Logical and Meta-Logical Frameworks

Frank Pfenning

Marktoberdorf Summer School 2001 July 25-August 4, 2001

First Things First

• If you play squash see me after lecture!

Outline of Four Lectures

- Lecture 1: Higher-Order Abstract Syntax
- Lecture 2: Judgments as Types
- Lecture 3: Proof Search and Representation
- Lecture 4: Meta-Logical Frameworks

Logical and Meta-Logical Frameworks Lecture 1: Higher-Order Abstract Syntax

- 1. Introduction
- 2. Parametric and hypothetical judgments
- 3. Higher-order abstract syntax
- 4. Properties of representations

Deductive Systems

- Judgment object of knowledge
- Evident Judgment something we know
- Deduction evidence for a judgment
- Basic Judgments, for example
 - -P is a proposition (P prop)
 - -P is true (P true)
- Judgment Forms, for example
 - Parametric judgments x term $\vdash P(x) \supset Q(x)$ prop
 - Hypothetical judgments P true, $(P \supset Q)$ true $\vdash Q$ true
- Following Martin-Löf ['83,'85,'96]

Examples of Deductive Systems

- From logic
 - Natural deduction P_1 true, ..., P_n true $\vdash Q$ true
 - Sequent calculus P_1 hyp,..., P_n hyp $\vdash Q$ true
 - Axiomatic derivation $\vdash Q$ valid
- Other logics (temporal, modal, linear, higher-order, dynamic, non-commutative, belief, relevance, ...)
- From programming languages
 - Typing $x_1:\tau_1,\ldots,x_n:\tau_n\vdash e:\tau$
 - Evaluation $e \hookrightarrow v$
 - Equivalence $x_1:\tau_1,\ldots,x_n:\tau_n\vdash e_1\simeq e_2:\tau$
 - Compilation $x_1:\tau_1,\ldots,x_n:\tau_n\vdash e\to c$

Logical Frameworks

- Logical Framework meta-language for deductive systems
- Tasks
 - Specification of abstract syntax and rules
 - Representation and verification of deductions
 - Implementation of algorithms (search, type inference)
- Applications
 - Reasoning in logical systems [Nipkow]
 - Verification (hardware, software, protocols)[Constable] [Grumberg]
 - Proof-carrying code [Necula]
 - Education
- Factor implementation effort!

Examples of Logical Frameworks

- Hereditary Harrop formulas Isabelle, $\lambda Prolog$
- λ^{Π} type theory Automath, LF, Elf, Twelf
- Substructural logics and type theories
 Forum, Linear LF, Ordered LF, Ludics(?) [Girard]
- Equational logic and rewriting
 Maude, ELAN, labelled deductive systems
- Constructive type theories
 ALF, Agda, Coq, LEGO, Nuprl

Meta-Logical Frameworks

- Meta-Logical Framework —
 meta-language for reasoning about deductive system
- Tasks
 - Specification of abstract syntax and rules
 - Proof of properties of deductive systems
- Applications
 - Logic specification and verification
 - Programming language design
 - Reflection and proof compression

Examples of Meta-Logical Frameworks

- Finitary inductive definitions
 FS₀ [Feferman'88]
- Definitional reflection FOL $^{\Delta N}$ [McDowell&Miller'97]
- Higher-level judgments and regular worlds
 M₂, Twelf [Schürmann'00]
- Other systems used as meta-logical frameworks
 - Constructive type theories
 Agda, Coq, LEGO, Nuprl
 - Higher-order logicHOL, Isabelle/HOL
 - Rewriting logicMaude

These Lectures

- Running examples: natural deduction, axiomatic derivations
- Logical framework: LF, Elf
- Meta-logical framework: Twelf
- Reference:

Logical frameworks.

Handbook of Automated Reasoning,

Chapter 16, pp. 977-1061,

Elsevier Science and MIT Press, June 2001.

Textbook:

Computation and Deduction.

Cambridge University Press, Fall 2001.

• Implementation: twelf.org

Terms and Propositions of First-Order Logic

- Basic judgments: t term, P prop
- Parametric judgments:

$$x_1$$
 term,..., x_n term $\vdash t$ term x_1 term,..., x_n term $\vdash P$ prop

- \bullet x_i are parameters
- x_i term are hypotheses
- Notation: $\Delta = x_1 \text{ term}, \dots, x_n \text{ term}$
- Assume all x_i distinct!

Substitution

- Defines meaning of parametric judgment
- Substitution [t/x]s and [t/x]P (defined as usual)
- Substitution property (similarly for propositions):

If
$$\Delta$$
, x term, $\Delta' \vdash s$ term
and $\Delta \vdash t$ term
then Δ , $\Delta' \vdash [t/x]s$ term

• Hypothesis rule:

$$\frac{}{\Delta, x \ term, \Delta' \vdash x \ term}$$
 hyp

- Parameters need not be used (weakening)
- Parameters may be used more than once (contraction)

Logical Connectives

• Implication formation

$$\frac{\Delta \vdash P \; \textit{prop}}{\Delta \vdash P \supset Q \; \textit{prop}} \supset F$$

Negation formation

$$\frac{\Delta \vdash P \ prop}{\Delta \vdash \neg P \ prop} \neg F$$

Universal quantification

$$\frac{\Delta, x \ term \vdash P \ prop}{\Delta \vdash \forall x. P \ prop} \, \forall F$$

Free and Bound Variables

- Free variables defined as usual
- Bound variables defined as usual (binder $\forall x$)
- $\forall x. P = \forall y. [y/x]P$ provided y not free in P
- Identify propositions up to renaming of bound variables
- Substitution avoids capture by silent renaming, e.g.,

$$[y/x](\forall y. P y x) = [y/x](\forall y'. P y' x)$$
$$= \forall y'. P y' y$$
$$[y/x](\forall y. P y x) \neq \forall y. P y y$$

• Parameters in context x_1 term, ..., x_n term are all distinct

Predicate and Function Symbols

- Predicate symbols p^n of arity n
- Functions symbols f^n of arity n
- "Uninterpreted" in first-order logic: judgments are parametric in p^n and f^n
- May be interpreted in arithmetic or other theories: judgments are no longer parametric

Representing Terms and Propositions

- Two critical issues:
 - How to represent variables and substitution
 - How to represent judgments t term and P prop
- Three standard variable techniques:
 - Named (string) representation
 - De Bruijn representation
 - Higher-order abstract syntax
- Two standard judgment techniques:
 - Judgments as propositions
 - Judgments as types

Simply-Typed Fragment of LF

• Meta-language: λ^{\rightarrow} as fragment of LF

Signatures
$$\Sigma ::= \cdot \mid \Sigma, a:type \mid \Sigma, c:A$$

Contexts $\Gamma ::= \cdot \mid \Gamma, x:A$

Types $A ::= a \mid A_1 \rightarrow A_2$

Objects $M ::= c \mid x \mid \lambda x:A.M \mid M_1 M_2$

- ullet Type constants a, object constants c, object variables x
- Judgments defining meta-language λ^{\rightarrow} (more later)
 - $-\sum sig$ signature \sum is valid
 - Γctx context Γ is valid
 - $\vdash_{\Sigma} A : type -$ type A is a valid
 - $\Gamma \vdash_{\Sigma} M : A$ object M has type A

Representation of Terms

• Introduce type i for terms

```
i: type
```

- Property: if t term then $\lceil t \rceil$: i
- More generally:

```
If x_1 term, ..., x_n term \vdash t term then x_1:i, ..., x_n:i \vdash \ulcorner t \urcorner: i
```

• Representing parameters as parameters in LF,

$$\lceil x \rceil = x$$

Representing hypotheses as hypotheses in LF,

$$\lceil x_1 \text{ term}, \dots, x_n \text{ term} \rceil = x_1 : i, \dots, x_n : i$$

Representation of Propositions

• Introduce type o for propositions

```
o : type
```

- Property: if P prop then $\lceil P \rceil$: o
- More generally:

```
If x_1 term, ..., x_n term \vdash P prop
then x_1:i, ..., x_n:i \vdash \ulcorner P \urcorner: o
```

Again: parameters as parameters, hypotheses as hypotheses

Constructors as Constants, Implication

• Implication

$$\frac{\Delta \vdash P \; \textit{prop}}{\Delta \vdash P \supset Q \; \textit{prop}} \supset F$$

$$\lceil P \supset Q \rceil = \operatorname{imp} \lceil P \rceil \lceil Q \rceil$$

imp :
$$o \rightarrow o \rightarrow o$$

Constructors as Constants, Negation

Negation

$$\frac{\Delta \vdash P \ prop}{\Delta \vdash \neg P \ prop} \neg F$$

$$\lceil \neg P \rceil = \mathsf{not} \, \lceil P \rceil$$

$$\mathsf{not} : \mathsf{o} \to \mathsf{o}$$

Constructors as Constants, Universal Quantification

Universal quantification

$$\frac{\Delta, x \ term \vdash P \ prop}{\Delta \vdash \forall x. P \ prop} \, \forall F$$

forall :
$$(i \rightarrow o) \rightarrow o$$

Essential reasoning

$$\frac{\lceil \Delta \rceil, x : \mathsf{i} \vdash \lceil P \rceil : \mathsf{o}}{\lceil \Delta \rceil \vdash \mathsf{forall} : (\mathsf{i} \to \mathsf{o}) \to \mathsf{o}} \frac{\lceil \Delta \rceil \vdash \lambda x : \mathsf{i} \vdash \lceil P \rceil : \mathsf{o}}{\lceil \Delta \rceil \vdash \lambda x : \mathsf{i} \cdot \lceil P \rceil : \mathsf{i} \to \mathsf{o}}$$

$$\frac{\lceil \Delta \rceil \vdash \mathsf{forall} : (\lambda x : \mathsf{i} \cdot \lceil P \rceil) : \mathsf{o}}{\lceil \Delta \rceil \vdash \mathsf{forall} : (\lambda x : \mathsf{i} \cdot \lceil P \rceil) : \mathsf{o}}$$

