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 Lazy, functional languages excel at the direct representation of recursively defined 
values. Not only can we map expressions to equations corresponding to their value, but many 
mathematical equations, including those involving discrete recurrence relations, can be directly 
mapped to expressions. This is precisely what makes the infinite Fibonacci sequence such a 
compelling "Hello World" for Haskell. But when one moves from discrete to continuous 
equations, the picture is less rosy. There is no straightforward way (outside of the purely 
syntactic) to even represent the differential equations describing the exponential function (f(x) = 
f’(x), f(0) = 1), much less anything more interesting. Not only would we like to make it easier for 
engineers and scientists to code with differential equations directly, but a mechanism for dealing 
with first-class continuous functions would also be directly applicable to a number of current 
fields of interest for computer science, including computer graphics, constraint-based 
programming, and functional reactive programming. 
 
 One possible approach to this problem is through the use of lazy splines—streams 
composed of lists of polynomials (described through their coefficients) and their durations. 
These can provide arbitrarily accurate approximations to a wide range of functions. As long as 
they depend only on prior and not current values, recursively defined functions may be defined 
directly. This makes it immediately possible to describe delay differential equations, which arise 
in a range of modeling and simulation problems. When we then introduce a method of forward 
extrapolation, ordinary differential equations may be handled as well. In fact, it transpires that 
this method loosely corresponds to a standard method for numerical solution to differential 
equations—the forward (or explicit) Adams method [1]. The addition of additional combinators 
to control the flow of information in turn yields a loose analogue to the Runge-Kutta family of 
solvers. This approach bridges an important gap–at once more symbolic and straightforward to 
reason about than heavy-duty packages typically implemented in languages such as Fortran, and 
more numeric and hence general-purpose than approaches relying solely on symbolic 
manipulation. Although less powerful than Automatic Differentiation (because more 
approximate), this technique can nonetheless be said to do for ordinary differential equations 
roughly what AD does for pure differentiation—shifting the terrain from implementing math to 
representing executable math. 
 
 The presentation will provide a brief discussion of differential equations (as Computer 
Scientists are more accustomed to differentiating data structures than standard mathematical 
functions), and, using the above equations for the exponential function and the equations for a 
simple spring-mass system [2] as running examples, demonstrate how the lazy spline approach 
arises naturally from attempting to represent ordinary differential equations, and from the 
fundamental theorem of calculus.  
 
 The lazy spline approach lends itself to many possibilities for future work. Areas of work 
include generalizations to multivariate and partial differential equations, formalizing error 
bounds in approximations, abstracting an approach to implicit methods, and developing 
mechanisms to encode appropriate invariants about differential equations at the type level. 
 



 Haskell code demonstrating the lazy spline approach, developed by myself and Jeff 
Polakow, may be found on Hackage [3]. Additionally, a presentation on this topic was given to 
Lisp-NYC in November 2009, for which video and code/slides are also available [4].  
 
 
[1] http://en.wikipedia.org/wiki/Linear_multistep_method#Multistep_Method_Families 
[2] http://en.wikipedia.org/wiki/Harmonic_oscillator#Spring.E2.80.93mass_system 
[3] http://hackage.haskell.org/package/lazysplines 
[4] http://www.lispnyc.org/meetings 


