this caseq may appear irn.

ComplexipADSs descriptions are built by using type constructors
to glue together a collection of simpler types. In our examples, we
assumePADS contains a wide variety of base types including inte-
gers Puint32 is an ASCII representation of an unsigned integer
that may be represented internally in 32 bits), charactchdr ),
strings Pstring ), dates Pdate ), IP addresses{p ), and oth-

ers. In general, these base types may parameterized. For instance,

we will assumePstring
signals termination of the string. For examg¥string

is parameterized by an argument that
(" ") de-

scribes any sequence of characters terminated by a space. (Note that

we do not consider the space to be part of the parsed string; it will
be part of the next object.) Similarluintl6 _FW3) is an un-
signed 16-bit integer described in exacBycharacters in the data
source. In general, we writ€(e) for a base type parameterized by
a (host language) expressien

authid_t = Punion {
unauthorized : "-;
id Pstring (" ");
h
response_t =
Pfun (x:int) =
Puintl6_FW (x) Pwhere y.100 <= y and y < 600;
entry_ t =  Pstruct
client Pip ; "
remoteid : authid_t; "
localid : authid_t; B
date Pdate ("1"); " ™
request Pstring (" \"); " \" "
response : response_t 3; "
length Puint32 ;
academic : Pcompute
(getdomain client) == “"edu" : bool;
h
entry_t Parray (Pnl, Peof)

Figure 3. 1PADS Common Web Log Format Description

When interpreted as a parser, each of these base types reads the o _
external data source and generates a pair of data structures in then the line is an IP addres®ip ) followed by a space character

host language. The first data structure isitfiernal representation
and the second is thearse descriptgrwhich contains meta-data
collected during parsing. For instané®yint32 reads a series of

(" " ). Next, the data should contain awthid
another spacetc.
The last field ofentry _t is quite different from the others. It

_t followed by

digits and generates an unsigned 32-bit integer as its internal rep-has @>compute type, meaning it does not match any characters in

resentationPstring  generates a host language strifglate
might read dates in a multitude of different formats, but always

generates a tuple with time, day, month, and year fields as its inter-

nal representation. Whenever @ADS parser encounters an unex-

the data source, but it does form a part of the internal representation
used by host programs. The argument (f@mpute field is an
arbitrary host language expression (and its type) that determines the
value of the associated field. In the example, the faaddemic

pected character or bit-sequence, it sets the internal representatiogomputes a boolean that indicates whether the web request came

tonone (i.e. null) and notes the error in the parse descriptor.

An 1PADS Example. 1PADS contains a rich collection of type

constructors for creating sophisticated descriptions of ad hoc data.

from an academic site. Notice that the computation depends upon
a host language value constructed earlier — the value stored in the
client field. IPADS Pstruct s are a form of dependent record

and, in general, later fields may refer to the values contained in

We present these constructors through a series of examples. Thealier ones.

first example, shown in Figure 3, describes the Common Web Log
Format [15], which web servers use to log the requests they receive
Figure 4 shows two sample records. Briefly, each line in a log file

‘the two fieldsremoteid andlocalid

Theentry _t description uses the ty@aithid _t to describe
. Theauthid _t typeis
a Punion with two branches. Unions are represented internally

represents one request; a complete log may contain any number,s sym types. If the data source can be described by the first
of requests. A request begins with an IP address followed by two pranch (a'dash), then the internal representation is the first injection
optional ids. In the example, the ids are missing and dashes standpg the sum. If the data source cannot be described by the first
in for them. Next is a date, surrounded by square brackets. A string pranch, but can be described by the second branch then the internal
in quotation marks follows, describing the request. Finally, a pair representation is the second injection. Otherwise, there is an error.
of integers denotes the response code and the number of bytes Finally, theresponse _t type is aPfun , a user-defined pa-
returned to the client. . . rameterized type. The parameterrebponse _t is a host lan-
TheIpADS description of web logs is most easily read from bot- guage integer. The body of tHefun is a Puintlé _FWwhere
tom to top. The terminal type, which describes an entire web log,  "the fixed width, is the argument of the function. In addition,
is an array type. Arrays ifPADS take three arguments: a descrip-  the value of the fixed-width integer is constrained by Fivenere
tion of the array elements (in this caseyry _t), adescriptionof  cjayse. In this case, thewhere clause demands that the fixed-
the separator that appears between elements (in this case, a newlingqth integery that is read from the source lie between 100 and
markerPnl ), and a description of the terminator (in this case, the 599 Any value outside this range will be considered a semantic
end-of-file marker) PADS itself provides a much wider selection oo, In general, #where clause may be attached to any type

of separators and termination conditions, but these additional vari- specification. It closely resembles the semantic constraints found
ations are of little semantic interest so we omit them freaps. in parser generators such/asTLR [19].

The host language representation for an array is a sequence of ele-
ments. We do not represent separators or terminators internally. A RecursivelPADS Example. Figure 5 presents a secormhDS

We use aPstruct  to describe the contents of each line in a example. In this casepADs describes the Newick format, a flat
web log. Like an array, Bstruct  describes a sequence of objects representation of tree-structured data. The leaves of the trees are
in a data source. We represent the result of parsifgteuct names that describe an “entity.” In our variant of Newick, leaf
as a tuple in the host language. The elements B§tauct are names may be omitted. If the leaf name does appear, it is followed
either named fieldse(g. client : Pip ) or anonymous fields by a colon and a number. The number describes the “distance”
(e.g." [' ). ThePstruct entry _t declares that the first thing  from the parent node. Microbiologists use distances to describe



207.136.97.49 - - [15/0Oct/1997:18:46:51 -0700]
"GET /tk/p.txt HTTP/1.0" 200 30

tj62.aol.com - - [16/0ct/1997:14:32:22 -0700]
"POST /scpt/confirm HTTP/1.0" 200 941

Figure 4. Sample Common Web Log Data. We inserted a newline
into each record to fit the data in a column on this page.

node_t = Popt Pstruct {
name : Pstring ("); "
dist : Puint32 ;

h
Prec tree_t = Punion {
internal : Pstruct  {
"("; branches : tree_t Parray (",",")");
"):"; dist Puint32
h
leaf : node_t;

I

Kinds &
Types T

Tlo—k

unit | bottom | C(e) | Az.7 | Te

S | v+ 7| 7&T | {x:7| e} | Tseq(r,e,7T)
a | pa.T | compute(e:o) | absorb(r) | scan(T)

Figure 7. bDC Syntax

sentation of a piece of data and implicitly specifies how to trans-
form that external representation into an internal one. The internal
representation includes both the transformed value gratse de-
scriptor that characterizes the errors that occurred during parsing.
Syntactically, the primitives of the calculus are similar to the types
found in many dependent type systems, with a number of additions
specific to the domain of data description. We base our calculus on
a dependent type theory because as we have seen, it is common in
data description languages for expressions to appear within types.

3.1 DDC Syntax

Figure 7 shows the syntax ofbcC. As with IPADS, expressiong

and types belong to the host language, defined in Section 3.2. The
most basic types arenit andbottom, both of which consume
no input. The difference between them is that the former always
succeeds, while the latter always fails, a distinction recorded in
the associated parse descriptors. The syntéx) denotes a base
typeC parameterized by expressienThe syntaxx denotes a type
variable introduced in a recursive type.

