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Abstract phisticated MCMC mechanism, these languages take longer

In recent years, declarative programming languages dpecia to train on hand-written samplers using naive methods.

ized for probabilistic modeling has emerged as distind<la
of languages. These languages are predominantly written by3' Relevance

researchers in the machine learning field and concentrate onThis is important as languages significantly slower than
generalized MCMC inference algorithm. Unfortunately, all hand-written models will not be used. As the models can't
these languages are too slow for practical adoption. In my be tested with a dataset of realistic size, it isn’t even ipess
talk, | will outline several places where compiler optimiza to use them for prototyping. This has the nasty and invisible
tions could improve these languages and make them moreside-effect that artificially simple models are favoredteesyt
usable in an industrial setting. are the only ones that are testable.

1. Introduction 4. Possible Solution

Probabilistic programming languages are a domain-specificA large degree of the ineffiencies come from lack of com-
language for probabilistic modeling. They enable fitting piler optimizations. Only recently was BLOGJ2] to use data
models to data using a generative model. A generative structures and inference directly from C. Church is written
model[5] is a probabilistic story for how the observed data in an interpretted implementation of Scheme.

was generated from unobserved variables. As an example,
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