Language support for efficient computation over encrypted data

Meelap Shah, Emily Stark, Raluca Ada Popa, and Nickolai Zeldovich
MIT CSAIL

1 PROBLEM

Many applications today store and operate on sensitive
data. For example, Facebook keeps users’ profile data
and posts, Gmail stores users’ emails, Amazon Silk ob-
serves user browsing patterns, and analytics pipelines
operate on logs of user behavior. Moreover, applications
are increasingly using third parties such as Amazon EC2
and S3 to provide computing and storage infrastructure,
with the result that users’ data is stored and operated
on by third party servers. This forces end users to trust
these third parties to not misuse their data, in addition
to trusting the original application. Even if all these par-
ties are benign, this increases the trusted computing base
(TCB), and attackers can compromise just one of these
services to gain illicit access to users’ data. We would
like to minimize the TCB and provide data confidential-
ity guarantees while allowing sensitive data to be sent
into untrusted environments.

2 APPROACH

We propose solving the general problem of running com-
putations over sensitive data in an untrusted environment
using a combination of cryptography and automatic pro-
gram partitioning. Advances in cryptographic schemes,
such as fully homomorphic encryption [3], allow arbi-
trary computations on encrypted data while leaking no
information to the server. Unfortunately, computations
using fully homomorphic encryption are orders of mag-
nitude slower than computations over plaintext data.

Another approach is to focus on specialized encryp-
tion schemes that efficiently enable specific computa-
tions over encrypted data, and in some cases leaking
a limited amount of information to the server. For ex-
ample, CryptDB [5] showed how most computations
supported by SQL database queries can be performed
over encrypted data: deterministic encryption schemes
allow equality checks, homomorphic schemes allow ad-
ditions [4], and order preserving schemes allow compar-
isons [1]. Each of these schemes offers different levels of
confidentiality—the ability to perform some operations
on ciphertext usually comes at the cost of leaking some
number of bits about the ciphertext, such as a few high
bits for an order-preserving scheme—but never reveals
enough information to recover the plaintext. To reveal as
little information to the server as possible, it is important
to use the most secure scheme that supports all of the
necessary operations.

We wish to extend this idea so that application logic
can also be made to execute over ciphertext. Since not all
operations that applications perform will be supported by
some encryption scheme, we will partition the program
into two components. The first will consist purely of
operations that we know how to run over ciphertexts,
and can run on an untrusted server, and the second will
consist of all remaining operations, and must run on a
trusted system (such as the user’s machine). The trusted
partition will encrypt any data it sends to the untrusted
partition, decrypt any results it receives back, and will
not divulge the decryption keys. In practice, we expect
that the application developer or administrator would
indicate which pieces of data managed by an application
are sensitive, and only encrypt those.

3 CHALLENGES

Program partitioning has been well studied, and we plan
to use similar techniques [2, 6], but we must address
several questions to prove our approach is feasible.

e How should we encrypt arguments to functions?

e When should we re-encrypt values (to perform differ-
ent operations), and how to minimize re-encryption?

e How should we interact with remote objects?
e What applications are a good fit for these techniques?

We believe that with programming language support
and program analysis, we may be able to build a tool to
answer such questions for partitioning programs.

3.1 Intra-function Analysis

Given a program, our tool first determines what oper-
ations each function performs on each sensitive value.
Next, our tool checks whether this set of operations is
supported by any of the encryption schemes that it knows
about. If so, that function can execute over encryptions
of that sensitive value (in some cases, this may require
changing the function, such as replacing the + operator
with homomorphic addition). If our tool determines that
all sensitive arguments to a function can be encrypted, the
tool generates a wrapper for that function in the trusted
partition, which first encrypts all arguments with the
appropriate encryption schemes, and then executes that
function on the untrusted partition over ciphertexts.