Pstruct  { body : tree_t; ";"; }

(* Example: (B:3,(A:5,C:10,E:2):12,D:0):32; *)

Figure 5. 1PADS Newick Format Description

Types t == C(e)|Plit ¢ We provide abstractiohz.T and application e so that we may
| Plun(z:o)=t|te parameterize types by expressions. Dependent sum ¥/pes .
|  Pstruct {a:t} | Punion {x:t} describe a sequence of values in which the second type may refer to
| tPwhere z.c | Popt t|tParay (t1) the value of the first. Sum types+r express flexibility in the data
|  Pcompute e:o | o | Prec a.t f t asth dat tchi ithe Unlik I
PrOgrams p e tla b p | Pioe o g o ormat, as they parse data matching eitheor 7. Unlike regular

expressions or context-free grammars, which allow nondetermin-
istic choice, sum-type parsers are deterministic, transforming the
data according t@; when possible andnly attempting to use if
there is an error irr;. Intersection types; & 7 describe data that
match bothr; andr,. They transform a single set of bits to produce
a pair of values, one from each type. Constrained tyjpes | e}
transform data according to the underlying typand then check
that the constraint holds whene is bound to the parsed value.

The typer seq(7s, e, 7¢) represents a sequence of values of type
7. The typers specifies the type of the separator found between
elements of the sequence. For sequences without separators, we
useunit as the separator type. Expressiors a boolean-valued
function that examines the parsed sequence after each element is
read to determine if the sequence has completed. For example,
a function that checks if the sequence hHa® elements would
terminate a sequence when it reaches ler@th The typer; is
used when characters following the array will signal termination.
For example, if a semi-colon signals the end of the array, then

Figure 6. IPADS Syntax

the number of genetic mutations that must occur to move from the
parent to the child. An internal tree node may have any number of
(comma-separated) children within parentheses. Distances follow
the close-paren of the internal tree node.

The Newick format and other formats that describe tree-shaped
hierarchies [9, 18] provide strong motivation for including recur-
sion iniPADS. We have not been able to find any useable description
of Newick data as simple sequenc&sifuct s andParray s)
and alternativesRunion s); some kind of recursive description ap-
pears essential. The definition of the typee _t introduces recur-
sion. It also uses the tyfgeopt t, a trivial union that either parses
t or nothing at all.

Formal Syntax. Figure 6 summarizes the formal syntaxme4ps.

Expressions: and typess are taken from the host language, de- 7¢ should be{z:Pchar [z =";"}. If no character or string of
scribed in Section 3.2. In the examples, we have abbreviated thecharacters signals the end of the array, wetdsgom for ;.
syntax in places. For instance, we omit the operaRiit“ " and Recursive typesua.r describe recursive data formats. The

formal labelz when specifying constant typesfstruct s, writ- namea can be used i to refer to the recursive type and causes a
ing “¢;” instead of ¢ : Plit  ¢;". In addition, all base type€’ recursive call tor’s parser wherever it appears. )
formally have a single parameter, but we have omitted parameters  DDC also has a number of “active” types. These types describe
for base types such &uint32 actions to be taken during parsing rather than strictly describing
the data format. Typeompute(e:o) allows us to include a value
o in the output that does not appear in the data stream (although it
3. A Data Description Calculus is likely dgpendent on valuesptFI)ﬁat do), based on the ex(pressic?n
At the heart of our work is a data description calculns¢), de- Conversely, typeabsorb(r) parses data according to typebut
signed to capture the core features of data description languagesdoes not return its result. This behavior is useful for data that is
Consequently, the syntax oDc is at a significantly lower level of important for parsing, but uninteresting to users of the data, such as
abstraction than that oPADS. Like IPADS, howeverpbDc presents a separator. The last of the “active” typessisan(7), which scans
a type-based model. Eadpc type describes the external repre- the input for data that can be successfully transformed according



Bits B = -|0B|1B
Constants ¢ u= ()|true|false|0|1]—-1]...
| none|B|w]|ok|err|fail|...
Values v u= c|funfzxz=¢|(v,v)
| inl v | inr v | [7]
Operators op == =]|<|not]...
Expressions e == c|z|ople)|funfz=el|ee
| letz =eine|if etheneelsee
| (e;e) | mie|inle|inre
| case e of (inlz = e| inrz =€)
| [@leae]|el]
Base Types a ::= unit|bool | int |none
|  bits | offset | errcode
Types o == a|lalo—o|loxo|o+o
|

oseq | Va.o | pa.o

Figure 8. Host Language

to 7. This type provides a form of error recovery as it allows us to
discard unrecognized data until we find the “recovery” type

3.2 Host Language

In Figure 8, we present the host languag®ot, an extension of
the simple-typed polymorphic lambda calculus. We use this host
language both to encode the parsing semanticeafand to write
the expressions that can appear withivc itself.

As the calculus is largely standard, we highlight only its unusual
features. The constants include bit strifgsoffsetsw, represent-
ing locations in bit strings; and error codels, err, andfail, in-

S = Astr.{s:Pstring FW(1) |s = str}
authid-t = S(“—") + Pstring(“”)
response_t = Ax.{y:Puint16_FW(x)| 100 < y and y < 600}

entry t =
Y client:Pip. S(“7)
Y remoteid:authid-t. S(“7)
Y response:response_t 3.
compute(getdomain client = “edu”:bool)

*
*

entry_t seq(S(“\n”), Ax.false, bottom)

Figure 9. Example Description imbc

ries of dependent sumBunion a series of sums, an@array

a sequence. As the array terminates at the end of the file, we use
Ax.false andbottom to indicate the absence of termination con-
dition and terminator, respectively.

4. DDC Semantics

The primitives ofbbc are deceptively simple. Each captures a sim-
ple concept, often familiar from type theory. However, in reality,
each primitive is multi-faceted. Each simultaneously describes a
collection of valid bit strings, two datatypes in the host language —
one for the data representation itself and one for its parse descrip-
tor — and a transformation from bit strings, including invalid ones,
into data and corresponding meta-data. We give semantizsdo

dicating success, success with errors, and failure, respectively. Wetypes using three semantic functions, each of which precisely con-

use the constanmione to indicate a failed parse. Because of its spe-
cific meaning, we forbid its use in user-supplied expressions ap-
pearing inDDC types. Our expressions include arbitrary length se-
quencesé], sequence apperd@ ¢’, and sequence indexirge].

The typenone is the singleton type of the constanine. Types
errcode andoffset classify error codes and bit string offsets, re-

veys a particular facet of a type’s meaning. The functi[bm%p and

[ - Ipp describe theepresentation semantics bbc, detailing the
types of the data’s in-memory representation and parse descriptor.
The function[ - ] describes th@arsing semanticef bbc, defin-

ing a host language function for each type that parses bit strings to
produce a representation and parse descriptor. We define the set of

spectively. The remaining types have standard meanings: functionyjig pit strings for each type to be those strings for which the PD

types, product types, sum types, sequence typssy; polymor-
phic typesva.o and type variables; and recursive typega.o.

