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Abstract
Software testing constitutes a substantial portion of the real
world work of developing software. There has been much
research aimed at partially-automating testing (random test
generation, etc.). However, relatively little of it pays atten-
tion to precise semantics for languages or tests. Algorithms
are described informally as pseudocode, and there is limited
understanding of the relative power of many of the testing
techniques in the literature. We outline a correspondence be-
tween tests and formal language semantics, and argue that
techniques from programming language research are likely
to advance our understanding of existing testing techniques
and help to propose new techniques. We also argue that soft-
ware tests can be a useful aid to formal verification.

1. Overview
Tests are often written on an ad-hoc basis, as short functions
that first set up some initial state (precondition), then per-
form an operation (a test expression), and finally check that
certain properties hold of the resulting value and state (a test
oracle). For Scheme, consider:

(assertEqual (add1 2) 3)

But a test is more than an assertion that a certain value
is produced. A test is in fact a partial specification of the
semantics for some language. The simple test above can be
considered to specify the semantics of the language:

e ::= (add1 2) | v v ::= 2 | 3
TEST1

(add1 2) ⇓ 3

With a richer set of such tests — as operational semantics —
many testing-related properties and tasks take forms well-
known in the language semantics literature. When general-
ized to classes of tests (for example, tests specifying func-
tion behavior over integers in a certain range) this approach
edges close to defining contracts or dependent types, which
have natural uses in program verification.

2. Traditional Testing Tasks Made Precise
A semantic view of testing allows us to use precise defini-
tions for testing tasks and properties of test suites that are
often only informally defined:
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Satisfying Specifications A program satisfies the specifi-
cation encoded in tests if and only if all expressions in the
test-generated language produce the same value under both
the test-defined semantics and normal execution semantics
with the real implementation (possibly with some abstrac-
tion from concrete to abstract values to account for heap
state, etc.). For parameterized tests, selecting concrete inputs
is still necessary [5]; the formal semantics make the satisfac-
tion problem well-defined, but does not improve upon the
current approach of approximating specification satisfaction
by trying carefully selected test inputs.

Inconsistent Tests A test set is inconsistent if the execution
of some expression in the test language does not have a
unique normal form (up to some equivalence class) in the
test-induced semantics.

Redundant Tests A set of tests has redundancy if some ex-
pression in the test language can execute non-deterministically
but produce consistent results. Techniques to find non-
determinism in operational semantics can be applied to re-
duce test suite size.

Test Set Coverage A test set T1 is more expressive than
a test set T2 if the language L1 defined by T1 contains the
language L2 defined by T2 (L1⊇L2).

Test Generation With standard sequencing and composi-
tion rules, larger test languages and test cases can be gener-
ated automatically. For our increment example, adding an-
other test and a composition rule:

TEST2

(add1 3) ⇓ 4
COMPOSE

(f a) ⇓ v1 (g v1) ⇓ v2

(g (f a)) ⇓ v2

We could use a few template rules for sequencing and com-
position to generate the test

GENERATEDTEST1
(add1 (add1 2)) ⇓ 4

This test includes not only a new test expression, but also a
new test oracle that results from the composition of other test
oracles. In a variant with state, the composed oracle could
combine the oracles from a sequence of operations. For
example, the rule for sequencing in a stateful test language
could combine the post-conditions of binary tree operations
(e.g. inserting 2 then 3 yields a tree containing both 2 and 3).



3. Understanding Prior Testing Research
Much work has already been devoted to completing the tasks
in Section 2 using ad-hoc methodologies: a different formal-
ization (if any) in every paper on test generation, oracle gen-
eration, etc. With the type of framework we propose, it be-
comes possible to compare the expressivity of existing work:

Test Generation Different test generation techniques man-
ifest in our framework as different semantic rules for com-
position and sequencing, which in turn result in more or less
expressive or precise semantics. Some intuitively obvious re-
sults that could be precisely stated and proven include things
like:

• The “does not crash” oracle is less precise (will re-
veal fewer, or at least no more, bugs in the real seman-
tics) than oracles checking specific predicates (like well-
formedness of data structures) over results.

• Type-agnostic test generation schemes can generate tests
prohibited by type-directed test generation (which would
additionally require all terms to be well-typed).

Deeper results about classes of bugs a given test generation
approach cannot expose are certainly possible as well.

4. Enabling New Testing Tasks
Checking Adequate Test Coverage Few testing tools give
a way to verify that a test suite covers (specifies) all of the
program behavior a tester intends. The language interpre-
tation of tests offers a way to do so. A tool can compare
a grammar for the expressions whose behavior should be
specified by the test suite to the grammar covered by actual
test cases. If the target coverage grammar permits something
not covered by the test semantics, either the tester specified
too broad a language, or at least one test case is missing.
This ensures the test set specifies some semantics for ev-
ery expression in expected usage, a measure missing from
most testing approaches. This non-standard coverage metric
is valuable because it precisely indicates what program be-
havior is addressed by a test suite with respect to what the
tester believes has been addressed. This complements code-
execution-coverage metrics, which approximate which parts
of the code have been at least lightly checked.

Test Suggestion Using the test-defined language grammar
as the coverage metric, it becomes straightforward to suggest
additional test inputs based on grammar extensions.

5. Integrating Testing and Verification
As others have observed, there is some interplay between
verification and testing [1]. Treating tests as formal seman-
tics relates them even more strongly.

Incremental Verification Once tests are formally specified
as semantics, they provide a stepping stone towards verifica-
tion. Note the similarity between the test:

TEST3
n : Nat

(add1 n) ⇓ n + 1

and one possible dependent (refinement) type for add1:

add1 : Πn : Nat→ {r : Nat|r = n + 1}
The test above can be seen as a proposition that add1 has the
type above. This opens the door for mixing testing with for-
mal verification. Some threshold for (concrete) test passage
for some component may be treated as sufficient evidence to
use a specification in verifying another component. This is
useful for example, if a development team is willing to in-
vest the energy to verify one module but not another, but still
want to integrate some assurance that the unverified module
meets its specification into the verification result.

Effective Dependent Type Inference Postconditions of
tests suggest predicates for use when inferring dependent
types. This offers an inherently incomplete, but possibly
effective approach to inferring precise candidate types for
expressions. The functions testers typically write to check
important properties of results are typically pure, and gen-
erally good candidates for use as predicates in dependent
types. This is similar to the use of specification functions
in Boogie, Code Contracts, and Dafny. In combination with
a well-annotated set of core libraries, it may be possible to
verify that the implementation meets the specification from
some such candidate type.

6. State and Higher-Order Tests
So far we have only given examples of first-order pure-
functional programs. The literature on higher-order con-
tracts [2] suggests semantics that would be useful for spec-
ifying higher-order tests. There is also a significant body of
work on static representation of heaps and data structures
that would be appropriate for use in this context (for exam-
ple, alias types [4]). Some of that work is already in a setting
appropriate to combine with an approach for enriching tests
into dependent types [3]. Integrating tests with such heap
models would allow composition rules to generate much
more precise oracles for composite tests than existing test
generation approaches, which typically consider the absence
of a program crash to be a passing test.
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