We believe that functional programming languages,
such as Haskell, are a good fit for this kind of analysis,



since we can use the type system to express the computa-
tions supported by each encryption system, and use type
inference to decide what computations can be performed
over ciphertexts. In particular, we can define a type
class for each class of computation that we know how
to perform over encrypted data (corresponding to an en-
cryption scheme). For example, Haskell’s Eq type class
would correspond to deterministic encryption, which al-
lows equality comparisons, and Haskell’s Ord type class
would correspond to order-preserving encryption, which
allows order comparisons. We would similarly define
additional type classes to capture the sets of operations
that we can support on other types of ciphertexts.

When some operation is performed on a value, the
compiler infers that the value’s type must be an instance
of the corresponding type class. By enumerating all type
classes to which a value’s type must belong, the compiler
will tell us exactly the set of operations performed on
that value. Our tool does this type class inference for the
sensitive inputs to each function, and if it recognizes an
encryption scheme that supports all operations, it can en-
crypt that value. Successfully recognizing an encryption
scheme for every sensitive input allows us to execute that
function in the untrusted partition over ciphertexts.

Although Haskell’s type classes provide a nice way
to represent classes of computation, not all operations
over ciphertexts that we would like to support can be
represented this way. For example, there exist encryption
schemes that support keyword search, but it is difficult
to statically determine whether a piece of code is doing a
search. One option is to ask the developer to use a special-
ized search function; another option is to explore analysis
techniques for matching computation patterns to opera-
tions allowed by specialized cryptographic schemes.

3.2 Inter-function Analysis

As control flow passes between different functions, we
may need to re-encrypt values under different schemes
to support different sets of operations. For example, con-
sider a simple application with two functions: insert
adds a value to a list and returns the new list; find
checks whether a given key is in the list. Since we prefer
to use the strongest encryption scheme that supports the
required operations, we would use a randomized scheme
for insert and a deterministic scheme for find.

If both insert and find execute in the untrusted
partition, we would need to pay a round trip back to the
trusted partition to re-encrypt the output of insert so
that it can be used as an input to £ind. However, if we
construct a data flow graph, we may realize that we can
use deterministic encryption for insert to save round
trips. We would like to perform this type of data flow
analysis statically so that we know how to encrypt values
before remotely invoking a function.

3.3 Local Representation of Remote Objects

We would like to minimize the amount of data sent be-
tween the partitions. Consider the simple list application
from above. In a naive implementation, the entire list is
transferred every time the trusted partition calls the un-
trusted partition to compute the result of either function.
We would instead like the list to remain in the untrusted
partition and return a proxy object to the trusted part. The
actual object should be transferred to the trusted partition
only when required. Moreover, the proxy object should
appear to have the same type as the actual object so that
it can be used transparently. This could be done with
the help of programmer annotations, or using analysis
techniques [2, 6].

4 CURRENT PROTOTYPE

Our current prototype in Haskell begins to solve some
of the challenges from §3. Currently we require the
programmer to annotate all functions that should run
in the untrusted partition. Given these annotations and
a target module to split, our system first infers which
inputs to the annotated functions are encryptable, and
then generates RPC and encryption wrappers for them.

Rather than requiring the programmer to specify a
partitioning and having our tool make a best effort at
encrypting all data seen by these functions, we would in-
stead like the programmer to simply specify which pieces
of data are sensitive. Our tool should then determine a
partitioning so that these data are always encryptable
before being sent to the untrusted partition.

Once we have a more complete prototype, we hope to
analyze existing applications to find classes of programs
that are a good fit for the proposed techniques. As one
example, we hope that simple web applications perform
little complex processing and mostly move data around.

REFERENCES

[1] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-
preserving symmetric encryption. In EUROCRYPT, April
2009.

[2] S.Chong,]J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng. Secure web applications via automatic
partitioning. In SOSP, October 2007.

[3] C. Gentry. Fully homomorphic encryption using ideal
lattices. In STOC, May—June 2009.

[4] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In EUROCRYPT, May 1999.

[5] R. A.Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakr-
ishnan. CryptDB: Protecting confidentiality with encrypted
query processing. In SOSP, October 2011.

[6] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers.
Untrusted hosts and confidentiality: Secure program parti-
tioning. In SOSP, October 2001.