We extend the formal syntax with some syntactic sugar for use
in the rest of the paper: anonymous functionse for fun f x = e,
with f ¢ FV(e); function bindingsletfun fx = e in ¢
for let f = fun fx = e in ¢’; span for offset x offset.
We often use pattern-matching syntax for pairs in place of explicit
projections, as il\(B,w).e andlet (w,r,p) = e in €’. Although
we have no formal records with named fields, we use a dot notation
for commonly occurring projections. For example, for a paof
a representation and a PD, we useep andx.pd for the left and
right projections ofx, respectively. Also, sums and products are
right-associative.

We use standard judgments for the static semariids ¢ : o)
and operational semantics {~ ¢’) of the host language. Details
appear in Appendix A.

3.3 Example

indicates no errors when parsed.
We first define a kinding judgment that checks if a type is well
formed. We then formalize the three-fold semantice D€ types.

4.1 pbc Kinding

The kinding judgment defined in Figure 10 determines well-formed
DDC types, assigning kindl to basic types and kind — « to type
abstractions. We use two contexts to express our kinding judgment:

r
M

ContextI" is a finite partial map that binds expression variables
to their types. Context M is an ordered list of mappings between
type variables and recursive types. This context serves two pur-
poses: first, to ensure the well-formedness of types with free type
variables; and second, to provide mappings between recursive type
variables and their associated types. This second purpose leads us
to treat a context M as a substitution from type variables to types.

w=-| Dzio
u=- | M, a=pa.7

As an example, we present in Figure 9 an abbreviated descriptionWe use the notation §4) to denote applying such a substitution.

of the common log format as it might appearopc. For brevity,
this description does not fully capture the semantics ofith@s
description from Section 2. Additionally, we use the standard ab-
breviationr * 7' for non-dependent products and introduce a num-
ber of type abbreviations in the forrame = 7 before giving the
type that describes the data source.

In the example, we define type construcfoto encode liter-
als with a constrained type. We also use the following informal
translationsPwhere becomes a constrained tyestruct a se-

To ensure that recursive types have properly-shaped parse de-
scriptors with a valid PD header (a condition necessary for the
type safety of generated parsers), we disallow types suplas
More generally, we ensure that recursive type variables are sepa-
rated from their binder by at least one basic primitive, such as a
product or sum, a condition call@dntractivenessTlo this end, we
annotate every judgment with a contractiveness indicator, oge of
n, orc. A y indicates the type is contractive, anndicates it is not,
and ac indicates it may be either. We considek y.



"FOk U }—Fok B F"CIO’ (Bkind(c):UHT) C "
M;T Fy unit : T nit M;T F, bottom: T ottom M;TFy, C(e): T ons

M;T,z:0bc 71 kK M;TkeT:0—k Dhe:o A MiT e r:T M?va:[[M(T)]rep*[[M(T)HPD'_C’ T Prod

I

MT o oo —r 108 MiTFrore:r PP ML Fy Sarr T °

MiTher:T M;Thy 7 :T oy MiLFer: T Milby T tersect MiDbe7: T T, 2:[M(7)[ i+ [M(7)]pp b € : bool c
m
M;Thy 747" :T u M;Tky 7&7": T niersection M;T by {z:7|e}: T on

M;Tke7r: T M;T ke, 760 T M;Tbe, e 0 T

Fke: [[Tm]]rep* [mlpp — bool (7m = M(7seq(7s, €, 7¢))) Se FT ok o€ dom(M) M,a=po.m;T'Fy 7: T
MiT by 7seq(rs, e, ) : T ST M e T Y M e T R
. M;Tke7: T M;T ke 7: T
he:o Compute = Absorh ———————— Scan
M;T F, compute(e:o) : T M; Tk, absorb(r) : T M;T by scan(r): T

Figure 10. pbc Kinding Rules

- strained types. Similarly, as type abstraction and application are
[[T:Hrep g . .
only relevant for dependency, we translate them according to their
[unit],, —  unit underlying types. _
_ In more detail, thedDcC typeunit consumes no input and pro-
[bottom],, = none . X
P _ duces only thenit value. Correspondinglyottom consumes no
[[C(e)]]rep = DBuype(C) + none ; if lv fail ; h I he f
or] - [ input, but uniformly fails, producing the val ueone. The func-
[Az.7 rep B rep tion Bype maps each base type to a representation for successfully
[re] rep =[] rep parsed data. Note that this representation does not depend on the ar-
[ m:Tl'TQIIrep = [[Tl]]rep * [[T2ﬂrep gument expression. As base type parsers can fail, we sum this type
[+ 72lep = [r]ept [2liep with none to produce the actual representation type. Intersection
[r1 & 2], = [mliep* [72]iep types produce a pair of values, one for each sub-type, because the
[{z:7| e}]]rep = [[T]]rep + [[T]]rep representations of the subtypes need not be identical nor even com-
[ seq(Tsep €, Tterm)];ep, =  int * ([7],ep5€9) patible. Constrained types produce sums, where a left branch indi-
[o] P a P cates the data satisfies the constraint and the right indicates it does
[[,U,Ozre:'ﬂ — el not. In the latter case, the parser returns the offending data rather
[ ‘ VEP (e:0)] B b Srep thannone because the error is semantic rather than syntactic. Se-
COmpUtele:Jlrep -7 quences produce a host language sequence paired with its length.
[absorb(7)] ., = unit +none Recursive types generate recursive representations. Note that the
[scan(7)]ep = []ep+ mone host type uses the same variable name asthietype, and so the
type corresponding to the type varialtds exactlya. The output
Figure 11. Representation Types of a compute is exactly the computed value, and therefore shares

its type. The output o&bsorb is a sum indicating whether parsing
the underlying type succeeded or failed. The type@in is sim-
As the rules are otherwise mostly straightforward, we highlight ilar, but also returns an element of the underlying type in case of

just two of them. We use the functioBing to assign kinds to success.
base types. While their kind does not differentiate them from type ~ In Figure 12, we give the parse descriptor type for eack
abstractions, base types are not well formed when not applied. type. Each PD type has a header and body. This common shape
Once applied, all base types have kifidThe dependent sum rule  allows us to define functions that polymorphically process PDs
shows that the name of the first component is bound to a pair of based on their headers. Each header stores the number of errors
a representation and corresponding PD. The semantic functionsencountered during parsing, an error code indicating the degree
defined in the next section determine the type of this pair. Note that of success of the parse — success, success with errors, or failure
we apply M to the type of the first component before translation, — and the span of data described by the descriptor. Formally, the

thereby closing it, as opebpc types do not translate into well-  type of the headerpfi_hdr) is int * errcode * span. Each body
formed host types. consists of subdescriptors corresponding to the subcomponents of

the representation and any type-specific meta-data. For types with
4.2 Representation Semantics neither subcomponents nor special meta-data, weinse as the

body type.

