
Cryptographic Path Hardening: Hiding
Vulnerabilities in Software through Cryptography

Vijay Ganesh Michael Carbin Martin C. Rinard
Massachusetts Institute of Technology

{vganesh, mcarbin, rinard}@csail.mit.edu

Abstract
We propose a novel approach to improving software security called
Cryptographic Path Hardening, which is aimed athiding security
vulnerabilities in software from attackers through the use of prov-
ably secure and obfuscated cryptographic devices [5] toharden
paths in programs.

By “harden” we mean that certain error-checkingif-conditionals
in a given programP are replaced by equivalent obfuscatedif-
conditionals in an obfuscated version ofP. By “hiding vulnera-
bilities” we mean that adversaries cannot use semi-automatic pro-
gram analysis techniques to reason about thehardened program
paths and thus cannot discover as-yet-unknown errors along those
paths, except perhaps through black-box dictionary attacks or ran-
dom testing (which we can never prevent). Other than these unpre-
ventable attack methods, we can make program analysis aimed at
error-findingprovably hard for a resource-bounded attacker, in the
same sense that cryptographic schemes are hard to break. We want
to point out that Cryptographic Path Hardening is not security-
through-obscurity, because we use provably-secure crypto devices
to hide errors and our mathematical arguments of security are the
same as the standard ones used in cryptography.

One application of Cryptographic Path Hardening is that soft-
ware patches or filters often reveal enough information to an at-
tacker that they can be used to construct error-revealing inputs to
exploit an unpatched version of the program [3]. Byhardening the
patch we make it difficult for the attacker to analyze the patched
program to construct error-revealing inputs, and thus prevent him
from potentially constructing exploits.

1. Cryptographic Path Hardening
In Cryptographic Path Hardening we adopt the approach that one
effective strategy for dealing with security vulnerabilities is to make
finding errors along hardened paths in a program as computation-
ally difficult as breaking some very strong cryptographic assump-
tion, such as the hardness of the discrete log problem or factoriza-
tion of large composite numbers whose factors are large primes.
We propose that we can achieve such guarantees by developing a
Cryptographic Path Hardener.

A Cryptographic Path Hardener takes as input a program P,
and uses provably-secure obfuscations, or generalizations thereof,
to synthesize a path hardened programH(P) such thatH(P) has
the following properties:

1. Correctness: H(P) displays the same behavior as P on all
inputs with very high probability

2. Polynomial Slowdown: It is efficient to compileP into H(P),
and also to runH(P) on any input.

3. Security: Parts ofH(P), such as certain kinds of conditionals,
are obfuscated in a provably-secure manner. As a consequence,

program analysis ofH(P) aimed at constructing error-revealing
inputs along hardened paths isprovably hard, in the same sense
that cryptographic schemes are hard to break.

A Cryptographic Path Hardener can synthesizeH(P) by iden-
tifying classes of conditionals that can be re-implemented with
off-the-shelf provably obfuscated components. For example, the if-
conditionalif (x == a) can be reimplemented with an obfus-
cated hash function [4], yielding anH(P) that compares the hash
of x with the pre-computed hash ofa.

2. Case Study
A recent, high-profile vulnerability in PHP illustrates how a Cryp-
tographic Path Hardener could be used to quickly develop a hard-
ened input filter that can be distributed to protect an application and
that, at the same, does not reveal what type of input can exploit the
application.

PHP 5.3.3 contains a vulnerability that can lead to denial-of-
service attacks on servers running web services implemented in
PHP [1]. The vulnerability is in PHP’s routine for converting the
string representation of a decimal number into a floating point
value. In particular, the routine computes the floating point value
via an iterative approximation algorithm; the algorithm terminates
when it reaches the floating point value that is nearest to the decimal
value of the string.

Due to the semantic differences between 80-bit extended pre-
cision floating point registers and 64-bit IEEE doubles on 32-bit
x86 architectures, this computation does not terminate when given
a string that represents the decimal number 2.2250738585072011e-
308. Therefore, if a malicious user passes such an input string to a
vulnerable server, then the PHP process will loop infinitely, con-
suming 100% of the available CPU resources.

PHP’s developers eventually resolved this issue with a source
patch, but before the development of this resolution, some system
administrators publicly identified that they could quickly and effec-
tively block the attack with an input filter to their application that
rejected any web service request that contained the 128-bit sub-
string “2250738585072011” [2]. An astute attacker could use this
information to exploit the unpatched versions of PHP, before the
developers could release and fully deploy a source patch.

A Hardened Filter. A Cryptographic Path Hardener can syn-
thesize a hardened filter for this vulnerability that satisfies our def-
initions by using one of a number of strong hash functions (e.g.,
an obfuscated hash function [4], or SHA-256). Given such a hash
function—which we denote byhash—we can construct a filter by
pre-computing the hash of the string “2250738585072011”; let us
denote this value bys_hash. Givens_hash, we can then imple-
ment the substring check with a function that tests if each 16-byte
substring of the input matchess_hash:



bool input_matches(string input) {

for (int i = 0; i < length(input); ++i) {

string str = input.substring(i, 16);

if (hash(str) == s_hash)

return true;

}

return false;

}

This simple implementation satisfies each of three properties of
a path hardened program:

Correctness. The implementation is correct with very high prob-
ability. There are two ways in which the implementation could be
incorrect: it could report that the input string contains the malicious
substring when it does not (a false positive), or it could report that
the input string does not contain the malicious substring when it
does (a false negative). The second case does not occur when the
hash function is deterministic. The first case occurs with the same
probability that there is a collision in the selected hash function.
However, by selecting an appropriate hash function and hash out-
put length, we can make this probability very small or zero.

