
As XDuce is to XML, so ? is to RDF
Programming Languages for the Semantic Web

Alan Jeffrey Peter F. Patel-Schneider
Alcatel-Lucent Bell Labs

{ajeffrey,pfps}@bell-labs.com

Abstract. In this position paper, we briefly introduce the founda-
tions of the Semantic Web for a programming languages research
audience, summarize recent work by the authors on validation, and
discuss issues in programming languages for the Semantic Web.

Introduction
The Semantic Web. The aim of the Semantic Web is to pro-
vide machine-readable representations of information which sup-
port mechanized reasoning. These representations describe a la-
beled graph of entities and their relationships, serialized in a format
compatible with the Resource Description Framework (RDF) [9].

Entities in an RDF graph are named using URIs. A common
case of RDF is Linked Data [3], where the entity names are
HTTP URIs which respond to a GET request with an authoritative
RDF representation. Such hyperlinked datasets form dependency
graphs such as Figure 1. For example, a GET on Bob’s home page
bob: (using abbreviations such as bob: for URI prefixes such as
http://example.com/bob#) might return HTML:

<html><head><base href="bob:"/></head>
<body rel="foaf:primaryTopic" resource="bob:me">
<p rel="foaf:knows">

I know <a rev="foaf:primaryTopic"
href="alice:">Alice.</p></body></html>

As well as the human-readable text, this page contains RDFa anno-
tations, from which an RDF-aware robot can extract the graph:

bob: bob:me

alice:

primaryTopic

knows

primaryTopic

that is, “Bob’s home page describes Bob, who knows someone who
is described by Alice’s home page.” Now, if the same robot visits
Alice’s home page, and extracts the graph:

alice: alice:me
primaryTopic

then a reasoner can deduce “Bob knows Alice”:

bob: bob:me

alice:

alice:me
primaryTopic

knows

primaryTopic

primaryTopicsameAs

knows

These deductions are supported by an ontology defined in a lan-
guage such as the W3C Web Ontology Language (OWL) [5], whose
building blocks are ones familiar to a programming languages au-
dience, including classes, subclasses, and types and arities of rela-
tionships.

Figure 1. Linking Open Data cloud diagram (detail)

Programming languages for XML. Starting in 2001, there was a
burst of interest in specialized languages for processing XML data,
notably XDuce [6] and CDuce [2]. These languages have many
features in common, notably:

• they are strongly typed functional languages,
• they include schemas such as DTDs or XML Schemas in their

type systems, with subtyping for language inclusion, and
• given valid input (with respect to a schema), well-typed pro-

grams produce valid output.

Programming languages for RDF? At first glance, RDF seems
that it should be a more natural fit for a programming language than
XML, since its concerns (entities, relationships, classes and sub-
classes) appear to be a more natural fit than those of XML (nodes,
children, schemas, regular languages, and language inclusion). In-
deed, such a language might help alleviate the impedance mismatch
between XML and OO languages, which results in complex serial-
ization frameworks such as JAXB.

However, there are some features of ontology languages which
mean that there are some research challenges in designing an RDF-
aware programming language:

• Rich type system: ontology languages typically have a very rich
language of type expressions, including intersection and union
types, type recursion, and modal types (discussed below).

• Classical foundations: the logical foundations of programming
languages are typically constructive, given by a Curry–Howard
isomorphism. In contrast, ontology languages are typically clas-
sical, and include features such as type negation and excluded
middle (every object is a member of the type T t ¬T).

• Arbitrary subtype constraints: in most programming languages,
subtype constraints are of a limited form, for example Java only
supports subtypes of the form c〈 ~X〉 v d〈~T 〉. In contrast, ontol-
ogy languages allow subtype constraints T v U for arbitrarily
complex type expressions T and U .

• Incomplete information: in OO languages, there is a canonical
source of information about an object, which is the object itself.

1 2011/12/12

Description Logic Hennessy-Milner Logic
Concept Proposition

Concept name Atomic proposition
Role name Action

Interpretation
{

Labeled transition system
Kripke structure

Figure 2. Description Logic cheat-sheet

In contrast, RDF allows assertions of new relationships about
existing entities. For example, Bob’s home page might assert
that Alice’s name is “Alice”, even though Bob is not authorita-
tive for Alice.

• Data validation: in the XML case, the safety condition is clear
– valid input should result in valid output. Data validity for
ontologies is an area of current research, so it is not clear what
the victory conditions are, never mind how to achieve them.

• Nominal data: in languages such as XDuce, trees are im-
mutable, so node identity is unimportant. In contrast, RDF data
forms a graph in which node identity is important. As a result,
languages for processing RDF must be aware of entity names,
and must be at least as powerful as the ν-calculus [10].