We discuss a few of the more complicated parse descriptors
detail. The parse descriptor body for sequences contains the
rse descriptors of its elements, the number of element errors,

In Figure 11, we present the representation type of eachprim-
itive. While the primitives are dependent types, the mapping to the .
host language erases the dependency because the host Iangua%%

does not have dependent types. types in which expres- és\nd the sequence length. Note that the number of element errors is

sions appear, the translation drops the expressions to remove th distinct from the number of sequence errors, as sequences can have
dependency. With these expressions gone, variables become use= 4 ’ 9

less, 0 we drop variable bindings as well, as in product and con- errors that are not related to their elements (such as errors reading



unit]pp = pd-hdr x unit

bottom]py = pdhdr *unit

C(e)lpp = pd-hdr x unit

Az.T[pp = [leo

7 elpp = 17lrp

Y. me]pp = pdhdr * [71]pp * [T2]pp
71 + 72]pp = pdhdr * ([11]pp + [72]pp)
71 & T2]pp = pdhdr * [71]pp * [T2]pp
{z:7ledpp = pd-hdr « [7]pp

T seq(Tsep €, Tterm)[pp = pd-hdr * (arr_pd [7]sp)
pp = a

pon g = po[rlpp
compute(e:0)]pp = pd.hdr % unit
absorb(7)]sp = pdhdr *unit

scan(7)]pp = pd-hdr * ((int * [7]pp) + unit)

Figure 12.

[7:T]pr = bits * offset — offset x IIT]]rep* [71ro

Parse Descriptor Types

[0 = Klpy =0 — [T:E]pr

Figure 13. Host Language Types for Parsing Functions

fun Runit () = ()
fun Punit w = ((07 ok, (wv w))v ())

fun Rupottom () = none
fun Ppottom W = ((17 fail, (wv w))» ())

fun Ry (r1,12) = (r1,T2)
fun Hy (h17 hg) =
let nerr = pos(hj.nerr) + pos(hz.nerr) in
let ec = max_ec hyj.ec hg.ec in
let sp = (hi.sp.begin, hy.sp.end) in
(nerr, ec, sp)

fun Py (p1,p2) = (Hz(p1-h, pa-h), (p1,p2))

Figure 15. Selected Constructor Functions. The type of PD head-
ers isint * errcode * span. We refer to the projections using dot
notation aserr, ec andsp, respectively. A span is a pair of off-
sets, referred to asgin andend, respectively. The full collection

of such constructor functions appears in Appendix B.

separators). We introduce an abbreviation for array PD body types,
arr_pd o = int x int * (0 seq). Theabsorb PD type isunit

as with its representation. We assume that just as the user does n
want the representation to be kept, so too the parse descriptor. Th
scan parse descriptor is eithanit, in case no match was found,
or records the number of bits skipped before the type was matche
along with the type’s corresponding parse descriptor.

4.3 Parsing Semantics of thebpc
The parsing semantics of a typeis a function that transforms

some amount of input into a pair of a representation and a parse

descriptor, the types of which are determined fyFigure 13
specifies the host language types of the parsers generated fro
well-kindedDDc types. Note that parameterizedc types require
their arguments before they can parse any input.

ofhetne SOt !
gonditione has been satisfied, or the terminator type can be read

Figure 14 shows the parsing semantics function. For each type,
the input to the corresponding parser is a bit string and an off-
set which indicates the point in the bit string at which parsing
should commence. The output is a new offset, a representation of
the parsed data, and a parse descriptor. As the bit string input is
never modified, it is not returned as an output. In addition to spec-
ifying how to handle correct data, each function describes how to
transform corrupted bit strings, marking detected errors in a parse
descriptor. The semantics function is partial, applying only to well-
formedDpDC types.

For any type, there are three steps to parsing: parse the subcom-
ponents of the type (if any), assemble the resultant representation,
and tabulate meta-data based on subcomponent meta-data (if any).
For the sake of clarity, we have factored the latter two steps into
separate representation and PD constructor functions which we de-
fine for each type. For some types, we additionally factor the PD
header construction into a separate function. For example, the rep-
resentation and PD constructors farit areRunit andPugis, re-
spectively, and the header constructor for products isSelected
constructors are shown in Figure 15. We have also factored out
some commonly occuring code into “built-in” functions, explained
as needed and defined formally in Appendix B.

The PD constructors determine the error code and calculate the
error count. There are three possible error cod&s:err, and
fail, corresponding to the three possible results of a parse: it
can succeed, parsing the data without errors; it can succeed, but
discover errors in the process; or, it can find an unrecoverable error
and fail. The error count is determined by subcomponent error
counts and any errors associated directly with the type itself.

With this background, we can now discuss selected portions of
the semantics. The semanticswfit andbottom show that they
do not consume any inpuite., they do not change the offset. A
look at their constructors shows that the parse descriptardfit
always indicates no errors and a correspondingode, while that
of bottom always indicates failure with an error count of one and
thefail error code. The semantics of base types applies the imple-
mentation of the base type’s parser, provided by the fundfiap
to the appropriate arguments. Abstraction and application are de-
fined directly in terms of host language abstraction and application.
Dependent sums read the first element @nd then the second at
W', the offset returned from parsing the first element. Notice that
we bind the pair of the returned representation and parse descrip-
tor to the variablex before parsing the second element, implicitly
mapping thedbc variablex to the host language variahtein the
process. Finally, we combine the results using the constructor func-
tions, returningo”’ as the final offset of the parse.

Sequences have the most complicated semantics because the
number of subcomponents depends upon a combination of the data,
the termination predicate, and the terminator type. Consequently,
the sequence parser uses mutually recursive functiedene
and continue to implement this open-ended semantics. Func-
tion isDone determines if the parser should terminate by checking
hether the end of the source has been reached, the termination

from the stream without errors @t Functioncontinue takes four

darguments: two offsets, a sequence representation, and a sequence

PD. The two offsets are the starting and ending offset of the previ-
ous round of parsing. They are compared to determine whether the
parser is progressing in the source, a check that is critical to ensur-
ing that the parser terminates. Next, the parser checks whether the
sequence is finished, and if so, terminates. Otherwise, it attempts to
read a separator followed by an element and then continues parsing
the sequence with a call tontinue.

m



[fl=e
[{z:rle}] =
A(B,w).
let (w',r,p) = [7]
let x = (r,p) in
letc=ein
(w/,Rcon(c,r),Pcon

[unit] = A(B,w).(w, Runit (), Punit (w))
[bottom] = A(B,w).(w, Rbottom(), Prottom(w))
[C(e)] = A(B,w).-Bimp(C) (e) (B,w)

[Mz.7] = Az.[7]

[re]=1Irle T seq(7s,e,7¢)] =
Ezrr] = [[/\(B?u(.,v) ]
A(B,w). letfun isDone (w,

let (w’,r,p) = [7] (B,w) in
let x = (r,p) in
let (w”,r',p') = [7'] (B,w’) in
(w",Re(z, 1), Px(p, p'))
[r+ 7] =
A(B,w).