 \bullet Bound variables as λ -bound variables in LF

Function and Predicate Symbols

- Propositional or term constants have arity 0.
- For function symbols f^n :

$$\lceil f^{n}(t_{1},...,t_{n}) \rceil = f \lceil t_{1} \rceil \dots \lceil t_{n} \rceil$$

$$f : \underbrace{i \to \cdots i \to}_{n} i$$

• For predicate symbols p^n :

$$\lceil p^n(t_1,\ldots,t_n) \rceil = p \lceil t_1 \rceil \ldots \lceil t_n \rceil$$

$$p : \underbrace{i \to \cdots i \to}_{n} o$$

ullet Status as parameters (in context Δ) or constants (in signature Σ) depends on application

Examples of Representations

- Represent predicate parameters by corresponding LF parameters
- $\lceil P \supset (Q \supset P) \rceil = \operatorname{imp} P \ (\operatorname{imp} Q P)$ for P : o, Q : o
- $\lceil \forall x. P(x) \supset Q(x) \rceil = \text{forall } (\lambda x : i. \text{imp } (P \ x) \ (Q \ x))$ for $P : i \to o, Q : i \to o$
- $\lceil \forall x. P \supset Q(x) \rceil$ = forall $(\lambda x : i. imp P (Q x))$ for $P : o, Q : i \rightarrow o$

Note: substituent for P cannot refer to x

Summary of Representation

Terms and propositions

- Variables are represented as variables
 Higher-order abstract syntax
- ullet Variable renaming as lpha-conversion in LF
- Essentially open-ended [Constable]

Adequacy Theorem for Propositions

- With respect to fixed signature (suppressed)
- Validity:

If
$$\triangle \vdash P$$
 prop then $\lceil \triangle \rceil \vdash \lceil P \rceil$: o

- Injectivity: If $\lceil P \rceil = \lceil Q \rceil$ then P = Q
- Surjectivity?

If
$$\lceil \Delta \rceil \vdash M$$
: o
then $M = \lceil P \rceil$ for some P with $\Delta \vdash P$ prop?

• Compositionality:

$$[\lceil t \rceil / x] \lceil P \rceil = \lceil [t/x] P \rceil$$

Surjectivity

- Validity, injectivity, and compositionality by easy inductions
- Surjectivity fails:

```
- Counterexample, for p: i \rightarrow o
                        \vdash forall (\lambda x:i. ((\lambda q:o. q) (p x))): o
   is not in the image of \lceil \_ \rceil
- Solution: \beta-reduction to
                                   \vdash forall (\lambda x : i. p x)
- Counterexample, for p: i \rightarrow o
                                       ⊢ forall p : o
   is not in the image of \lceil \_ \rceil
- Solution: \eta-expansion to
                                   \vdash forall (\lambda x : i. p x)
```

Definitional Equality for LF

- Equip LF with a notion of definitional equality
- ullet $\Gamma \vdash_{\Sigma} M = N : A$ objects M and N are definitionally equal
- ullet Congruence generated from eta- and η -conversion

$$(\lambda x : A. M) N = [N/x]M$$

 $M : A \to B = \lambda x : A. M x$ provided x not free in M

• Define so that $\Gamma \vdash_{\Sigma} M = N : A$ ensures $\Gamma \vdash_{\Sigma} M : A$ and $\Gamma \vdash_{\Sigma} N : A$

Surjectivity Corrected

Surjectivity (corrected):

```
If \lceil \Delta \rceil \vdash M : o
then \lceil \Delta \rceil \vdash M = \lceil P \rceil : o
for some P with \Delta \vdash P prop
```

Injectivity (retained):

If
$$\lceil \Delta \rceil \vdash \lceil P \rceil = \lceil Q \rceil$$
: o
then $P = Q$ for $\Delta \vdash P$ prop and $\Delta \vdash Q$ prop

- Recall: everything modulo renaming of bound variables
- Proofs via canonical forms

Canonical Forms

- $\Gamma \vdash_{\Sigma} M \Downarrow A \longrightarrow M$ is canonical of type A
- Intuition: canonical is β -normal and η -long:

$$M \Downarrow A_1 \to \ldots \to A_k \to a$$

iff

$$M = \lambda x_1 : A_1 \dots \lambda x_k : A_k \cdot h M_1 \dots M_n$$

for a variable or constant h, type constant a, and canonical M_1, \ldots, M_n

- More formal definition later
- **Theorem:** Every valid object has an unique, equivalent canonical form
- Obtained by β -reduction and η -expansion

Injectivity Interpreted

Recall injectivity:

If
$$\lceil \Delta \rceil \vdash \lceil P \rceil = \lceil Q \rceil$$
: o
then $P = Q$ for every $\Delta \vdash P$ prop and $\Delta \vdash Q$ prop

- No ambiguity in representation
- Stronger than usual in data representation:
 data type = representation type + equivalence relation
- Operations on objects well defined (coherence)
- Sometimes sacrificed, e.g., integers $\lceil i \rceil = \text{diff } n \ m$ for n, m:nat with i = n m

Surjectivity Interpreted

• Recall surjectivity:

```
If \lceil \Delta \rceil \vdash M : o
then \lceil \Delta \rceil \vdash M = \lceil P \rceil : o
for some P with \Delta \vdash P prop
```

- No "junk" in representation type
- Stronger than usual in data representation:
 data structure = data type + invariants
- Incorporate invariants when possible
- Not always feasible, e.g., linear λ -terms = λ -terms + linearity

Compositionality Interpreted

Recall compositionality:

$$[\lceil t \rceil / x] \lceil P \rceil = \lceil [t/x] P \rceil$$

- Representation commutes with substitution
- Consequence of representing variables as variables
- Substitution represented by β -reduction in LF, e.g.,

Critical advantage of higher-order abstract syntax

Summary of Lecture 1

- Introduction and overview
- Parametric and hypothetical judgments, defined by substitution property
- Sample object language is first-order logic
- Meta-language is simply-typed fragment of LF
- Representation via higher-order abstract syntax
 - Variables as variables in LF
 - Variable renaming as α -conversion in LF
 - Substitution as β -conversion in LF
- Representation is injective, surjective, compositional

Preview of Lecture 2: Judgments as Types

- 1. Natural Deduction
- 2. Judgments as Types
- 3. Dependent Function Types in LF
- 4. Representing Parametric and Hypothetical Judgments

Reminder

• If you play squash see me now!

Logical and Meta-Logical Frameworks Lecture 2: Judgments as Types

- 1. Natural Deduction
- 2. Judgments as Types
- 3. Dependent Function Types in LF
- 4. Representing Parametric and Hypothetical Judgments

Review of Lecture 1: Higher-Order Abstract Syntax

- \bullet Meta-language: simply-typed λ -calculus as fragment of LF
- Representing terms and proposition

- Variables represented as variables in LF
- ullet Variable renaming via lpha-conversion in LF
- Definitional equality in LF generated from $\beta\eta$ -conversion
- Adequacy: representation is compositional bijection

$$\lceil [t/x]s \rceil = \lceil \lceil t \rceil / x \rceil \lceil s \rceil, \quad \lceil [t/x]P \rceil = \lceil \lceil t \rceil / x \rceil \lceil P \rceil$$

Natural Deduction

- Basic judgment: *P true*, presupposing *P prop*
- Intuitively: P has a verification [Martin-Löf'83,'96]
- Parametric and hypothetical judgment $\Delta \vdash P$ true
- Need hypotheses
 - -x term for term parameter x (for \forall)
 - p prop for propositional parameter p (for \neg)
 - $-u:Q\ true\ for\ proposition\ Q\ and\ proof\ parameter\ u\ (for\ \supset)$
- Hypothesis rule

$$\overline{\Delta, u:P \ true, \Delta' \vdash P \ true}^{\ u}$$

Substitution Principles

- Recall: meaning of parametric judgments
- ullet More complicated than before, because hypotheses may contain parameters (Δ has internal dependencies)
- Example: $x \text{ term}, u:P(x) \text{ true} \vdash P(x) \text{ true}$
- For term parameters (similarly for propositional parameters)

If
$$\Delta$$
, x term, $\Delta' \vdash P$ true
and $\Delta \vdash t$ term
then Δ , $[t/x]\Delta' \vdash [t/x]P$ true

For proof parameters

If
$$\Delta, u$$
: P true, $\Delta' \vdash Q$ true
and $\Delta \vdash P$ true
then $\Delta, \Delta' \vdash Q$ true

Introduction and Elimination Rules

- The meaning of a connective is given by the rule(s) for inferring it, the introduction rule(s)
- Corresponding elimination rule(s) justified from introduction rule(s)
- Local soundness: we cannot gain information by an introduction followed by an elimination
- Local soundness is guaranteed by a local reduction
- Local completeness: we can recover the information in a connective by elimination(s)
- Local completeness is guaranteed by a local expansion
- For local completeness and expansion see [notes]

Truth of Implication

• Introduction rule:

$$\frac{\Delta, u: P \; true \vdash Q \; true}{\Delta \vdash P \supset Q \; true} \supset I^u$$

