
Full Presentation – A language-based approach to

computational art

Shrutarshi Basu
Cornell University

basus@cs.cornell.edu

Chun Wai Liew
Lafayette College

liew@cs.lafayette.edu

November 14, 2011

Abstract

Language based tools have made their mark as popular computational
art systems. However these tools generally use variants of popular pro-
gramming languages like Python and Java. They require the user to
become familiar with traditional imperative programming languages and
understand concepts like functions, classes and objects. Thus they are
more suited for programmers with artistic interests than for artists look-
ing to leverage computational power. We present Metaphor – a language-
based tool designed specifically for artists with little or no programming
experience. Metaphor uses a declarative language to remove explicit con-
trol flow and expose clear relationships between the artists program-like
descriptions and the images they generate.

1 The Problem

In recent years, language-driven tools such as Processing and Field have pro-
moted the use of computers in graphics and art. Though they are powerful
tools, their use of imperative programming languages require users to learn im-
perative syntax and concepts like functions and classes. Artists must also deal
with problems such as syntax and type errors. Thus they distract the artists
from the tools’ actual purpose – enabling the creation of beautiful pieces of art.

Conversely, image manipulation and drawing programs such as Adobe Pho-
toShop, Adobe Illustrator and Inkscape allow artists direct manipulation of their
images but do not allow them to create their own abstractions (apart from sim-
ple reusable components like layers). Though some such applications provide
rich scripting interfaces, this requires the artist to deal with the problems of
standard programming languages as described above.

1



2 A Proposed Solution

Metaphor takes a different approach to computational art. Instead of using
a full-blown imperative language to describe graphical operations, the artist
declares relationships between elements of the image. Metaphor provides a
declarative language interface to an implementation of Lindenmayer systems –
parallel rewriting systems that are capable of generating fractal and biological
systems. The declarative language interfaces with graphical backends via a
mechanism we call “contexts”. This allows the backends to be written as Python
classes but used as simple declarations from inside Metaphor.

For example, the following snippet in the Metaphor declarative language
uses a small set of declarative rules to produce a complex, self-similar pattern
after a number of recursive applications. The rendering context exposes a 2D
drawing library via simple operations (forward drawing and turns):

System Sierpinski

Axiom A

Rule A => B right A right B

Rule B => A left B left A

Render A => forward (10)

Render B => forward (10)

Render right => right (60)

Render left => left (60)

Figure 1: The Sierpinski Triangle

Thus Metaphor leverages declarative programming to provide two innova-
tions over existing computational art tools – a declarative language in which to
describe the images to be created and a mechanism to export functionality from
graphics libraries to the declarative Metaphor language.

3 Preliminary Results

Metaphor has been used by introductory computer science students working
with art students to create a variety of images exploring growth and symmetry.
Feedback from the art students and their professors was used to create a number
of specialized contexts. Metaphor allowed the artists to talk about their works
and what they wanted to see in terms of their own metaphors without having
to learn computational concepts and jargon. An exhibition at Lafayette College
featured works created using Metaphor in print form on various media. Further
work is currently under way to develop a graphical version of the Metaphor lan-
guage using a block-based paradigm (similar to the Lego Mindstorms interface).

2