Lot (o/.x' p') =
is0k(p’)
in

EoF(B,w) or e (r,p) o

letfun continue (w,w’,r,p)
if w = w’ or isDone (w’

[a] = fa
[or] =
fun £, (B,w) =
let (', r,p) = [7] (B,w) in
|

(B,w) in

(C,p)) (w/7r7p)

[compute(e:o)] =
)\(B, w).(w, Rcompute (6)7 PCOmPute (w))
[absorb(7)] =
A(B,w).
let (w',r,p) = [7] (B,w) in
(W,7 Rabsorb (P)7 Pabsorb (P))
[scan(7)]
A(B,w).

r,p)

T
B,w) in

[rI(

,T,p) then (w',1,p)

let («’,r,p) = [7] (B,w) in
if is0k(p) then (w’,Rt1e£t(T), P11est(P))
else let (W, r,p) = [7'] (B,w) in

else let (ws,Ts,ps) = [7s] (B,w’) in
let (We,Te,Pe) = [7] (B,ws) in
continue (UJ, We, RSeQ(rv re), Pseq(Pv Ps; Pe))

letfun try i =
let (W, r,p) = [7] (B,w+1i) in
if isOk(p) then

(Wia Rirignt (v), Pirignt () in

[T T = letr = Rseq,init ()
A(B, w). let p = Pseq.init (w
let (w',r,p) = [7] (B,w) in if isDone (w,r,p)
let (W"”,r’,p") = [[T/]]/ (B,w) in else let (we, Te, P
(max(w’,w"),Rg (r, 1), P (P, ') continue (w,we, R,

(wlv Rscan(r)7 Psca_n(i7 P)) else
if i = scanMax then
(UJ7 Rscan,err()y Pscan,err (w)) else
try (i+1)

in try O

) in

then (w,r,p)

o) = [7] (B,w) in

seq(r7 re)y Pseq(P7 Punit (w)v pe))

Figure 14. bpc

We translate recursive types into recursive functions with a
special function name corresponding to the hame of the bound type

variable. Recursive type variables translate to these special names.

The scan type attempts to parse the underlying type from the
stream at an increasing scan-offsetfrom the original offsetv,
until success is achieved or a predefined maximum scan-offset
(scanMax ) is reached. In the semantics we give here, offsets are
incremented one bit at a time — a practical implementation would
choose some larger incremeatd.,32 bits at a time).

5. Meta-theory

One of the most difficult, and perhaps most interesting, challenges
of our work onDDC was determining what properties we wanted
to hold. What are the “correct” invariants of data description lan-
guages? While there are many well-known desirable invariants for
programming languages, the meta-theory of data description lan-

guages has been uncharted. We present the following two proper-

ties as critical invariants of our theory. We feel that they should
hold, in some form, for any data description language.

e Parser Type CorrectnessFor abDcC typer, the representation
and PD output by the parsing functionofwill have the types
specified by[7] ., and[7]p, respectively.

e Parser Error Correlation : For any representation and PD out-
put by a parsing function, the errors reported in the PD will be
correlated with the errors present in the representation.

To prove our type correctness theorem by induction, we must
account for the fact that any free recursive type variablesopa
typer will become free function variables {r]. To that end, we
define the functiofM],;, which maps recursive variable contexts
M to typing contextd™:

[lpr=-

M, a=pa.t]pr = [Mlpr, fo:[M(po.7):T]pr
We also apply M tor to close any open references to recursive
types before determining the corresponding parser type.

Semantics

Normalized v := wunit|bottom|C(e) | \z.7 | Zx:T.7

Types | T+7|7&T | {2:7| €} | TSEq(T,E,T)
|  compute(e:o) | absorb(r) | scan(r)

Types T u= vi|Te|al|par

77 e— ¢

Te—T1'e ve—sve (Azt)ve Tlv/z] poT o Tlpe.T/al

Figure 16. bbc Weak-Head Normal Types and Normalization

Theorem 1 (Type Correctness)
IfT - Mokand M;T . 7 : k then T, [M] pr F [7] : [M(7):K] pr-

PrROOF By induction on the height of the second derivatiam.

Corollary 2 (Type Correctness of Closed Types)
Ifby 7k thent [7] : [7:K] pr.

We start our formalization of the error-correlation property by
defining representation and PD correlation. Informally, a represen-
tation and a PD are correlated when the number of errors recorded
in the PD is at least as many as the number of errors in the repre-
sentation and semantic error®., constraint violations, are prop-
erly reported. Formally, we define correlation using two mutually
recursive definitions. The firs€orr* - (r, p), defines error corre-
lation between a representatiorand a parse descriptprat type
7. It does so by computing a weak-head normal forfor ~ and
then using the subsidiary relatiéforr, (r, p), which is defined for
all weak-head normal typeswith base kindT. Types with higher
kind such as abstractions are excluded from this definition as they
cannot directly produce representations and PDs. Figure 16 defines
the weak-head normal typesand give normalization rules while
the following definitions specify error correlation. Below, we ab-
breviatep.h.nerr asp.nerr. and usepos to denote the function
which returns zero when passed zero and one otherwise.

Definition 3
Corr* ,(r, p) iff if T —”* v then Corr, (r, p).



Definition 4 (Representation and PD Correlation Relation)

Corr, (r, p) iff exactly one of the following is true:

v =unit andr = () and p.nerr = 0.

v = bottom and r = none and p.nerr = 1.

v=C(e) andr = inl c and p.nerr = 0.

v = C(e) and r = inr none and p.nerr = 1.

v = X772 and v (r1,72) and p = (h, (p1,p2)) and

h.nerr = pos(pi.nerr) + pos(pz.nerr), Corr*,, (r1,p1)

and COI"I"*T2 [(r,p)/x] (Tg,pz).

v 71 + ™ and r = inl r’ and p

h.nerr = pos(p’.nerr) and Corr™ -, (',
d

(h,inl p') and

(h,inr p') and
).

v T1& T2, 7 = (r1,7r2) and p (h, (p1,p2)), and
h.nerr = pos(pi.nerr) + pos(pz.nerr), Corr*, (r1,p1)
and Corr™ -, (r2,p2).

/

~—

hS]

v 71 + 70 and r = inr r’ an
h.nerr = pos(p’.nerr) and Corr* -, (',

h@\

ey = {x:r'|e},r = inl v’ andp = (h,p’), and h.nerr =
pos(p’.nerr), Corr* ./ (r',p’) and e[(r',p’) /x] —* true.

o v={x:7'|e},r = inr ' andp = (h,p'), and h.nerr = 1+
pos(p’.nerr), Corr* ./ (r',p’) and e[(r',p’) /x] —* false.

o v =rT1.seq(7s,e,7¢, ), 7 = (len, [77]), p = (h, (neerr,len’, [pi])),
len = len’, neerr = Ziinl pos(p;.nerr), Corr™;, (s, pi),
(fori =1...len), and h.nerr > pos(neerr).

® v = compute(e:o) and p.nerr = 0.

e v = absorb(7’),r = inl (), and p.nerr = 0.

® v = absorb(7’), r = inr none, and p.nerr > 0.

e v = scan(7'), r = inl 7/, p = (h,inl (4,p’)), h.nerr =
pos(i) + pos(p’.nerr), and Corr* ./ (r', p’).

e v = scan(7’), r = inr none, p = (h, inr ()), and h.nerr =
1.

Definition 5 specifies the property we require of parsing func-

tions. At base kind, any representation and PD returned by a parserF

must be correlated. At higher kind, the function must preserve er-
ror correlation. Hence, the definition is a simple form of logical
relation. Lemma 6 states that any well-formed type of base kind is
error-correlated.

Definition 5 (Error Correlation Relation)
EC(t : k) iff exactly one of the following is true:

e k=Tandif 7] (B,w) —* (w',r,p) then Corr*-(r, p)
e k=0— K andiftv:o thenEC(T v: k')

Lemma 6 (Error Correlation at Base Kind)
Ifty 7: T and [7] (B,w) —* (', 7, p) then Corr* . (r, p).