• Elimination rule:

$$\frac{\Delta \vdash P \supset Q \ true}{\Delta \vdash Q \ true} \supset E$$

• Local reduction (soundness of elimination rule)

$$\frac{\Delta, u: P \ true \vdash Q \ true}{\frac{\Delta \vdash P \supset Q \ true}{\Delta \vdash Q \ true}} \supset I^{u} \frac{\mathcal{E}}{\Delta \vdash P \ true} \supset E \longrightarrow \frac{[\mathcal{E}/u]\mathcal{D}}{\Delta \vdash Q \ true}$$

by substitution principle for proofs

Truth of Negation

• Introduction rule:

$$\frac{\Delta, q \ prop, u:P \ true \vdash q \ true}{\Delta \vdash \neg P \ true} \neg I^{q,u}$$

- Note propositional parameter q
- Elimination rule:

$$\frac{\Delta \vdash \neg P \ true}{\Delta \vdash Q \ true} \neg E$$

- Definition of logical connectives only via judgmental notions
- Orthogonality and open-endedness

Local Reduction for Negation

Local reduction

$$egin{array}{c} \mathcal{D} \ & \Delta, q \ \textit{prop}, u : P \ \textit{true} dash q \ \textit{true} \ & \neg I^{q,u} & \mathcal{E} \ \hline & \Delta dash \neg P \ \textit{true} \ & \Delta dash Q \ \textit{true} \ \hline & \Delta dash Q \ \textit{true} \ \hline & \rightarrow & \Delta dash Q \ \textit{true} \ \hline \end{pmatrix}
otag \ \mathcal{D} \ & \Delta dash Q \ \textit{true} \ & \rightarrow \ \mathcal{D} \ \text{true} \ & \Delta dash Q \ \textit{true} \ & \rightarrow \ \mathcal{D} \ \text{true} \$$

First substitution for proposition q

$$[Q/q]\mathcal{D}$$

 Δ, u : $P \ true \vdash Q \ true$

Second substitution for proof u

$$[\mathcal{E}/u][Q/q]\mathcal{D}$$

 $\Delta \vdash Q \ true$

Truth of Universal Quantification

• Introduction rule:

$$\frac{\Delta, x \ term \vdash P \ true}{\Delta \vdash \forall x. P \ true} \forall I$$

Elimination rule:

$$\frac{\Delta \vdash \forall x. P \ true}{\Delta \vdash [t/x]P \ true} \ \forall E$$

Local reduction:

$$\frac{\Delta, x \operatorname{term} \vdash P \operatorname{true}}{\Delta \vdash \forall x. P \operatorname{true}} \forall I \qquad \mathcal{T}$$

$$\frac{\Delta \vdash \forall x. P \operatorname{true}}{\Delta \vdash [t/x]P \operatorname{true}} \forall E \longrightarrow \Delta \vdash [t/x]P \operatorname{true}$$

by substitution principle for terms

Representation of Deductions

Represent judgments as types in LF (ignoring hyps.)

```
\lceil P \ true \rceil = true \lceil P \rceil
\vdash true \lceil P \rceil : type
true : o \rightarrow type
```

- true is a type family indexed by objects of type o
- Represent deductions as objects in LF

Requires extension of simply-typed fragment of LF

Representation of Inference Rules as Constants

• Example: implication elimination (ignoring Δ)

$$\begin{array}{cccc}
 & \mathcal{D} & \mathcal{E} \\
 & \Delta \vdash P \supset Q \text{ true} & \Delta \vdash P \text{ true} \\
\hline
 & \Delta \vdash Q \text{ true} & \supset E
\end{array} = \text{impe} \lceil \mathcal{D} \rceil \lceil \mathcal{E} \rceil$$

• Translation into LF (ignoring Δ)

Declaration for constant impe in LF

impe : true (imp
$$\lceil P \rceil \lceil Q \rceil$$
) \rightarrow true $\lceil P \rceil \rightarrow$ true $\lceil Q \rceil$

Schematic Rules

Rules are schematic, e.g.,

$$\frac{\Delta \vdash P \supset Q \ true}{\Delta \vdash Q \ true} \supset E$$

is schematic in propositions P and Q.

Representation is schematic, e.g.,

$$\mathsf{impe}_{P,Q}$$
 : $\mathsf{true}\;(\mathsf{imp}\;P\;Q) \to \mathsf{true}\;P \to \mathsf{true}\;Q$

for any P:0, Q:0 by adequacy for propositions

• Internalize schematic judgments in LF (read Π as "Pi")

impe :
$$\Pi P$$
:o. ΠQ :o. true (imp $P Q$) \to true $P \to$ true Q

Representing Schematic Judgments

• $\Pi x: A. B$ must be a *type*, e.g.,

```
impe : \Pi P:o. \Pi Q:o. true (imp P Q) \to true P \to true Q
```

Constant impe takes 4 arguments

```
an object P: o a proposition P an object Q: o a proposition Q an object D: true (imp P Q) a deduction of P \supset Q true an object E: true P a deduction of P true and constructs the object impe P Q D E: true Q a deduction of Q true
```

Dependent Function Type in LF, Formation

• Dependent function type, formation

$$\frac{\Gamma \vdash A : type \qquad \Gamma, x : A \vdash B : type}{\Gamma \vdash \Pi x : A . B : type} \, \Pi F$$

$$\frac{\Gamma \vdash A : type \qquad \Gamma \vdash B : type}{\Gamma \vdash A \to B : type} \to F$$

- In $\Pi x:A.B$, x can occur in B
- Example:

$$\vdash \sqcap P$$
:o. $\sqcap Q$:o. true (imp $P Q$) \rightarrow true $P \rightarrow$ true Q : $type$

Different from polymorphism (not available in LF)

$$\vdash \land \alpha : type. \ \lambda x : \alpha . \ x : \forall \alpha : type. \ \alpha \rightarrow \alpha$$

Dependent Function Type, Intro and Elim

Dependent function type, introduction

$$\frac{\Gamma \vdash A : type \qquad \Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x : A \cdot M : \Pi x : A \cdot B} \, \Pi I$$

$$\frac{\Gamma \vdash A : type \qquad \Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x : A . M : A \to B} \to I$$

Dependent function type, elimination

$$\frac{\Gamma \vdash M : \Pi x : A.B \qquad \Gamma \vdash N : A}{\Gamma \vdash M \ N : [N/x]B} \ \Pi E$$

$$\frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash M \ N : B} \to E$$

• Regard $A \to B$ as shorthand for $\Pi x : A \cdot B$, where x not free in B

Representing Parametric Judgments

- Recall natural deduction judgment $\Delta \vdash P$ true
- Hypotheses Δ contain
 - -x term for term parameter x (for \forall)
 - p prop for propositional parameter p (for \neg)
 - $-u:Q\ true\ for\ proposition\ Q\ and\ proof\ parameter\ u\ (for\ \supset)$
- Represent parameters as parameters in LF

Adequacy Theorem for Deductions, Bijection

- With respect to fixed signature (see later)
- Validity: If \mathcal{D} proves $\Delta \vdash P$ true then $\lceil \Delta \rceil \vdash \lceil \mathcal{D} \rceil$: true $\lceil P \rceil$
- Injectivity:

```
If \lceil \Delta \rceil \vdash \lceil \mathcal{D} \rceil = \lceil \mathcal{E} \rceil: true \lceil P \rceil for \mathcal{D} and \mathcal{E} proving \Delta \vdash P true then \mathcal{D} = \mathcal{E} (modulo variable renaming)
```

• Surjectivity:

```
If \lceil \Delta \rceil \vdash M: true \lceil P \rceil
then \lceil \Delta \rceil \vdash M = \lceil \mathcal{D} \rceil: true \lceil P \rceil
for some \mathcal{D} proving \Delta \vdash P prop
```

Adequacy for Deductions, Compositionality

• Compositionality:

Terms
$$\lceil [t/x]\mathcal{D} \rceil = \lceil [t^{\gamma}/x] \rceil \mathcal{D} \rceil$$

Propositions $\lceil [Q/p]\mathcal{D} \rceil = \lceil [Q^{\gamma}/p] \rceil \mathcal{D} \rceil$
Proofs $\lceil [\mathcal{E}/u]\mathcal{D} \rceil = \lceil [\mathcal{E}^{\gamma}/u] \rceil \mathcal{D} \rceil$

Assume appropriate well-formedness for substitution, e.g.,

$$\mathcal{D}$$
 proves Δ, p prop, $\Delta' \vdash P$ true and $\Delta \vdash Q$ prop so that $[Q/p]\mathcal{D}$ proves $\Delta, [Q/p]\Delta' \vdash [Q/p]P$ true

 Follows from the representation of variables as variables, hypotheses as hypotheses

Representing Uses of Hypotheses

Hypothesis rule

$$\lceil \frac{}{\Delta, u : Q \; true, \Delta' \vdash Q \; true} u \rceil$$

Map to use of proof parameter in LF

$$\lceil \Delta \rceil, u$$
:true $\lceil Q \rceil, \lceil \Delta' \rceil \vdash u$: true $\lceil Q \rceil$