Polynomial Slowdown. The implementation satisfies the polyno-
mial slowdown requirement of our definition. Both an unhardened
implementation and the hardened implementation of this filter run
in time linear in the length of the input string. However, the hard-
ened implementation will be some constant factor slower than an
efficient unhardened implementation because of the use of a hash
function rather than a simple bit-wise equivalence test.

Security. The implementation is also secure in that an attacker
cannot determine the malicious substring without inverting the hash
function or guessing the 128-bit substring.

2.1 Another Example

Another simple generalization of the above application of Crypto-
graphic Path Hardening is to harden patches or filters where the fil-
ter checks inputs against asmall set or range of values (a <= x <=
b). Heresmall refers to the fact that the number of error-triggering
values checked by the filter is much smaller than the total number
of values that the input variables can take. It is also assumed, in
this context, that these error-triggering values are difficult to guess.
For example, below is a patch that checks if the input variablex
can take any value from a small set of valuesvi. If the answer is
YES, then reject the input else accept. LetC denote the disjunctive
conditional

∨
x == vi:

if (C)

{

exit (1);

}

Such a filter is a prime candidate for Cryptographic Path Hard-
ening. Specifically, distributing a patch that reveals the exact se-
mantics of the conditional would give attackers exactly the con-
dition they need to exploit the vulnerability. Moreover, a Crypto-
graphic Path Hardener can easily construct a hardened implemen-
tation of the filter by disjunctively comparing the hash of the in-
put variablex with pre-computed hashes ofvi. Let hard(C) denote∨

hash(x) == hash vi, wherehash vi are the pre-computed hash
values of thevi’s. Then the hardened filter is:

if (hard(C))

{

exit (1);

}

3. Discussion
Cryptographic Path Hardening has a number of points of discus-
sion concerning its applicability and practicality.

Hardness of Inversion. The notion of Cryptographic PathHard-
ening is well-defined for all conditionals, but it is only meaningful
for conditionals that are difficult to dictionary attack in a black-box
manner. Specifically, if the conditionalφ has the form that it is easy
for an adversary to find a satisfying assignment given only a black
box that implementsφ, then there is no hope of hardeningφ. For
example, ifφ(x) is the conditional that implements an inequality
check of the form 0< x < c or MAX > x > c for some constantc,
where the range of values ofx checked by the inequality islarge,
then it is easy to find a satisfying assignment (and indeed,c) by
binary search. Similarly, ifφ is a conditional that checks whether
a small-sized substring (say, one character) is present in its input
string, then it would also be simple to find a satisfying assignment
just by searching through all possible characters (which is a small
enough set that it is quick to do).

Correctness. According to our definition, a target conditional
and its hardened counterpart may semantically differ. In particular,
our definition accepts hardened implementations that may, with
some probability, evaluate to true in instances where the original
conditional evaluates to false (i.e., false-positives). Therefore, a
user of a Cryptographic Path Hardener must be able reason about
whether it’s acceptable for the resulting hardened program to be
overly conservative in, for example, rejecting inputs.

For simple conditionals that can be directly implemented with
hash functions (such as testing a variable against a constant), the
probability of error is equivalent to the probability of collisions for
the chosen hash function.

Performance. A cryptographic implementation of a conditional
can be slower than its standard implementation. In general, stan-
dard performance analysis considerations must be taken in account
when applying Cryptographic Path Hardening. For example, hard-
ening conditionals on hot loops may incur more whole-program
performance slowdown than hardening conditionals in infrequently
executed code.

4. Conclusion
In this paper, we demonstrated how CryptographicPathHardening
can be used to enable developers to distribute hardened patches that
hide the exact conditions of an exploit. Furthermore, we propose
that hiding vulnerabilities through Cryptographic Path Hardening
presents a new approach to software security that is paradigmat-
ically different from traditional software engineering approaches
such asformal methods that focus on proving the absence of er-
rors in programs, ortesting techniques that focus on establishing
the presence of errors.

References
[1] Bug 53632 PHP hangs on numeric value... http://bugs.php.net/bug.php?

id=53632, 2011.

[2] Quick Fix / Workaround for the PHP floating point DoS vulnerability.
http://www.aircraft24.com/en/info/php-float-dos-quickfix.htm, 2011.

[3] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-
based exploit generation is possible: Techniques and implications. In
IEEE Symposium on Security and Privacy, 2008.

[4] R. Canetti. Towards realizing random oracles: Hash functions that hide
all partial information. InCRYPTO, volume 1294 ofLecture Notes in
Computer Science, pages 455–469, 1997.

[5] M. Varia. Studies in Program Obfuscation. PhD thesis, Massachusetts
Institute of Technology, 2010.