PROOF By induction on the height of the second derivatiam.

Theorem 7 (Error Correlation)
Ift, 7 : k then EC(T : K).

PROOF By induction on the size of the kikdk O

Corollary 8
If Corr™ (7, p) and p.h.nerr = 0 then there are no syntactic or
semantic errors in the representation data structure r.

6. EncodingbDLS in DDC

ti T
t | T prog

t T

p[Prec a.t/a] | T prog
Prec a=t; p{ 7 prog

p[t/a] I T prog
a=t; pl T prog

ti |
Punion {x1:t1...xntn} J 71 4+ -+ 7n + bottom

tir
t Pwhere z.e || {z:7|if isOk(z.pd) then e else true}

td 7 tsep I 7s tierm 47t (f = Ax.false)
t Parray (tsep,tterm) | 7seq(scan(7s), f, 7¢)

Ty(c) =7
¢ | scan(absorb({z:7 |z = c}))

tdr
Popt t || 7 4+ unit

Plit

Figure 17. Selected Rules for Encodingabps in bbc. The full
collection appears in Appendix C.

6.1

We formalize the translation fronPADS to DDC, described infor-
mally in Section 3.3, with two judgmentg:|} = prog indicates that
the IPADS programp is encoded asDc type 7, while ¢t |} 7 does

the same forrPADS typest.

Much of the translation is straightforward, so we present only
selected rules in Figure 17. We addttom as the last branch of
thebbc sum when translatinBunion so that the parse will fail if
none of the branches match. In the translatioRwhere , we only
check the constraint if the underlying value parsed with no errors.
or Parray s, we add simple error recovery by scanning for the
separator type. This behavior allows us to skip erroneous elements.
We use thescan type in the same way fdPlit , as literals often
appear as field separatorshstruct s. We absorb the literal as
its value is known statically, using the functi@iy(c) to determine
the type of the particular literal.

IPADS Translation

6.2 BeyondiPADS

We now give semantics to three features not foun@éimos: PADS
switched unionsPACKETTYPESoverlays, anATASCRIPTarrays.

A switched union, like &union , indicates variability in the
data format with a set of alternative formats (branches). How-
ever, instead of trying each branch in turn, the switched union
takes an expression that determines which branch to use. Typi-
cally, this expression depends upon data read earlier in the parse.
Each branch is preceded by a tag, and the first branch whose tag
matches the expression is selected. If no branch matches then the
default branchiger is chosen. The syntax of a switched union is
Pswitch e {e = x:f tger}.

To aid in our translation ofPswitch , we define a type
if e then ¢; else t, that allows us to choose between two
types conditionally:

t1dm tadm

if e then t; else ta |
¢* (({z:unit |not e} + 1) & ({x:unit | e} + 72))

(¢ = compute(if e then 1 else 2 :Pint))

We can better understand the data description languages mentionedhe computed value records which branch of the conditional is

earlier by translating their constructs into the typesb€. We start
with the translation ofPADS, which captures many of the common
features obbLs. We then discuss featuresrEDS, DATASCRIPT,
andPACKETTYPESthat are not found imPADS.

selected. If the conditioa is true,c will be 1, the left-hand side of
the intersection will parse;, and the right side will parse nothing.
Otherwise,c will be 2, the left-hand side will parse nothing, and
the rightrs.



We can encodPswitch as a cascade of conditional types: ® DATASCRIPT. constrained types (enumerations and bitmasks),

Pswitch e { ) arrays, constraints, value-parameterized types (which they call
e1 = w1t if e = e thent; else “type parameters”), and (monotonically increasing) labels.
o = it T if e=ep thenl; else We know of some features of data description languages that we
tf;;f} e tde cannot currently implement ibbc. An example is a label construct

that permits the user to rewind the input. We do not view such
limitations as troublesome. Like the lambda or the pi calculus, we
intendDDC to capture common language features and to provide a
convenient basis for extension with new features.

Note that we can safely replicateas the host language is pure.
Next, we consider theverlay construct found inPACKET-
TYPES An overlay allows us “to merge two type specifications
by embedding one within the other, as is done when one protocol is
encapsulatedvithin another. Overlay[s] introduce additional sub- .. .
structure to an already existing field.” [17]. For example, considera /- Applications of the Semantics

network packet from a fictional protocol FP, where the packet body The development obpbc and defining a semantics fepADs has

is represented as a simple byte array. had a substantial impact on theps implementation.
FPPacket = Pstruct { 7.1 Bug Hunting
header : FPHeader; We developed our semantics in part by thoroughly reviewing key
body : Pbyte Parray (Pnosep, Peof); parts of therADS implementation to uncover implicit invariants.
} In the process of formalizing these invariants, we realized that our

error accounting methodology was inconsistent, particularly in the
case of arrays. When we identified the problem, we were able to
Type Pnosep indicates that there are no separators between ele- formulate a clear rule to apply universally: each subcomponent
ments of the array. It can be encodedPeempute (():unit) , adds one to the error count of its parent if and only if the sub-

as this type consumes no data and produces a unit value without ercomponent has errors. If we had not formalized our semantics, we
rors. The overlay creates a new tyifgnFP  where the body field most likely would not have made the error accounting rule precise,
is anlPPacket rather than a simple byte array. leaving our implementation buggy and inconsistent.

We have defined a translation of overlays imoc (omitted The semantics also helped us avoid potential non-termination
because of space constraints). Although overlays are conceptuallyof array parsers. In the original implementationraids arrays, it
intuitive, we discovered a critical subtlety, not mentioned by the was possible to write non-terminating arrays, a bug that was only
authors, when formalizing their semantics. Any expressions in the uncovered when it hung a real program. We have fixed the bug and
original type that refer to the overlaid field may no longer be well used the semantics to verify our fix.
typed after applying the overlay. Thus the translation must check o ) ] ]
the new type for well formedness after the overlay process. 7.2 Principled Implementation Extension: Recursion

Finally, we introduceDATASCRIPT-style arrays for binary data,  Unlike the rest ofPADS, the semantics of recursive types preceded
t [length]. Such arrays are parameterized by an optional length the implementation. We used the semantics to guide our design
field, instead of a separator and terminator. If the user supplies thedecisions in the implementation, particularly in preventing the user

length of the sequence, the array parser reads exactly that numbefrom writing down non-contractive types and in implementing the
of elements. Otherwise, the parser continues until an element con-parsers with recursive functions.
straint is violated or the input is completely consumed.