- Represent hypotheses as hypotheses
- ullet Hypothesis labels u avoid ambiguity

Representation of Deductions, Implication Elim

Implication elimination (review)

impe : ΠP :o. ΠQ :o. true (imp $P \ Q$) ightarrow true P
ightarrow true Q

Representation of Deductions, Implication Intro

• Implication introduction

$$\begin{array}{c} \mathcal{D} \\ \frac{\Delta, u : P \ true \vdash Q \ true}{\Delta \vdash P \supset Q \ true} \supset I^u \\ \\ \hline \begin{matrix} \Gamma \Delta \urcorner \ \vdash \ \ulcorner P \urcorner : \text{o} \\ \hline \Gamma \Delta \urcorner \ \vdash \ \ulcorner Q \urcorner : \text{o} \end{matrix} \\ \hline \begin{matrix} \Gamma \Delta \urcorner \ \vdash \ \ulcorner P \urcorner : \text{true} \ \ulcorner Q \urcorner \\ \hline \begin{matrix} \Gamma \Delta \urcorner \ \vdash \ \ulcorner D \urcorner : \text{true} \ \ulcorner Q \urcorner \end{matrix} \\ \hline \begin{matrix} \Gamma \Delta \urcorner \ \vdash \ \text{impi} \ \ulcorner P \urcorner \ \ulcorner Q \urcorner \end{matrix} \end{matrix} (\lambda u : \text{true} \ \ulcorner P \urcorner . \ \ulcorner D \urcorner) \\ \vdots \ \text{true} \ (\text{imp} \ \ulcorner P \urcorner \ \ulcorner Q \urcorner) \end{matrix}$$

• Critical step:

$$\frac{\lceil \Delta \rceil, u : \mathsf{true} \lceil P \rceil \vdash \lceil \mathcal{D} \rceil : \mathsf{true} \lceil Q \rceil}{\lceil \Delta \rceil \vdash (\lambda u : \mathsf{true} \lceil P \rceil, \lceil \mathcal{D} \rceil) : (\mathsf{true} \lceil P \rceil \to \mathsf{true} \lceil Q \rceil)}$$

Representation of Deductions, Negation Intro

Negation introduction

$$\frac{\Delta, q \ prop, u : P \ true \vdash q \ true}{\Delta \vdash \neg P \ true} \neg I^{q,u}$$

$$\frac{\Box \Delta \neg \vdash \neg P \ true}{\Box \Delta \neg q : o, u : true} \neg P \neg : o$$

$$\neg P \neg P \neg : o \neg P \neg : true \neg P \neg :$$

noti : ΠP :o. (Πq :o. true $P \to \operatorname{true} q$) $\to \operatorname{true} (\operatorname{not} P)$

• Critical step:

$$\frac{\lceil \Delta \rceil, q : \mathsf{o}, u : \mathsf{true} \lceil P \rceil \vdash \lceil \mathcal{D} \rceil : \mathsf{true} \lceil q \rceil}{\lceil \Delta \rceil \vdash (\lambda q : \mathsf{true} \ \lambda u : \mathsf{true} \lceil P \rceil, \lceil \mathcal{D} \rceil) : (\lceil q : \mathsf{true}, \mathsf{true} \lceil P \rceil \to \mathsf{true} \lceil q \rceil)}$$

Representation of Deductions, Negation Elim

Negation elimination

$$\frac{\Delta \vdash \neg P \ true}{\Delta \vdash Q \ true} \neg E$$

- Development analogous to before (omitted)
- Representation

note :
$$\Pi P$$
:o. true (not P) $\to \Pi Q$:o. true P \to true Q

ullet Order of quantification over Q is irrelevant

Representation of Deductions, Universal Intro

- Recall $\lceil \forall x. P \rceil = \text{forall } (\lambda x : i. \lceil P \rceil)$
- Universal introduction

$$\mathcal{D}$$

$$\frac{\Delta, x \ term \vdash P \ true}{\Delta \vdash \forall x. P \ true} \ \forall I$$

Need to abstract P over x

foralli :
$$\Pi \overset{P}{P:i \to o}$$
. $\underbrace{(\Pi x:i. true (P x))}_{P:i \to o} \to true (forall ($\lambda x:i. \overset{P}{P} \overset{x}{x})$)$

Representation of Deductions, Universal Elim

- Recall compositionality, $\lceil [t/x]P \rceil = [\lceil t \rceil/x] \lceil P \rceil =_{\beta} (\lambda x : \mathbf{i}. \lceil P \rceil) \lceil t \rceil$
- Universal elimination

Representation of Deductions, Summary

All rules for natural deduction with ⊃, ¬, ∀

```
impi : \sqcap P:o. \sqcap Q:o. (true P \to \operatorname{true} Q) \to \operatorname{true} (\operatorname{imp} P \ Q) impe : \sqcap P:o. \sqcap Q:o. true (imp P \ Q) \to \operatorname{true} P \to \operatorname{true} Q noti : \sqcap P:o. (\sqcap q:o. true P \to \operatorname{true} Q \to \operatorname{true} Q) note : \sqcap P:o. true (not P) \to \sqcap Q:o. true P \to \operatorname{true} Q foralli : \sqcap P:i \to o. (\sqcap x:i. true (P \ x)) \to \operatorname{true} (\operatorname{forall} (\lambda x : \operatorname{i.} P \ x)) foralle : \sqcap P:i \to o. true (forall (\lambda x : \operatorname{i.} P \ x)) \to \sqcap t:i. true (P \ t)
```

No hidden assumptions or missing definitions!

Adequacy, Revisited

- Representation function is a compositional bijection modulo definitional equality in LF
- Proof as before via canonical forms
- Object M represents deduction directly if and only if $\lceil \Delta \rceil \vdash M$: true $\lceil P \rceil$ and M is canonical
- For an arbitrary object $\lceil \Delta \rceil \vdash N$: true $\lceil P \rceil$ calculate its unique canonical form
- Proof checking by type checking in LF

Representation Example

Natural deduction

• In LF, for constant or paramater $P: i \rightarrow o$

```
\vdash \mathsf{foralli} \; (\lambda x : \mathsf{i.imp} \; (P \; x) \; (P \; x)) \\ (\lambda x : \mathsf{i.impi} \; (P \; x) \; (P \; x) \; (\lambda u : \mathsf{true} \; (P \; x) . \; u)) \\ : \mathsf{true} \; (\mathsf{forall} \; (\lambda x : \mathsf{i.imp} \; (P \; x) \; (P \; x)))
```

- Note redundant representation of propositions
- Abbreviated form used in practice ([Lect.3] [Necula])

```
\vdash foralli (\lambda x. \text{ impi } (\lambda u. u)): true (forall (\lambda x. \text{ imp } (P x) (P x)))
```

Summary of Lecture 2: Judgments as Types

- Natural deduction (for ⊃, ¬, ∀)
- Judgments as types
- Dependent function types in LF
- Hypothetical deductions as functions
- Parametric deduction as dependently typed functions
- Consistent with higher-order abstract syntax
- Renaming of bound variables and substitution immediate
- Representation is compositional bijection
- Proof checking as type checking in LF

Further Examples

- Technique successful in many logics, e.g.,
 - Sequent calculus (2 judgments P hyp, P true)
 - Hilbert calculus (1 judgment P valid [Lect.4])
 - Categorical formulation (1 binary judgment $P \rightarrow Q$)
 - Curry-Howard formulation (1 binary judgment e: P)
 - Temporal logic (2 judgments P true at t, $t \leq t'$)
- Technique successful in programming languages, e.g.,
 - functional programming: typing, evaluation, compilation
 - logic programming: typing, evaluation, compilation
 - more: [notes] [Computation & Deduction, CUP'01]

Limitations of LF

- Limitations are questions of practice, not theory
- Hypotheses not subject to weakening, contraction
- Solution: linear LF based on linear λ -calculus [Cervesato & Pf.'97]
- Hypotheses not subject to exchange
- ullet Solution: ordered LF based on ordered λ -calculus [Polakow'01]
- Built-in theories (integers, reals, strings)
- Approach: LF and dependently typed rewriting, constraints [Necula] [Virga'99]
- Implementation at twelf.org

Preview of Lecture 3: Proof Search and Representation

- Summary of LF
- Canonical forms
- Redundancy elimination
- Constraint logic programming in LF

Logical and Meta-Logical Frameworks Lecture 3: Proof Search and Representation

- Summary of LF
- Canonical forms
- Redundancy elimination
- Constraint logic programming in LF

Review of Lecture 2: Judgments as Types

- Represent propositions via higher-order abstract syntax
- Represent judgments as types, deductions as objects
- Represent hypothetical deductions as functions
- Represent parametric deductions as dependent functions
- Example: natural deduction
- Representation is compositional bijection
- Inherit renaming and substitution from LF
- Proof checking via type checking in LF

From Simple to Dependent Types

- λ^{Π} type theory from LF generalizes λ^{\rightarrow}
 - Generalize atomic types a to $a M_1 \dots M_n$, e.g., \vdash o: type to q:o \vdash true q: type
 - Extend type constants a to type families a, e.g., \vdash o: type to \vdash true: o $\rightarrow type$
 - Introduce kinds K and declare a:K, e.g., true:o $\rightarrow type$
 - Generalize function types $A \rightarrow B$ to dependent function types $\Pi x : A . B$, e.g., not : o \rightarrow o to note : ΠP :o. true (not P) $\rightarrow \Pi Q$:o. true $P \rightarrow \text{true } Q$
- $A \rightarrow B = \Pi x : A \cdot B$ for x not free in B
- $A \to K = \Pi x : A : K$ for x not free in K

Example: Classical First-Order Logic

A rule of classical reasoning

$$\frac{\Delta, u: \neg P \ true, q \ prop \vdash q \ true}{\Delta \vdash P \ true} \text{contr}$$

