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Computation and Physics. One of the major
achievements of Computer Science has been the de-
velopment of abstract models of computation that
shield the discipline from the underlying technology.
As effective as these models have been, one must note,
however, that they embody several implicit physical
assumptions. As Toffoli explains:

Mathematical models of computation are ab-
stract constructions, by their nature unfettered
by physical laws. However, if these models are
to give indications that are relevant to concrete
computing, they must somehow capture, albeit
in a selective and stylized way, certain general
physical restrictions to which all concrete com-
puting processes are subjected [11].

More specifically, Toffoli and Fredkin [5] argue that
at the core of Turing’s arguments for the universal-
ity of his machine are the following physical assump-
tions: (i) the speed of propagation of information is
bounded; (ii) the amount of information which can be
encoded in the state of a finite system is bounded; and
(iii) it is possible to construct physical devices which
perform in a recognizable and reliable way the logical
functions and, not, and fanout. They then argue
that some other principles, such as the reversibility
of all physical laws, are not reflected in current mod-
els of computation.

An even more fundamental issue with the Tur-
ing machine abstraction is that it embodies classical
Physics. As Deutsch notes:

Turing hoped that his abstracted-paper-tape
model was so simple, so transparent and well
defined, that it would not depend on any as-
sumptions about physics that could conceivably
be falsified, and therefore that it could become
the basis of an abstract theory of computation
that was independent of the underlying physics.
‘He thought,’ as Feynman once put it, ‘that
he understood paper.’ But he was mistaken.
Real, quantum-mechanical paper is wildly dif-
ferent from the abstract stuff that the Turing
machine uses. The Turing machine is entirely
classical, and does not allow for the possibility
the paper might have different symbols written
on it in different universes, and that those might
interfere with one another [3, p.252].

Dually, on the other side of the Curry-Howard iso-
morphism, we find arguments that logical systems

also embody some laws of Physics. In particular, clas-
sical logic is based on the assumption that the truth
of a statement is absolute and independent of any
reasoning, understanding, or action, and hence that
statements are either true or false with no regard to
any observer. This absolute view of truth has been
critiqued for centuries by philosophers and other sci-
entists. In fact, one might argue that the intuition-
istic view that the only truths are those that can be
communicated with finite evidence is what led to the
birth of Computer Science. More recently, Girard
motivates linear logic by stating that it embodies a
simple and radical change of viewpoint from other
logics and that this change has a physical flavor [6,
pp. 6,17]. In fact, Girard clearly argues that the
physical laws should guide our conception of logic:

In other terms, what is so good in logic that
quantum physics should obey? Can’t we imag-
ine that our conceptions about logic are wrong,
so wrong that they are unable to cope with the
quantum miracle? [. . . ] Instead of teaching
logic to nature, it is more reasonable to learn
from her. Instead of interpreting quantum into
logic, we shall interpret logic into quantum [7].

New Foundations. As argued above, the “beaten
track” of programming language research embodies
an idealized, classical, and deterministic worldview
that only approximates physical reality. We argue
that this approach is fundamentally limiting when
dealing with modern applications and problem do-
mains and that, as Milner said in a different con-
text [10], this state of affairs “requires a fresh approach,

not merely an extension of the repertoire of [current] en-

tities and constructions.”

For concreteness, we propose that the following
four physical principles provide a principled approach
to the next phase in programming language research:

• Information is physical: it is encoded, processed,
stored, and transmitted by physical means.

• Isolated (closed) physical systems evolve in a uni-
tary way which is both reversible and preserves
“distances.”

• Observing the properties of a physical system
requires an interaction which may, probabilisti-
cally, disturb the properties of interest.
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• A large number of interacting physical systems
evolves concurrently, speculatively, and proba-
bilistically.

Translated to a computational language, these prin-
ciples suggest the following:

• our notion of data should take locality into ac-
count;

• our core programming calculi should be re-
versible and should preserve locality;

• observation of runtime properties should be an
integral part of the execution model; and

• higher-level abstractions should explicitly em-
brace speculative concurrency, nondeterminism,
and other irreversible computational effects.

In more detail, being reversible at the lowest level of
abstraction implies that — at that level —, all com-
putational effects are accounted for, even those that
are related to energy or information [9]. This explicit
treatment of information effects could provide the
conceptual framework for reasoning about security
attacks that currently occur “under our abstraction
level” (e.g. by analyzing energy signatures) as well as
the optimization of energy resources. Furthermore,
by taking locality of data into account, i.e., by asso-
ciating a metric space with our data, several problem
domains (continuity analysis of programs [2], differ-
ential privacy [4], etc.) could become consequences of
the fact that physical computation must preserve dis-
tances. Finally, as Baker argued years ago [1], specu-
lative concurrency of closed systems would be trivial.

Embracing nondeterminism and other irreversible
computational effects at higher-level of abstractions
(open and large scale systems) is consistent with the
pragmatic observations that computation changes in
qualitative ways at large scales. For example, as
the Google experiments show, when one is dealing
with petabytes of data, implementing even mundane
sequential algorithms like sorting becomes a chal-
lenge. Specifically, at large distributed scales, hard-
ware component failure becomes the norm rather
than the exception [12]; determinism and consis-
tency become so expensive and impractical to main-
tain that nondeterminism and “eventual consistency”
are often accepted [13]; global synchronization be-
comes impossible which makes distributed (specula-
tive) algorithms intricate to write and hard to rea-
son about [8]. Building such applications starting
with abstract models that are fundamentally deter-
ministic with layers and layers of ad hoc exceptions

is certainly not ideal. Much more appealing is a com-
putational model that, from the outset, admits that
preconditions and invariants can generally only be
approximately verified, that computations can gen-
erally only produce probabilistic outcomes, and that
consistency can only “eventually” be achieved.

Finally, we note that the physical approach we
advocate integrates well with emerging “unconven-
tional” models of computations such as quantum
computation and biologically or chemically inspired
models of computation and generally makes program-
ming languages “at home” in the universe we live in,
able to express computations that interact with all
aspects of the “real world.” Such physically-inspired
programming languages could eventually provide the
conceptual framework for many of the themes stated
in a recent NSF program: “to exploit computation as
a means of achieving deeper understanding in the nat-
ural and social sciences and engineering; to simulate
and predict complex stochastic or chaotic systems;
to explore and model nature’s interactions, connec-
tions, complex relations, and interdependencies, scal-
ing from sub-particles to galactic, from subcellular to
biosphere, and from the individual to the societal.”
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