IPINFP = Poverlay FPPacket.body with IPPacket

We can encode fixed-length arrays withc sequences: 7.3 Distinguishing the Essential from the Accidental
t 7 (f =A((len, elts),p).len = length) In his 1965 paper, P. J. Landin asks “Do the idiosyncrasies [of a
t [length] | T seq(unit, f, bottom) language] reflect basic logical properties of the situations that are
As these arrays have neither separators nor terminators, we usd€ing catered for? Or are they accidents of history and personal
unit (always succeeds, parsing nothing) aedtom (always fails, background that may be obscuring fruitful developments?

parsing nothing), respectively, for separator and terminator. The _ The semantics helped us answer this question with regard to the

function f takes a pair of array representation and PD and comparesPomit andPcompute qualifiers ofPADs. Originally, these quali-

the sequence length recorded in the representatiémigh. fiers were only intended to be used on fields witRstruct ~ s. By
Unbounded arrays are more difficult to encode as they must @n accident of the implementation, they appeareBunion s as

check the next element for parse errors without consuming it from Well, but spread no further. However, when desigromg, we fol-

the data stream. A termination predicate cannot encode this checkowed theprinciple of orthogonalitywhich suggests that every lin-

as it cannot perform lookahead. Therefore, we must use the ter-guistic concept be defined independently of every other. In particu-

minator type to look ahead for an element parse error. For this lar, we observed that “omitting” data from, or including (“comput-

purpose, we construct a type (abbreviated (7)) which succeeds ing”) data in, the internal representation is not dependent upon the

wherer fails and fails where- succeeds: idea of structures or unions. Furthermore, we found that develop-
ing these concepts as first-class construcibesrb andcompute

{7+ unit|case z.rep of (inl_ = false| inr_= true)} in bbc allowed us to encode the semantics of otheps features

We can now encode unbounded arrays with element tymes (e.g, literals) elegantly. , o ,

sequences with terminatant (7). Another accident in theapsimplementation is that it does not

While there are many more features that we can encode, spacejuarantee that certain features are “safe.” In part, this omission
prevents us from detailing them here. To give a sense of what is arises from the fact that theaps host language is C and in part
possible, we briefly list those features MATASCRIPT and PACK-

ETTYPESfor which we have found encodings i c: 1The typeunit array(unit,eof) would not terminate in the orig-
inal system. A careful reading of teDC semantics of arrays, which we

* PACKETTYPES arrays, where clauses, structures, overlays, and have now implemented iRADS, shows that array parsing terminates after
alternation. an iteration in which the array parser reads nothing.




from the desire to implement certain optimizations. As an example, Parser combinators, however, are a general approach to specifying
when a semantic error inRwhere clause is detected, the parser recursive descent parsing, whereas we have targetedo the do-

sets a flag. However, the C programmer is not forced to check this main of parsing ad hoc data. This focus leads to many features not
flag before using the value in question and therefore can unknow- found in parser combinators, including the implicit type/value cor-
ingly process invalid data. The semanticoaofc deviates from the respondence, the error response mechanism, and arrays. Each of
C implementation here as it suggests constrained types be imple-these features is as fundamentabtc as dependent sums. These
mented as values with a sum type. A typed lambda calculus pro- two approaches demonstrate the idea of a spectrum of domain-
grammer is required to perform a case on the sum and hence will specificity in languages. The relationship between parser combi-
always be informed of an error. In such cases, the C implementa- nators antDc is like the relationship between a general purpose

tion does not serve as a proper guide for the integratiopaofs language and parser combinators themselves. That is, while parser
ideas with a safe language like ML. For this purpose,dbe is a combinators form an (embedded) domain-specific language,
much more appropriate starting point. constructs form a language that is even more domain-specific.

We conclude with an example of another feature to which

Landin’s question applies, but for which we do not yet know the an- 9. Conclusion

swer. ThePunion construct chooses between branches by search- =+

ing for the first one without errors. However, this semantics ignores Ad hoc data is pervasive and valuable: in industry, in medicine, and

situations in which the correct branch in fact has errors. Often, in scientific research. Such data tends to have poor documentation,

this behavior leads to parsing nothing and panicking, rather than to contain various kinds of errors, and to be voluminous. Unlike

parsing the correct branch to the extent possible. The process ofwell-behaved data in standardized relationakmi formats, such

developing a semantics brought this fact to our attention. It now data has little or no tool support, forcing data analysts and scien-

seems clear that we should provide a more roBustion , but we tists to waste valuable time writing brittle custom code, even if all

are not yet sure how best to do so. they want to do is convert their data into a well-behaved format.
To improve the situation, various researchers have developed data
description languages such B&DS, DATASCRIPT, and PACKET-

8. Related Work TYPES Such languages allow analysts to write terse, declarative

To our knowledge, we are the first to attempt to specify a semantics d€scriptions of ad hoc data. A compiler then generates a parser and
for type-based data description languages SUGPAGKETTYPES customized tools. Because these languages are tailored to their do-
DATASCRIPT. O PADS. main, they can provide useful services automatically while a more

Of course, there are other formalisms for defining parsers, most gerller?r! purp_o_fe :cofl' sdu_ch as I(;:]x/yactc EREtﬁanfr.IOtt‘ " ¢ d
famously, regular expressions and context-free grammars. In terms__ " th€ Spirt of Landin, we have taken the nrst steps towar
of recognition power, these formalisms differ from our type the- specifying a semantics for this _class of '3”9“?‘99.5 by defining the
ory in that they have nondeterministic choice, but do not have de- data description calculusbc. This calculus, which is a dependent
pendency or constraints. We have found that dependency and contYP€ theory with a simple set of orthogonal primitives, is expres-
straints are essential for describing the ad hoc data sources we>V€ €nough tol d(le(scrlpe the.tﬁe{ar;[ureslpgtbsf t'?]ATSStCRéPT' a.n(tj.
have studied. Perhaps more importantly, unlike standard theories of ACKETTYPES In k€eping with the Spirit o the data description
context-free grammars, we do not treat our type theory merely as al2nguages, our semantics is transformational: instead of simply rec-
recognizer for a collection of strings. Our type-based descriptions 29Nizing a collection of input strings, we specify how to transform
definebothexternal data formatndrich invariants on the internal ~ (NOS€ Strings into canonical in-memory representations annotated
parsed data structures. This dual interpretation of types lies at the'ith €rror information. Furthermore, we prove that the error infor-
heart of tools such asADS, DATASCRIPT, andPACKETTYPES mation is meaningful, gillowmg analysts to rely on the error sum-

Parsing Expression Gramma(BEGs), studied in the early sey-  mavies rather than having to re-vet the data by hand.

enties [2] and revitalized more recently by Ford [8], evolved from We have alrgady usgd trl‘qe. sh(T.mhantics to i(quentify bugs |fn the im-
context-free grammars but have deterministic, prioritized choice plementation obADS and to highlight areas wheraps sacrifices

like pbC as opposed to nondeterministic choice. Though PEGs safety for speed. In addition, when various biological data sources
have syntactic lookahead operators, they may be parsed in linearM°tivated adding recursion #Ds, we usedbc for design guid-
time through the use of “packrat parsing” techniques [7, 10]. Once ance. After addlpg FECUrsIoRADS can now Qesgr|be the b|o|og|gal
again, the dual interpretation of typesopc as both data descrip- data sources. Finallppc has provided insight into how to design
tions and classifiers for internal representations make our theoryasafe overlay concept.

substantially different from the theory of PEGs.
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A. Host Language
A.1 Well-Formedness Rules

AFook AFo' ok AbFocok Al o ok

At a ok AF o — o' ok AF o x0o’ ok

AkFocok Ako'ok Al ook A+ ook
Ak o+ o' ok A oseqok Ak o error ok

A,aF ook aeA A, ook
AFVaocok AFaok AtF pa.ook

A FT ok
AFTok z¢&dom(I') Al ook

A - ok AFT,z:0 o0k

Mok a¢&domM) M;Thky pot:T
'k ok I'FM,a = pa.t ok

A.2 Typing Rules

Constants are assigned types with the interfBgg and operators with
Bopty- Some example constants and their types are show below.