Typing in LF

Declaration in LF

contr :
$$\Pi P$$
:o. (true (not P) $\to \Pi q$:o. true q) \to true P

Summary of LF Type Theory

• Meta-language: λ^{Π} type theory

```
Signatures \Sigma::=\cdot\mid \Sigma, a:K\mid \Sigma, c:A

Contexts \Gamma::=\cdot\mid \Gamma, x:A

Kinds K::=type\mid \Pi x:A.K

Types A::=aM_1\ldots M_n\mid \Pi x:A_1.A_2\mid A_1\to A_2

Objects M::=c\mid x\mid \lambda x:A.M\mid M_1M_2
```

- Main judgments
 - $\Gamma \vdash_{\Sigma} A : K$ family A has kind K
 - $\Gamma \vdash_{\Sigma} M : A$ object M has type A
 - $\Gamma \vdash_{\Sigma} A = B : K \longrightarrow A$ and B are definitionally equal
 - $\Gamma \vdash_{\Sigma} M = N : A \longrightarrow M$ and N are definitionally equal

Critical Rules of LF

• Type conversion (recall: definitial equality is $\beta\eta$)

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash A = B : \mathit{type}}{\Gamma \vdash M : B} \operatorname{conv}$$

• Dependent function type, introduction

$$\frac{\Gamma \vdash A : type \qquad \Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x : A \cdot M : \Pi x : A \cdot B} \, \Pi I$$

• Dependent function type, elimination

$$\frac{\Gamma \vdash M : \Pi x : A.\, B \qquad \Gamma \vdash N : A}{\Gamma \vdash M \ N : [N/x]B} \, \Pi E$$

Dependent kind, elimination

$$\frac{\Gamma \vdash A : \Pi x : B \cdot K \qquad \Gamma \vdash N : B}{\Gamma \vdash A \ N : \lceil N/x \rceil K} \ \Pi E'$$

Theory of LF

- Complex, because types depend on objects and vice versa
- Complex, because typing depends on equality and vice versa
- Main results [Harper, Honsell, Plotkin'87'93] [Coqand'91] ...
 - Types are unique modulo definitional equality
 - Canonical forms exist and are unique
 - Definitional equality is decidable
 - Type checking is decidable
- New approach to theory [Harper&Pf'00]
- By adequacy: proof checking via LF type checking

Type Checking versus Proof Search

• Type checking (suppressing signature Σ)

Given
$$\Gamma, M, A$$
, decide if $\Gamma \vdash M : A$

Type synthesis

Given
$$\Gamma, M$$
, synthesize A such that $\Gamma \vdash M : A$ or fail

- Type checking and synthesis are decidable
- Proof search

Given
$$\Gamma, A$$
, search for M such that $\Gamma \vdash M : A$

Proof search is undecidable

The Central Importance of Canonical Forms

- **Theorem:** For every M such that $\Gamma \vdash M : A$, there is a unique canonical N such that $\Gamma \vdash M = N : A$
- Four applications of canonical forms:
 - 1. Adequacy theorems formulated on canonical forms

There is a compositional bijection between deductions \mathcal{D} of $\Delta \vdash P$ true and **canonical** objects M such that $\lceil \Delta \rceil \vdash M$: true $\lceil P \rceil$

- 2. Redundancy elimination in representation [Necula]
- 3. Focused proof search [Andreoli'91]
- 4. Higher-order constraint simplification (unification)
- Caveat: canonical forms may be too large [Statman'78]
- In practice we permit definitions c: A = M

Canonical Objects, Definition

- Judgments
 - $\Gamma \vdash M \Downarrow A \longrightarrow M$ is canonical at type A
 - $\Gamma \vdash M \uparrow A \longrightarrow M$ is neutral of type A
- Canonical objects are type-directed
- Canonical objects of function type are λ -abstractions

$$\frac{\Gamma \vdash A \Downarrow type \qquad \Gamma, x : A \vdash M \Downarrow B}{\Gamma \vdash \lambda x : A . M \Downarrow \Pi x : A . B} \, \Pi I$$

Canonical objects of atomic type are neutral

$$\frac{\Gamma \vdash M \uparrow a \ M_1 \dots M_n}{\Gamma \vdash M \Downarrow a \ M_1 \dots M_n}$$

Neutral Objects, Definition

- Neutral objects are term-directed
- Assume in declarations c:A and x:A, A is canonical
- can(A) calculates canonical form of A
- Variables and constants are neutral

 Applications of neutral functions to canonical arguments are neutral

$$\frac{\Gamma \vdash M \uparrow \sqcap x : A. B \qquad \Gamma \vdash N \Downarrow A}{\Gamma \vdash M \ N \uparrow can([N/x]B)} \sqcap E$$

Application: Bi-Directional Type Checking

- LF so far is based entirely on type synthesis
- ullet Generalize to eliminate all type labels from λ -abstractions without compromising decidability
- Bi-directional checking is robust idea, also applies to
 - subtyping and intersection types [Davies & Pf'00]
 - polymorphic recursion
 - polymorphism and subtyping [Pierce&Turner'00]
- Based on minor variant of canonical forms

Type Checking and Canonical Objects

- Judgments (on objects without type labels)
 - $\Gamma \vdash M \Downarrow A$ given Γ , M, A, check if M : A
 - $\Gamma \vdash M \uparrow A$ given Γ , M, synthesize A
- Checking at function type $(\Pi x:A.B \text{ given})$

$$\frac{\Gamma, x : A \vdash M \Downarrow B}{\Gamma \vdash \lambda x . M \Downarrow \Pi x : A . B}$$

• Checking at atomic type $(a M_1 \dots M_n \text{ given})$

$$\frac{\Gamma \vdash M \uparrow A \qquad \Gamma \vdash A = a \ M_1 \dots M_n : type}{\Gamma \vdash M \Downarrow a \ M_1 \dots M_n}$$

Type Synthesis and Neutral Objects

Synthesis of variables

$$\frac{c:A \text{ in } \Sigma}{\Gamma \vdash c \uparrow A} \qquad \frac{x:A \text{ in } \Gamma}{\Gamma \vdash x \uparrow A}$$

Synthesis of applications

$$\frac{\Gamma \vdash M \uparrow \sqcap x : A.B \qquad \Gamma \vdash N \Downarrow A}{\Gamma \vdash M \ N \uparrow [N/x]B}$$

Type Ascription

- No type labels needed for canonical objects
- ullet For other objects, introduce type ascription (M:A)
- Insert ascription where synthesis is impossible

$$\frac{\Gamma \vdash M \Downarrow A}{\Gamma \vdash (M:A) \uparrow A}$$

Example

$$p: \mathbf{o} \vdash ((\lambda q.\, q): \mathbf{o} \to \mathbf{o}) \; p \Downarrow \mathbf{o}$$
 or (assuming definitions let $x: A = M \text{ in } N$)

$$p: o \vdash let \ q: o = p \ in \ q \Downarrow o$$

Bi-Directional Checking, Example

- In practice, most objects are canonical
- Example, proof of $\forall x. P(x) \supset P(x)$ for parameter $P: i \to o$

```
\vdash foralli (\lambda x. \text{ imp } (P \ x) \ (P \ x)) \ (\lambda x. \text{ impi } (P \ x) \ (P \ x) \ (\lambda u. \ u)) \Downarrow true (forall (\lambda x. \text{ imp } (P \ x) \ (P \ x)))
```

Reduced, but not completely eliminated redundancy

```
\vdash foralli (\lambda x. \text{ imp } (P \ x) \ (P \ x)) \ (\lambda x. \text{ impi } (P \ x) \ (P \ x) \ (\lambda u. \ u))
\Downarrow true (forall (\lambda x. \text{ imp } (P \ x) \ (P \ x)))
```

Extend the idea of bi-directional checking

Redundant Dependent Arguments

Recall implication elimination

```
impe : \Pi P:o. \Pi Q:o. true (imp P Q) \to true P \to true Q
```

Representation (eliding P:o and Q:o)

```
\begin{array}{c|c} \Gamma & \vdash & D \text{ : true (imp } P \text{ } Q) \\ \hline \Gamma & \vdash & E \text{ : true } P \\ \hline \hline \Gamma & \vdash & \text{impe } P \text{ } Q \text{ } D \text{ } E \text{ : true } Q \end{array}
```

- Examples of redundancy:
 - If we can synthesize $\Gamma \vdash D \uparrow \text{true (imp } P \ Q)$ we can determine P and Q and erase them from $\Gamma \vdash \text{impe } P \ Q \ D \ E \uparrow \text{true } Q$
 - If we check $\Gamma \vdash \text{impe } P \ Q \ D \ E \Downarrow \text{true } Q$ we can determine and erase Q but not P

Bi-Directional LF

- Split true P into true $\uparrow P$ and true $\downarrow P$
- Split each constant into one or several instances
- Either by hand or by LF signature analysis
- $\Gamma \vdash M$: true $\uparrow P$ must synthesize P
- $\Gamma \vdash M$: true P checks M against true P
- Annotations must be consistent

Bi-Directional LF, Examples

- Analyse types for consistent annotations (by example only)
- !x we may assume x known
 ?x we must check if x is known
- Example: implication elimination, standard annotation

$$\mathsf{impe_1}: \sqcap P : \mathsf{o}. \ \sqcap Q : \mathsf{o}. \ \underbrace{\mathsf{true}^{\uparrow} P \ Q}_{!P \ !Q} \to \underbrace{\mathsf{true}^{\Downarrow} P}_{?P} \to \underbrace{\mathsf{true}^{\uparrow} \ Q}_{?Q}$$

• Example: implication elimination, non-standard annotation

$$\mathsf{impe}_2 : \underbrace{\sqcap P : \mathsf{o.}}_{!P} \sqcap Q : \mathsf{o.} \ \underbrace{\mathsf{true}^{\Downarrow} P \ Q}_{?P} \to \underbrace{\mathsf{true}^{\Downarrow} P}_{!Q} \to \underbrace{\mathsf{true}^{\Downarrow} Q}_{!Q}$$

