A Test-case Design Method
based on Feature Trees

Do Thi Bich Ngoc, Takashi KITAMURA, Hitoshi OHSAKI,
Ling FANG, Shunsuke YATABE

Collaborative Facilities for Verification and Specification
National Institute of Advanced Industrial Science and Technology
do.ngoc@aist.go.jp,t.kitamura@aist.go.jp, ohsaki@ni.aist.go.jp,
fang-lingQaist.go.jp, shunsuke.yatabe®@aist.go.jp

Abstract. This paper proposes a test-case design method for black-box
testing. First, a language for test-case design based on “feature tree” is
provided. Next, a formal semantics of the language is defined as for re-
liability of generated test-cases. Last, we propose and implement a SAT
based algorithm for automated test-case generation, whose correctness
is proved w.r.t. the above-mentioned semantics. Our preliminary exper-
iments show that the method is effective for test-case design in practice
in both aspects of the language design and scalability of the algorithm.

Background

In black-box testing (BBT), test-cases are designed by analyzing the input do-
main of the system under test (SUT) according to its specification. There are
several techniques for designing test-case in BBT, such as analysis techniques
of input parameter (e.g., equivalent partitioning, boundary value analysis) and
combinatorial techniques (e.g., orthogonal arrays, all-pair testing). However, it
lacks techniques to analyze the input domain of SUT in a top-down manner to
achieve an exhaustive analysis.

We are developing a test-case design method for BBT with the three advan-
tages: (1) providing a test-case design language to represent the input domain
of the system as a feature tree, (2) generating test-cases from the feature tree
automatically, (3) analyzing test-case and providing a visualization of test-cases
with the tree diagram.

Test-case design method

Basically, our method provides a diagrammatic language for test-case design
based on feature modeling method [1]. To design test-case, the input domain
is recursively split according to different features, and then represented as an
and-xor tree diagram. A set of test-cases is derived by using a combinatorial
technique based on an interpretation of feature tree. For example, Fig. 1 shows
a test-case design for a computer vision system that recognizes size and shape
of various blocks. To design test-cases for the system, we analyze the input
domain of the system, i.e., “block”. “block” is first split into the two features
“size” and “shape” and labeled and. Next, “size” is split into the two features
“large” and “small” and labeled zor... The test-cases, e.g. (“large”, “scalene”),
are derived through the combination of features such that for zor-feature, only
one sub-feature is considered.



/A\ xor
/\ and

G G
---------
-

I
: ,

Fig. 1. Example of feature tree and test-cases

To get rid of non-sense test-cases, and-xor tree is extended by adding two
kinds of cross-tree operators, i.e., req(require) and mez(mutual exclude). For
example, assume that “there is no block whose size is small and shape is circle”
is given as a specification of SUT. The mez operator drawn between “small”
and “circle” in Fig. 1 expresses the situation, excluding their combinations.

We develop a formal semantics of language as a basis for the reliability of
the method. The semantics is defined in terms of a set of test-cases. It defines
a set of test-cases derived from a feature tree in a unique way, preventing its
misinterpretation and ambiguity which often cause faulty development.

We design and implement a fully-automated test-case generation algorithm.
It encodes a feature tree into propositional formulas, and a set of test-cases is
generated by finding all the satisfying assignments of the formulas using a SAT
solver. The advantage of the algorithm is that propositional formulas can be
solved efficiently by SAT solvers recently. Besides, SAT-encoding of feature trees
is straightforward regarding the developed semantics, and hence correctness (i.e.,
soundness and completeness) of the algorithm w.r.t. the semantics can be easily
proved.

Our preliminary experiments on designing test-cases of real-time OS show
that the compact language is expressive enough for the test-case design purpose
in practice.

Conclusion

A test-case design method is proposed based on feature modeling method. In
practical point of view, the method has several advantages. First, visualization
of test-case design with tree diagrams functions as evidence media for show-
ing the correctness of SUT. Second, a top-down analysis of input-domain with
tree structure can often help us design exhaustive set of test-cases. Third, au-
tomated test-cases analysis function can reduce the cost of test-cases preparing
and managing. Last, by developing a formal semantics and proving correctness
of the algorithm, we guarantee the reliability which is essential to such a quality
assurance method.

References

1. K. C. Kang et. al. Feature-oriented domain analysis (foda) feasibility study. Tech-
nical report, Carnegie-Mellon University Software Engineering Institute, 1990.