Beyy(true) = bool  Bety(false) = bool
Bcty(none) = none  Bety(B) = bits
Bety(w) = offset

A F T ok c tAI—Fok I'z)=0
A;TF e Bey(e) ons ATz o var
Bopty(op) =0’ — o A;Tke:o’

A;Top(e):o

Op

ATke:o -0

AT, fio! —wo,x0’ Fe:o AT e o’
y Fun ; App
A;'Ffun fe=e:o' — o A;T'Fee :o

A;TkRe 0/ AT zio'bFe:o
A;T'Fletx=¢€ ine: o

Let

A;TFe:bool A;T'Fer:o A;T'kes:o
A;T'F if e thenej elseez : o

A;Ther:o1 A;TRes:oo . A;THe:op %02

AT F (e1,e2) : o1 *x 02 ar A;TEmie: o

Cond

Proj

A;Tke:o0 AlFo’ ok A;Tke:o! AFook
n
A;TFinle: o+ o’ A;Tkinre:o+ o'

InR

AsTrke:or+o, ATxiopbe o AT,yiorber:o
A;T'Fcaseeof (inlz = ¢ | inry=er): 0

Case

AFT ok Al ook

AT [ :oseq

AFTok A;T'ke;:o (fori=1...n)
A;T - [e1---en]: oseq

Empty

Seq

A;T-e:oseq A;THe' :0seq
A;TFe@e :oseq
A;TFe:oseq A;TFe :int
A;THele’]: o+ unit

Append

Sub

AT Fe:olpa.c/al A;The: pao
Roll Unroll
AT ke pao ATk e:ofpa.o/al

Ao;THv:o (ag FTV(D))
A;T'Fo:Vao
A;TFe:Vao

A;THe:ofo’/a]

Generalize

Instantiate

A.3 Evaluation Rules

Evaluation F
Contexts

— Jop(B) | Ee|vE
| letz=Fine
| if E then e else ey
| (Be)| (0, B) | mi B
| inl F | inr

| case Eof (inlz = e| inrz = ¢')
| [WEe |EQe|v@QE

| el v

We specify the implementation of an operator witfjop, v).

O(op,v) =’ (v=fun fz=¢€)
/ P 7 7 App
op(v) — v v o' = efo/f][v' /2]
Let

let z = v ine < efv/x]

- 7 IfTrue
if true theneelsee — e

IfFalse

if false then e else e’ — ¢’



— Projl ——— Proj2
1 (v,0') — v o (v,v') — '

. - : CaselL
case inl v of (inlx = ¢; | inry = e,) — ¢;[v/x]

. - ; CaseR
case inr v of (inlx = ¢; | inry = e,) — er[v/y]

A d —— E Sub
e = ma o [

0<i<n ubl i>n SubOut
upin u u
[vo...vn—1][i] — inl v, [vo...vp—1][f] — inr ()

L@l Step
Ele] — Ele']

B. Helper Functions
Generic Helpers:

Eof : bits x offset — bool

scanMax : int

funmax (m,n) = if m > nthenmelsen
funposn=3if n=0then O else 1
fun isOk p = pos(p.h.nerr) =0

fun isErr p = pos(p.h.nerr) =1

fun max_ec (ecy,ecy) =
if ec; = fail or ecy = fail then fail
else if ecy = err or ecy = err then err
else ok

Type-Specific Helpers:

fun Runit () = ()
fun Punst w = ((0, ok, (w, w)), ())

fun Rpottom () = none
fun Prottom w = ((1, fail, (w,w)), ()

fun Ry (r1,1r2) = (r1,T2)
fun Hy (h17h2) =
let nerr = pos(hj.nerr) + pos(hz.nerr) in
let ec = max_ec hyj.ec hp.ec in
let sp = (hi.sp.begin, hy.sp.end) in
(nerr, ec, sp)

fun Py (p1,p2) = (Hz(p1-h, p2-h), (p1,p2))

fun Rijest r=inlr

fun Ryright r = inrr

fun H4 h = (pos(h.nerr), h.ec,h.sp)
fun Piiesr p = (Ht p.h,inl p)

fun Pyrigne p = (Hy p.h,inr p)

fun Rg, (r,1’) = (r,1')
fun Hg (b, ho) =
let nerr = pos(hj.nerr) + pos(hz.nerr) in
let ec = max_ec hyj.ec hp.ec in
let sp = (hi.sp.begin, max(h;i.sp.end, hy.sp.end)) in
(nerr, ec, sp)

fun Pg (p1,p2) = (He (p1-h,p2.h), (p1,p2))

fun Reon (¢,r) = if c then inl r else inrr

fun Peon (c,p) =
if ¢ then ((pos(p.h.nerr),p.h.ec,p.h.sp),p)
else ((1 + pos(p.h.nerr),max_ec err p.h.ec,p.h.sp),p)

fun Rseq.init () = (0, [])
fun Pseq,init w= ((O» ok, ("‘)7 w))’ (O’ 07 []))
fun Rseq (r,re) = (r.len + 1,r.elts @ [r])
fun Hgeq (b, hs,he) =
let eerr = if h.neerr = 0 and he.nerr > 0
then 1 else 0 in
let nerr = h.nerr + pos(hs.nerr) + eerr in
let ec = if he.ec = fail then fail
else max_ec h.ec he.ec in
let sp = (h.sp.begin, he.sp.end) in
(nerr, ec, sp)
fun Pseq (P, Ps; Pe) =

(Hseq (P-h, Ps-h, pe-h),
(p.neerr + pos(pe.h.nerr),p.len + 1,p.elts @ [pe]))

fun Rcompute r=r
fun Peompute w = ((0, ok, (w,w)), ())

fun Rapsorb p = if is0k(p) then inl () else inr none
fun Papsors P = (p-b, ()

fun Rscan r = inlr
fun Pgcan (i,p) =
let nerr = pos(i) + pos(p.h.nerr) in
let ec = if nerr = O then ok else err in
let hdr = (nerr, ec, (p.sp.begin — i, p.sp.end)) in
(hdr, in1 (3, p))
fun Rscan err () = inr none
fun Pgcan err w = let hdr = (1, fail, (w,w)) in
(hdr, inr ())

C. CompleteipADS Encoding inDDC

prog |} T prog

tiT plt/a] I T prog p[Prec a.t/a] | T prog
t |} T prog a=t; pl 7 prog Prec a=t; pl 7 prog

tir tl T
C(e) | Cle) Pfun (z:0) =t | Az.7 telre
ti 7 ti 4 7
Pstruct {z1:t1...znitn} Punion {z1:t1...xntn}
Y X1 B Tp—1:Tn—1-Tn 71+ -+ Th + bottom
ti 4 tyr

Palt {z1:t1...znitn} d m&... & Popt t || 7 + unit

tyT

t Pwhere z.e |}
{x:7|if isOk(z.pd) then e else true}

tUT tsep U7s trerm U7t (f = )\X~false)
t Parray (tsep,tterm) { 7seq(scan(7s), f,7¢)

Ty(c) =7

Pcompute e:o |}

compute(e:o) Plit ¢ | scan(absorb({z:7 |z = c}))

tyr
al a Prec a.t | pa.T