Towards a programming language for RDF
Description logics. The formal basis of ontology languages is
description logic (DL) [1], which is strongly related to modal logic.
A simple but illustrative DL is ALCF , where concepts are defined
by grammar (where r and c are drawn from sets of atomic role
names Rol and concept names Con):

C ::= c | ¬C | ⊥ | C1 u C2 | ∀r . C | ≤1 r

This logic (up to syntax) is an extension of Hennessy–Milner Logic
(HML) [4] with a uniqueness modality ≤1 r. An interpretation is
a labeled transition systems with Kripke structure, that is a triple
(S,→, L) for→ ⊆ (S×Rol×S) andL ⊆ (S×Con). Satisfaction
is defined as usual for HML, but with one new clause:

M, s � ≤1 r whenever s r−→ t and s r−→ u implies t = u

A summary of the correspondence between DL and HML is given
in Figure 2. Note that DLs are classical, so De Morgan duality
characterizes properties such as sub-concept (C v D whenever
¬(C u ¬D). In RDF, concepts are used as types for entities,
for example the type for Bob’s home page is Document, which
satisfies Document v ≤1 primaryTopic.

“Just” data. The simplest case of a program for RDF is a function
which immediately returns an RDF graph. This is equivalent to an
RDF graph with free variables, or (by analogy to module systems)
an RDF graph which distinguishes between imported and exported
entities. In a recent paper [8], we investigated validity for such par-
titioned RDF graphs. For example, Bob’s home page validates with
imports (alice: : Document) and exports (bob: : Document).

Models for programming languages are often categorical in na-
ture, so we hope to find categorical structure in the data language.
In the case of partitioned RDF graphs, they form a symmetric
monoidal category, where the objects are RDF graphs (thought of
as interfaces) and the morphisms from A to B are validated RDF
graphs which import A and export B. The category is only sym-
metric monoidal, not cartesian, for the usual reason in languages
which include name generation (generating a name then copying it
is not the same as generating two names).

Since the category is symmetric monoidal, it supports a dia-
grammatic presentation (see, for example [11]), and so provides
a formal basis for dependency graphs such as Figure 1.

First order programming. There are first-order languages for
querying RDF, notably the SPARQL query language. Such lan-
guages are not intended as general purpose programming lan-
guages, so only provide limited support for features such as branch-
ing and recursive functions. They do not support static typing to
ensure validity of generated RDF.

A general-purpose first-order programming language for RDF
could be a first-order lambda-calculus extended with records and
name generation [10]. A first cut type system would just add DL
concepts as base types to the simply typed λ-calculus, and inherit
subtyping from concept inclusion. Such a type system would use
an algorithm for determining concept inclusion in the base case,
but would otherwise be structural. The type system would still be
non-trivial, for reasons discussed in the introduction.

Categorically, we would expect to see an extension of the cat-
egory of RDF graphs to support coproducts (for branching) and a
form of partial trace (for recursion).

Higher order programming. In the higher-order case, the mix of
RDF and functions becomes more interesting, with the possibility
of supporting objects with methods as well as fields. The type sys-
tem for such a language could be based on semantic subtyping [2],
and so would no longer have a concept inclusion algorithm as an
isolated component. Since the categorical model of RDF is sym-
metric monoidal (with a cartesian center), we expect that the model
for higher order programming would be monoidal closed (with a
cartesian closed center).

Implementation. We have mechanized a description logic and its
semantics in Agda, and used it to prove the categorical structure
of partitioned RDF [7]. It may be that such a mechanization could
form the basis of a semantic web library, using Agda’s dependent
types to embed subtyping, rather than having to define a new
domain-specific language.

References
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-

Schneider, editors. The Description Logic Handbook. Cambridge
University Press, 2nd edition, 2007.

[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric
general-purpose language. In Proc. ACM Int. Conf. Functional Pro-
gramming, 2003.

[3] T. Berners-Lee. Linked data, 2006. http://www.w3.org/
DesignIssues/LinkedData.html.

[4] M. C. B. Hennessy and R. Milner. Algebraic laws for non-determinism
and concurrency. J. ACM, 32(1):137–161, 1985.

[5] P. Hitzler, M. Krötzsch, B. Parsia, P.F. Patel-Schneider, and
S. Rudolph. OWL 2 web ontology language primer. W3C Recom-
mendation, 2009. http://www.w3.org/TR/owl2-primer/.

[6] H. Hosoya and B.C. Pierce. Regular expression pattern matching for
XML. J. Functional Programming, 13(6):961–1004, 2002.

[7] A. S. A. Jeffrey. Agda libraries for the semantic web. https:
//github.com/agda/agda-web-semantic/, 2011.

[8] A.S.A. Jeffrey and P.F. Patel-Schneider. Integrity constraints for linked
data. In Proc. Int. Workshop on Description Logics, 2011.

[9] F. Manola and E. Miller. RDF primer. W3C Recommendation, 2004.
http://www.w3.org/TR/rdf-primer/.

[10] A. M. Pitts and I. Stark. Observable properties of higher order func-
tions that dynamically create local names, or: What’s new? In Proc.
Math. Foundations of Computer Science, pages 122–141, 1993.

[11] P. Selinger. A survey of graphical languages for monoidal categories.
In B. Coecke, editor, New Structures for Physics, volume 813 of
Lecture Notes in Physics, chapter 4, pages 289–356. Springer, 2011.

2 2011/12/12

