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Factors in Language Design. Programming language
design and evolution are often driven by largely techni-
cal factors, such as changes in hardware (e.g., multi-core,
GPU) and support for particular paradigms (e.g., object-
oriented, functional). The impact of design decisions on
usability, however, is rarely evaluated in a scientific man-
ner [7]. Instead, widely-used languages are either advanced
by a committee of experts (C++, Java), or by a single expert
(Python, Ruby). Feedback from the community is impor-
tant in both cases, but the decision to accept or reject a
given feature ultimately lies with one or more experts. This
process works well except in cases where experts disagree –
i.e., technical matters alone are not enough to judge a fea-
ture. For these situations, there is currently no objective
method for resolving disagreements.

A Quantitative Cognitive Model. We believe a promis-
ing avenue of research is to develop a quantitative cognitive
model of the programming process. The ultimate goal of
this research is to provide a scientifically-grounded means
of ranking code by its cognitive complexity [3]. In other
words, the desired model should be able to predict the diffi-
culty of understanding code for a programmer with specific
characteristics (e.g., expertise with the language or problem
domain) and for a particular task (e.g., reading, modify-
ing, debugging). The parameters of the model should be
cognitively meaningful, relating to known limitations and
architectural features of the brain [10] as well as the pro-
grammer’s existing knowledge base [19].

With such a model in hand, the impact of language
changes could be evaluated based on the distribution of sim-
ulated code rankings over a portion of the model’s parameter
space. While the model must be informed by user studies in
order to mimic human data, it should provide information
beyond simple correlations between language changes and
user performance. A good cognitive model must help ex-
plain why, and not just what. Judgements based on model
simulations might take the form of “feature X negatively im-
pacts novice users because it requires them to simultaneously
attend to too much information” or “feature Y positively im-
pacts experts during code reading because their visual search
strategies are highly tuned to an aspect of Y.”

Existing Metrics and Models. It is common to associate
the “complexity” of a program with particular textual fea-
tures of its source code (e.g., cyclomatic complexity [16],
program effort [15]) and the relationships between the pro-
gram’s functions or objects [9]. These traditional complexity
metrics are useful in regression models whose primary goal is
to predict the maintainability or fault proneness of code, but
they do not provide direct insight into the cognitive aspects

of programming. More importantly, traditional complexity
metrics do not provide a model capable of explaining the im-
pact of language design decisions on people. Rather, these
metrics quantify the impact on the code itself (e.g., more
or fewer tokens), leaving the psychological impact on the
programmer to be inferred.

For the purposes of explanation alone, a plethora of qual-
itative cognitive models of the programming process exist
in the field of Program Comprehension. The Cognitive Di-
mensions of Notation framework, for example, emphasizes
the trade-offs between different aspects of programming lan-
guages (e.g., hidden dependencies, redundancy, premature
commitment) [14]. The Stores Model of Code Cognition
focuses on the visual, spatial and linguistic abilities of pro-
grammers [8]. The Task Memory Model [18] imports recent
research on working memory from Cognitive Neuroscience,
stressing the importance of the brain’s many distinct mem-
ory sub-systems. While these models provide a foundation
for additional research and experimentation, they do not
themselves offer objective, quantitative predictions. In or-
der to ground program comprehension models, we believe it
is necessary to develop a comprehensive computer model of
the programming process, spanning the gap between percep-
tion and concepts in the problem domain. Recent research
into the memory of domain experts has been fruitful in un-
covering important architectural aspects of human memory
and learning in general.

Expert Memory and Chunking. A quantitative cogni-
tive model of the programming process does not exist yet.
However, decades of research into the memory systems of
experts in different domains (e.g., chess, physics, electronic
circuits) has laid much of the groundwork [19, 11]. Experi-
ments have revealed that experts in many domains outper-
form novices due to their vast mental libraries of chunks:
knowledge units of the domain that are stored in long-term
memory [4, 5, 13]. Having these units available lets experts
quickly and efficiently store representations of the problem
at hand, allowing them to overcome the limitations of work-
ing memory [17]. Although novices and experts share the
same memory constraints (5 ± 2 chunks), experts are able
to hold more domain information in working memory be-
cause their chunks are larger. Beyond encoding the immedi-
ate problem, experts are also believed to possess templates:
long-term memory retrieval structures with “slots” that fa-
cilitate rapid learning of new domain information [12].

Early experiments with Pascal programmers provided
strong evidence for the existence of perceptual chunks [19].
More recent experiments have confirmed these findings, and
have demonstrated robust expertise effects, such as the abil-
ity of experts to recall scrambled code better than novices.
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Computer simulations of a code recall experiment1 using the
Chunk Hierarchy and REtrieval STructures (CHREST) cog-
nitive architecture revealed that the expertise effect could be
elicited purely by increasing the number of code samples the
model was allowed to observe beforehand [11].

Conceptual chunking has also been observed in program-
mers at the program level, where internalized code schemas
strongly drive expectations [7]. In a series of clever experi-
ments, it was shown that breaking implicit coding “rules of
discourse” caused expert programmers to consistently mis-
interpret the intended use of a particular variable. When
answering a fill-in-the-blank experiment, where a small por-
tion of a program’s code is missing, experts often filled in
the missing pieces with prototypical answers (i.e., initialize
the variable to zero), despite evidence that this was incor-
rect [19]. Program schemas have also been shown to induce
distortion effects during recall [6], where experts “remem-
ber” prototypical code instead of actual code (i.e., j is re-
called as i in a for loop).

What’s Missing. The experiments and simulations above
are a place to start, but a great deal of work remains to be
done. The majority of research with chunking theory has
been done in the domain of chess, where problem solving is
largely a perceptual processes. Programming, while having a
strong perceptual component, requires a blend of perceptual
and conceptual processes. Semantic errors in a program, for
example, are not always discoverable by simply observing
the source code (properly formatting code can make some
more apparent).

Research has been done on how programmers relate pieces
of code to entities in the problem domain (called the Concept
Assignment Problem [1]), but it has not been viewed from
the perspective of chunking theory. Similarly, others have
investigated the conceptual roles of program variables [2],
but with a focus on education rather than the cognitive
processes involved in role detection and assignment. We
believe a quantitative cognitive model that spans percep-
tual and conceptual levels will provide a solid foundation
for language usability design decisions.
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