Bi-Directional LF and Higher-Order Matching

Example: universal introduction, standard annotation

$$\mathsf{foralli}_1: \mathsf{\Pi} P : \mathsf{i} \to \mathsf{o.} \ (\mathsf{\Pi} x : \mathsf{i.} \ \underbrace{\mathsf{true}^{\Downarrow} \ (P \ x)}_{?P}) \ \to \underbrace{\mathsf{true}^{\Downarrow} \ (\mathsf{forall} \ (\lambda x . P \ x))}_{!P}$$

• Example: universal elimination, incorrect annotation

foralle₁:
$$\sqcap P : \mathsf{i} \to \mathsf{o}$$
. $\underbrace{\mathsf{true}^{\Downarrow} (\mathsf{forall} (\lambda x. P x))}_{?P} \to \sqcap t : \mathsf{i}$. $\underbrace{\mathsf{true}^{\Downarrow} (P t)}_{!P : !t}$

- Problem: even if we know (P t) we may not know P and t!
- Example: solve $P t = q 0 \supset q 0$ for $P:i \rightarrow o$ and t:i:

$$P = (\lambda x. q x \supset q x)$$
 and $t = 0$ or $P = (\lambda x. q 0 \supset q x)$ and $t = 0$ or

$$P = (\lambda x. q \ 0 \supset q \ 0)$$
 and t arbitrary

etc.

Strict Occurrences

- Theorem [Schürmann'00]: Higher-order matching yields a unique answer or fails if every existential variable has at least one strict occurrence
- Strict occurrences of P must satisfy two conditions
 - 1. Have the form $P x_1 \dots x_n$ for distinct parameters x_i
 - 2. Not be in an argument to an existential variable
- ullet Example: universal elimination with existentials P and t

foralle : true (forall
$$(\lambda x. \underbrace{Px})) \to \operatorname{true} (\underbrace{P}_2 \underbrace{t}_3)$$

- 1 is strict occurrence of P
- 2 is not strict (argument t is existential)
- 3 is not strict (appears in argument to existential P)

Type and Object Reconstruction for LF

- Bi-directional LF requires strict higher-order matching
- Reconstruction is always unique or fails
- For practical experience see [Necula]
- Unrestricted LF requires dependent higher-order unification
- Full reconstruction may have multiple solutions or loop
- Use safe approximation via constraint simplification
- Reconstruction may
 - succeed with principal type
 - fail with error message
 - request more information
- Works well for small objects (see Twelf)

How Do We Compute With Representations?

- LF is functional, but there is no recursion
- Recursion (even prim. rec.) destroys adequacy of encodings
- Counterexample: recall

forall :
$$(i \rightarrow o) \rightarrow o$$

Then

forall
$$f$$
: o

for recursive $f: i \rightarrow o$ is not in the image of the $\lceil _ \rceil$

- Also: would violate essential open-endedness
- i \rightarrow o must be the parametric function space, i.e., canonical $M: i \rightarrow o$ must have the form $\lambda x: i. \lceil P \rceil$ for some P

Constraint Logic Programming with LF

- We cannot easily compute functionally (but [Schürmann, Despeyroux, Pf'97] [Schürmann'00])
- Solution: compute as in constraint logic programming
- Operational semantics via search with fixed strategy
- Note: not general theorem proving
- Related to informal practice of reading rules as algorithms
- Example: bi-directional checking

Example: Recognizing Negation-Free Propositions

- Judgment: $\Delta \vdash P$ *nf* supposing $\Delta \vdash P$ *prop*
- Assume constants p:i \rightarrow o and q:o
- Four rules:

$$\begin{array}{cccc} \overline{\Delta \vdash q \; nf} & \overline{\Delta \vdash p \; t \; nf} \\ \\ \underline{\Delta \vdash P \; nf} & \underline{\Delta \vdash Q \; nf} & \underline{\Delta, x \; term \vdash P \; nf} \\ \underline{\Delta \vdash P \supset Q \; nf} & \underline{\Delta \vdash \forall x. P \; nf} \end{array}$$

• In LF (omitting implicit arguments as in Twelf):

```
\begin{array}{lll} \text{nf} & : & \text{o} \rightarrow type \\ \\ \text{nfq} & : & \text{nf} \ q \\ \\ \text{nfp} & : & \text{nf} \ (p \ T) \\ \\ \text{nfimp} & : & \text{nf} \ P \rightarrow \text{nf} \ Q \rightarrow \text{nf} \ (\text{imp} \ P \ Q) \\ \\ \text{nfall} & : & (\Pi x : \text{i.} \ \text{nf} \ (P \ x)) \rightarrow \text{nf} \ (\text{forall} \ (\lambda x . \ P \ x)) \end{array}
```

Logic Programming Notation in Twelf

Now reverse the arrows

```
\begin{array}{cccc} \text{nf} & : & \text{o} \rightarrow type \\ \\ \text{nfq} & : & \text{nf} \ q \\ \\ \text{nfp} & : & \text{nf} \ (p \ T) \\ \\ \text{nfimp} & : & \text{nf} \ (imp \ P \ Q) \\ \\ & \leftarrow & \text{nf} \ Q \\ \\ & \leftarrow & \text{nf} \ P \\ \\ \text{nfall} & : & \text{nf} \ (forall \ (\lambda x. \ P \ x)) \\ \\ & \leftarrow & (\Pi x : \text{i. nf} \ (P \ x)) \end{array}
```

 Given a query of P for a closed, ground P match heads of rules in order, then solve subgoals in order

A Program Elimination Double Negation

```
q: o.
p : i -> o.
nf : o \rightarrow type.
%mode nf +P.
nfq: nfq.
nfp: nf (p T).
nfimp : nf (P imp Q)
          <- nf P
          <- nf Q.
nfall : nf (forall [x] P x)
          \leftarrow (\{x:i\} \text{ nf } (P x)).
%query 1 * nf (forall [x] p x imp p x).
%query 0 * nf (forall [x] not (p x)).
```

Constraint Simplification in Twelf

- Given example requires only strict higher-order matching (goal has no existential variables, heads are strict)
- In general requires higher-order unification (non-deterministic and undecidable)
- Implemented instead as constraint simplification (pattern unification [Miller'91] + constraints [Pf'91'96])
- Success with constraints is conditional:
 Any solution to remaining constraints is solution to query
- Methodology: write programs to lie within the strict higher-order matching fragment whenever possible

Operational Semantics of Twelf as in Prolog

- Solve subgoal $\Pi x:A.B$ by assuming x:A and solving B
- When goal is atomic, unify with head of each hypothesis and constant in order
- When heads unify, solve subgoals from left to right
- Backtrack upon failure to most recent choice point
- In general only non-deterministically complete:
 - Finite failure implies no deduction can exist
 - May loop on judgment with a deduction
- Technique: focused proofs [Andreoli'90],
 uniform proofs [Miller, Nadathur, Pf., Scredov'91]

Experience with Logic Programming in Twelf

- Many algorithms can be specified at a very high level
- A few algorithms can be very difficult (e.g., non-parametric operations)
- Not intended for general purpose programming,
 (e.g., no cut, input/output, other impure features)
- Often possible to prove correctness inside Twelf [Lect.4]
- Examples: cut-elimination, logical interpretations, type checking, type inference, evaluation, compilation

Another Example: Eliminating Double Negations

- ullet elim \mathbf{P} Q with input \mathbf{P} generates output Q
- This "directionality" is called a mode
- Can be checked in Twelf implementation

Program in Twelf

```
elim : o \rightarrow o \rightarrow type.
%mode elim +P -Q.
eq : elim q q.
ep : elim (p T) (p T).
eimp : elim (P1 imp P2) (Q1 imp Q2)
        <- elim P1 Q1
        <- elim P2 Q2.
eall: elim (forall [x] P x) (forall [x] Q x)
        \leftarrow (\{x:i\} \text{ elim } (P x) (Q x)).
enn : elim (not (not P)) Q
       <- elim P Q.
enq : elim (not q) (not q).
enp : elim (not (p T)) (not (p T)).
enimp: elim (not (P1 imp P2)) (not (Q1 imp Q2))
         <- elim P1 Q1
         <- elim P2 Q2.
enall : elim (not (forall [x] P x)) (not (forall [x] Q x))
         <- \{x:i\} elim (P x) (Q x).
```

A Query and Answer in Twelf

```
%query 1 *
M : elim (not (not q) imp forall [x] p x imp p x) Q.
----- Solution 1 -----
Q = q imp forall ([x:i] p x imp p x).
M = eimp (eall ([x:i] eimp ep ep)) (enn eq).
```

Summary of Lecture 3: Proof Search and Representation

- ullet LF type theory is dependently typed λ -calculus
- Absence of recursion is crucial for adequacy
- Existence and uniqueness of canonical forms is crucial:
 - adequacy theorems
 - redundancy elimination in representation [Necula]
 - strict higher-order matching and constraint simplification
 - focused and uniform proof search
- Implementing algorithms via constraint logic programming
- Specifications and implementations in the same language!

Preview of Lecture 4: Meta-Logical Frameworks

- Hilbert's axiomatic calculus in LF
- The Deduction Theorem
- Meta-theoretic proofs as judgments relating derivations
- Mode, termination, and coverage checking for verification
- Summary

Logical and Meta-Logical Frameworks Lecture 4: Meta-Logical Frameworks

- Hilbert's axiomatic calculus in LF
- The Deduction Theorem
- Meta-theoretic proofs as judgments relating dedeductions
- Mode, termination, and coverage checking for verification
- Summary
- Note: in this lecture, "proof" always refers to meta-theory of deductive systems (encoded in LF)

Review of Lecture 3: Proof Search and Representation

- Central role of canonical forms:
 - adequacy theorems
 - bi-directional type-checking and redundancy elimination
 - strict higher-order matching and constraint simplification
 - focused and uniform proof search
- Absence of recursion is crucial
- Implementing algorithms via constraint logic programming
- Specifications and implementations in the same language!

Hilbert's Axiomatic Calculus

- Judgment $\Delta \vdash P$ valid for $\Delta \vdash P$ prop
- $\Delta = x_1 \ term, \dots, x_n \ term$ (no assumptions $Q \ true$ or $Q \ valid$)
- Many axioms (= inference rules with no premises)

$$K \quad \triangle \vdash P \supset (Q \supset P) \ valid$$
 $S \quad \triangle \vdash (P \supset (Q \supset R)) \supset (P \supset Q) \supset (P \supset R) \ valid$
 $N_1 \quad \triangle \vdash (P \supset \neg Q) \supset ((P \supset Q) \supset \neg P) \ valid$
 $N_2 \quad \triangle \vdash \neg P \supset (P \supset Q) \ valid$
 $F_1 \quad \triangle \vdash (\forall x. P) \supset [t/x]P \ valid$
 $F_2 \quad \triangle \vdash (\forall x. Q \supset P) \supset (Q \supset \forall x. P) \ valid \ (x \ not \ free \ in \ Q)$

Two Inference Rules

Modus Ponens

$$\frac{\Delta \vdash P \supset Q \; \textit{valid}}{\Delta \vdash Q \; \textit{valid}} \, \frac{\Delta \vdash P \; \textit{valid}}{\Delta P}$$

• Universal Generalization

$$\frac{\Delta, x \ term \vdash P \ valid}{\Delta \vdash \forall x. P \ valid} UG^x$$

Representation in Twelf

```
valid : o -> type.
k : valid (P imp (Q imp P)).
s: valid ((P imp (Q imp R)) imp ((P imp Q) imp (P imp R))).
n1: valid ((P imp (not Q)) imp ((P imp Q) imp (not P))).
n2: valid ((not P) imp (P imp Q)).
f1 : {T:i} valid ((forall [x:i] P x) imp (P T)).
f2 : valid ((forall [x:i] (Q imp P x)) % incorporates proviso!
              imp (Q imp forall [x:i] P x)).
mp : valid (P imp Q) -> valid P -> valid Q.
ug : (\{x:i\} \text{ valid } (P x)) \rightarrow \text{ valid } (\text{forall } [x:i] P x).
```

The Deduction Theorem

- Theorem: If Δ , P valid $\vdash Q$ valid then $\Delta \vdash (P \supset Q)$ valid
- **Proof:** By induction on the deduction \mathcal{H} of Δ , P valid $\vdash Q$ valid.
- \bullet Case: \mathcal{H} ends in the hypothesis rule

$$\Delta, P \ valid \vdash P \ valid$$
 hyp

Then (written in abbreviated form)

1
$$(P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P))) \supset (P \supset P))$$
 S

$$2 (P \supset ((P \supset P) \supset P))$$

3
$$(P \supset (P \supset P)) \supset (P \supset P)$$
 $MP 12$

4
$$P \supset (P \supset P)$$
 K

$$5 P \supset P$$
 $MP34$

Axiom Cases

• Case: \mathcal{H} ends in axiom K

$$\Delta, P \ \textit{valid} \vdash (Q_1 \supset (Q_2 \supset Q_1)) \ \textit{valid} \ K$$

Then

• Other axiom cases analogous

Modus Ponens

• Case: H ends in Modus Ponens

$$\mathcal{H}_{1} \qquad \qquad \mathcal{H}_{2} \\ \Delta, P \, valid \vdash Q_{1} \supset Q_{2} \, valid \qquad \Delta, P \, valid \vdash Q_{1} \, valid \\ \mathcal{H} = \qquad \qquad \Delta, P \, valid \vdash Q_{2} \, valid \qquad \qquad MP$$

$$1 \quad \Delta \vdash P \supset (Q_{1} \supset Q_{2}) \, valid \qquad \qquad \text{IH on } \mathcal{H}_{1}$$

$$2 \quad \Delta \vdash (P \supset (Q_{1} \supset Q_{2})) \\ \qquad \qquad \supset ((P \supset Q_{1}) \supset (P \supset Q_{2})) \, valid \qquad \qquad S$$

$$3 \quad \Delta \vdash (P \supset Q_{1}) \supset (P \supset Q_{2}) \, valid \qquad \qquad MP \, 2 \, 1$$

$$4 \quad \Delta \vdash P \supset Q_{1} \, valid \qquad \qquad \text{IH on } \mathcal{H}_{2}$$

$$5 \quad \Delta \vdash P \supset Q_{2} \, valid \qquad \qquad MP \, 3 \, 4$$

Universal Generalization

• Case: \mathcal{H} ends in Universal Generalization:

$$\mathcal{H}_{1}$$

$$\mathcal{H} = \frac{\Delta, x \text{ term}, P \text{ valid} \vdash Q_{1} \text{ valid}}{\Delta, P \text{ true} \vdash \forall x. Q_{1} \text{ valid}} UG^{x}$$

1
$$\Delta, x \ term \vdash P \supset Q_1 \ valid$$
 IH. on \mathcal{H}_1
2 $\Delta \vdash \forall x. (P \supset Q_1) \ valid$ UG^x 1
3 $\Delta \vdash (\forall x. (P \supset Q_1)) \supset (P \supset \forall x. Q_1) \ valid$ F_2
4 $\Delta \vdash P \supset \forall x. Q_1 \ valid$ MP 3 2

QED

A Task for a Meta-Logical Framework

- How do we represent this proof?
- Simpler question: what is its computational contents?
- Answer: a translation of deductions Δ , P valid $\vdash Q$ valid to deductions of $\Delta \vdash (P \supset Q)$ valid
- Or, after representation (ignoring Δ):

$$\mathsf{ded} : \mathsf{\Pi} P : \mathsf{o} . \; \mathsf{\Pi} Q : \mathsf{o} . \; \mathsf{(valid} \; P \to \mathsf{valid} \; Q) \to \mathsf{valid} \; \mathsf{(imp} \; P \; Q)$$

This function would be defined by recursion (induction) over

$$H: (\mathsf{valid}\ P \to \mathsf{valid}\ Q)$$

- What does this mean?
- Anyway, recursive functions cannot be part of LF

Possible Answers

- Give up on higher-order abstract syntax and use inductive encodings [many refs]
 - Lose advantages of renaming and substitution!
 - More indirect encodings and more difficult formal proofs
- Use same trick as for algorithms! [Pf'89'91]
 - Implement computational contents of proof as a logic program
 - Verify that this logic program describes a proof
 - "Logic programs as realizers"
- Other approaches [Despeyroux et al.'94'98]
 [McDowell&Miller'97] [Schürmann&Pf'98] [Hofmann'99]
 [Gabbay&Pitts'99] [Schürmann'00'01]

Proofs as Relations

- The proof of the deduction theorem describes a judgment relating deductions of Δ , P valid $\vdash Q$ valid and $\Delta \vdash (P \supset Q)$ valid
- In LF:

```
ded : \sqcap P:o. \sqcap Q:o. (valid P \to \mathsf{valid}\ Q) \to \mathsf{valid}\ (\mathsf{imp}\ P\ Q) \to type
```

- This can be represented easily, case by case
- ullet Elide P and Q as in implementation

Hypothesis Case

ullet Case: ${\cal H}$ ends in the hypothesis rule

$$\Delta, P \ valid \vdash P \ valid$$
 hyp

Then (written in abbreviated form)

$$1 \quad (P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P))) \supset (P \supset P)) \qquad S$$

$$2 \quad (P \supset ((P \supset P) \supset P)) \qquad K$$

$$3 \quad (P \supset (P \supset P)) \supset (P \supset P) \qquad MP \ 12$$

$$4 \quad P \supset (P \supset P) \qquad K$$

$$5 \quad P \supset P \qquad MP \ 34$$

- Recall ded : (valid $P \rightarrow \text{valid } Q) \rightarrow \text{valid (imp } P \ Q) \rightarrow type$
- This case ded_id : ded $(\lambda u. u)$ (mp (mp s k) k)

Axiom Cases

• Case: \mathcal{H} ends in axiom K

$$\Delta, P \ \textit{valid} \vdash (Q_1 \supset (Q_2 \supset Q_1)) \ \textit{valid} \ K$$

Then

1
$$(Q_1 \supset (Q_2 \supset Q_1)) \supset (P \supset (Q_1 \supset (Q_2 \supset Q_1)))$$
 K
2 $Q_1 \supset (Q_2 \supset Q_1)$ K
3 $P \supset (Q_1 \supset (Q_2 \supset Q_1))$ MP 1 2

- Recall ded : (valid $P \to \mathsf{valid}\ Q) \to \mathsf{valid}\ (\mathsf{imp}\ P\ Q) \to type$
- This case:

$$ded_k : ded(\lambda u. k) (mp k k)$$

• Other axiom cases are analogous

Modus Ponens

• Case: H ends in Modus Ponens

$$\mathcal{H}_{1} \qquad \qquad \mathcal{H}_{2} \\ \Delta, P \, valid \vdash Q_{1} \supset Q_{2} \, valid \qquad \Delta, P \, valid \vdash Q_{1} \, valid \\ \Delta, P \, valid \vdash Q_{2} \, valid \qquad \qquad MP \\ 1 \quad \Delta \vdash P \supset (Q_{1} \supset Q_{2}) \, valid \qquad \qquad \text{IH on } \mathcal{H}_{1} \\ 2 \quad \Delta \vdash (P \supset (Q_{1} \supset Q_{2})) \\ \qquad \qquad \supset ((P \supset Q_{1}) \supset (P \supset Q_{2})) \, valid \qquad S \\ 3 \quad \Delta \vdash (P \supset Q_{1}) \supset (P \supset Q_{2}) \, valid \qquad MP \, 2 \, 1 \\ 4 \quad \Delta \vdash P \supset Q_{1} \, valid \qquad \qquad \text{IH on } \mathcal{H}_{2} \\ 5 \quad \Delta \vdash P \supset Q_{2} \, valid \qquad MP \, 3 \, 4 \\ \end{cases}$$

Appeal to induction hypothesis as recursive call

$$\begin{array}{ll} \operatorname{\mathsf{ded}_mp} & : & \operatorname{\mathsf{ded}} \left(\lambda u.\operatorname{\mathsf{mp}} \left(H_1\ u\right)\left(H_2\ u\right)\right)\left(\operatorname{\mathsf{mp}} \left(\operatorname{\mathsf{mp}} s\ H_1'\right)\ H_2'\right) \\ & \leftarrow \operatorname{\mathsf{ded}} \left(\lambda u.\ H_1\ u\right)\ H_1' \\ & \leftarrow \operatorname{\mathsf{ded}} \left(\lambda u.\ H_2\ u\right)\ H_2' \end{array}$$

Universal Generalization

• Case: \mathcal{H} ends in Universal Generalization:

$$\mathcal{H}_{1}$$

$$\mathcal{H} = \frac{\Delta, x \text{ term}, P \text{ valid} \vdash Q_{1} \text{ valid}}{\Delta, P \text{ true} \vdash \forall x. Q_{1} \text{ valid}} UG^{x}$$

$$1 \quad \Delta, x \text{ term} \vdash P \supset Q_{1} \qquad \text{IH. on } \mathcal{H}_{1}$$

$$2 \quad \Delta \vdash \forall x. (P \supset Q_{1}) \qquad UG^{x} 1$$

$$3 \quad \Delta \vdash (\forall x. (P \supset Q_{1})) \supset (P \supset \forall x. Q_{1}) \qquad F_{2}$$

$$4 \quad \Delta \vdash P \supset \forall x. Q_{1} \qquad MP 3 2$$

Appeal to induction hypothesis as recursive call

ded_ug : ded
$$(\lambda u. \text{ ug } (\lambda x. H_1 u x)) \text{ (mp f2 (ug } H_1'))$$

 $\leftarrow \Pi x \text{:i. ded } (\lambda u. H_1 u x) \text{ } (H_1' x)$

QED

Executing the Proof Representation

 One can now execute the proof as a logic program with queries

where ${\bf H}$ is a given hypothetical deduction and H' is a variable that will be bound to the output deduction

- Computational content fully represented
- We know each output will be correct by adequacy

 $\operatorname{\mathsf{ded}} : (\operatorname{\mathsf{valid}} P \to \operatorname{\mathsf{valid}} Q) \to \operatorname{\mathsf{valid}} (\operatorname{\mathsf{imp}} P Q) \to type$

Is the Program a Proof?

Just knowing

```
ded : \Pi P:o. \Pi Q:o. (valid P \to \mathsf{valid}\ Q) \to \mathsf{valid}\ (\mathsf{imp}\ P\ Q) \to type is not enough
```

Need

```
For every \Delta = x_1:i,...,x_n:i and every object P such that \Delta \vdash P: o and every object Q such that \Delta \vdash Q: o and every object H such that \Delta \vdash H: (valid P \to \text{valid } Q) there exists an H' such that \Delta \vdash H': valid (imp P Q) and an M such that \Delta \vdash M: ded P Q H H'
```

Proof Verification

How could this property fail for a type-correct query?

ded H H'

- -H' could fail to be ground mode checking
- Query could fail to terminate termination checking
- Query could fail finitely coverage checking
- Mode, termination, and coverage checking together with adequacy of representation guarantee that the type family ded implements a proof of the deduction theorem

Mode Checking

• Quite straightforward, using strictness

- Input argument (+): assume ground for head, check ground for recursive call
- Output argument (–):
 assume ground for recursive call, check ground for head
- Good, informative error messages!

Termination Checking

- Assume user gives termination order
- Based on subterm ordering corresponding to structural induction

Termination Checking in Twelf

- Can construct lexicographic and simultaneous orders
- Difficult part: higher-order subterm orderings [Pientka]
- Explicit specification expresses "By induction over H"
- Informative error messages
- Improve checking mutual recursion [Abel][Jones]

Coverage Checking

- Guarantees that for every combination of (ground) inputs some clause applies
- Coverage entails progress (no finite failure)
- Difficult, because it contradicts open-endedness
- Inherently, to check an inductive proof, we need to fix the set of constructors
- No paradoxes, since there is no new object constructor

Regular Worlds

Recall

```
For every \Delta = x_1:i,...,x_n:i and every object P such that \Delta \vdash P: o and every object Q such that \Delta \vdash Q: o and every object H such that \Delta \vdash H: (valid P \to \text{valid } Q) there exists an H' such that \Delta \vdash H': valid (imp P Q) and an M such that \Delta \vdash M: ded P Q H H'
```

- Need to describe the form of possible contexts
- Use regular worlds defined schematically [Schürmann00]

$$\Delta_{\text{ded}} ::= \cdot \mid \Delta_{\text{ded}}, x : i$$

Coverage Checking

- ullet With respect to regular world definition (e.g., Δ_{ded})
- Coverage set = exhaustive set of possible query shapes
- ullet Initialize with most general query ded H_-
- Algorithm:
 - 1. Pick and remove a query shape G from the coverage set
 - 2. Check if G is an instance of a clause head (strict higher-order matching)
 - 3. If not, pick a candidate variable (halt if none), generate all possible instances (higher-order unification) and add them to the coverage set
 - 4. Go to 1.
- Re-implementation still in progress (not available in current Twelf)

Implementing Meta-Theoretic Proofs, Summary

 Represent computational contents as judgment relating deductions

```
(here: ded : (valid P \rightarrow \text{valid } Q) \rightarrow \text{valid (imp } P \ Q) \rightarrow type)
```

- Together
 - dependent type checking (no invalid deductions)
 - mode checking (no missing constructors)
 - termination checking (no divergence)
 - coverage checking (no finite failure)

guarantee that implementation represents meta-theoretic proof

- All of these are efficiently decidable with good or acceptable error messages
- Logic Programs as Proofs

Experience with Relational Meta-Theory

- Proofs are often very compact
 - Immediacy of encoding (hoas, judgments as types)
 - Type reconstruction
- Applicable in many case studies
 - logical interpretations (nd vs axiomatic, nd vs sequent, classical vs intuitionistic, nd vs categorical)
 - logical properties (cut elimination, normalization, deduction theorem)
 - $-\lambda$ -calculus (CR theorem, CPS transform)
 - small programming languages (functional, logic) (type preservation and progress for various type systems, compiler correctness)
- Used successfully in teaching several times

Automation

- Due to high level of representation, many meta-theorems can be proven automatically [Schürmann&Pf'98]
 [Schürmann'00]
- Input: specification, ∀∃ meta-theorem, induction order
- Output: proof in relational form
- Alternate direct search in LF (bounded depth-first search)
 with case splitting
- Often very fast (type preservation, deduction theorem)
- Not very robust with respect to signature extension
- Not very robust with respect to number of inputs

Some Limitations

- Logical relations or reducibility candidates [Girard'71]
- Where encodings are awkward (linear, ordered), proofs are infeasible
- Proofs are "write only"
- Some work on "uncompressing" into readable format
 (TCS paper on cut elimination 50% written by machine)

Summary

- Meta-logical frameworks for reasoning about deductive systems
- Two choices
 - Techniques for representation:
 usually inductive (low level), here judgments as types
 - Techniques for proof representation: usually recursive functions, here judgments relating derivations
 - Techniques for proof checking: similar in both approaches
- Various hybrid techniques have been investigated
- High-level representation facilitates both manual and automatic proofs

Course Summary

- Lecture 1: Higher-Order Abstract Syntax
 Variables as variables, representation is compositional bijection, substitution as substitution
- Lecture 2: Judgments as Types
 Parametric judgments as functions, checking deductions via type checking in LF
- Lecture 3: Search and Representation
 Canonical forms, bi-directional checking, logic programming
- Lecture 4: Meta-Logical Frameworks
 Meta-theoretic proofs as judgments relating derivations,
 checking modes, termination, coverage

Course Slogans

- Specifications, algorithms, meta-theory in the same minimal language (only type constructor: $\Pi x:A.B!$)
- Elegance matters!
- We had to slaughter some holy cows:
 - inductive types and explicit induction principles
 - tactic-based theorem proving
- Logical frameworks are not for general mathematics

On the Horizon

- Module system
- Constraint domains (rationals)
- Linearity and order in the framework
- Compression of deductions
- Specialization with respect to fixed signature?

Reference Material

• Lecture Material:

Logical frameworks.

Handbook of Automated Reasoning,

Chapter 16, pp. 977-1061,

Elsevier Science and MIT Press, June 2001.

• Textbook:

Computation and Deduction.

Cambridge University Press, Fall 2001.

• Implementation: twelf.org