Logical and Meta-Logical Frameworks
Frank Pfenning

Marktoberdorf Summer School 2001
July 25-August 4, 2001

1.1

First Things First

e If you play squash see me after lecturel

1.2

Outline of Four Lectures

e Lecture 1: Higher-Order Abstract Syntax
e Lecture 2: Judgments as Types
e Lecture 3: Proof Search and Representation

e Lecture 4: Meta-Logical Frameworks

1.3

Logical and Meta-Logical Frameworks
Lecture 1: Higher-Order Abstract Syntax

> W N

. Introduction

Parametric and hypothetical judgments

Higher-order abstract syntax

. Properties of representations

1.4

Deductive Systems

e Judgment — object of knowledge
e Evident Judgment — something we know
e Deduction — evidence for a judgment

e Basic Judgments, for example
— P is a proposition (P prop)
— P is true (P true)

e Judgment Forms, for example

— Parametric judgments =z termt+ P(x) D Q(x) prop

— Hypothetical judgments P true, (P D Q) truet Q true

e Following Martin-L06f ['83,'85,'96]

1.5

Examples of Deductive Systems

e From logic
— Natural deduction P; true,..., P, truet @ true
— Sequent calculus P hyp, ..., P, hypF Q true

— Axiomatic derivation + @ valid

e Other logics (temporal, modal, linear, higher-order,
dynamic, non-commutative, belief, relevance, ...)

e From programming languages
— Typing z1:71,...,Tpn.TnHe. T
— Evaluation e — v
— Equivalence z1:mq,...,xnThFeqg ~eo i T

— Compilation x1:71,...,zpn:Th F e —c

1.6

Logical Frameworks

e Logical Framework — meta-language for deductive systems

e Tasks
— Specification of abstract syntax and rules
— Representation and verification of deductions
— Implementation of algorithms (search, type inference)

e Applications
— Reasoning in logical systems [Nipkow]

— Verification (hardware, software, protocols)
[Constable] [Grumberg]

— Proof-carrying code [Necula]
— Education

e Factor implementation effort!

1.7

Examples of Logical Frameworks

e Hereditary Harrop formulas
Isabelle, A\Prolog

e M\ type theory
Automath, LF, EIf, Twelf

e Substructural logics and type theories
Forum, Linear LF, Ordered LF, Ludics(?) [Girard]

e Equational logic and rewriting
Maude, ELAN, labelled deductive systems

e Constructive type theories
ALF, Agda, Coq, LEGO, Nuprl

1.8

Meta-Logical Frameworks

e Meta-Logical Framework —
meta-language for reasoning about deductive system

e Tasks

— Specification of abstract syntax and rules

— Proof of properties of deductive systems

e Applications
— Logic specification and verification
— Programming language design

— Reflection and proof compression

1.9

Examples of Meta-Logical Frameworks

e Finitary inductive definitions
FSgy [Feferman’'88]

e Definitional reflection
FOLAN [McDowell&Miller'97]

e Higher-level judgments and regular worlds
Mo, Twelf [Schiirmann’00]
e Other systems used as meta-logical frameworks

— Constructive type theories
Agda, Coq, LEGO, Nuprl

— Higher-order logic
HOL, Isabelle/HOL

— Rewriting logic
Maude

1.10

T hese Lectures

e Running examples: natural deduction, axiomatic derivations
e Logical framework: LF, EIf
e Meta-logical framework: Twelf

e Reference:

LLogical frameworks.

Handbook of Automated Reasoning,
Chapter 16, pp. 977-1061,

Elsevier Science and MIT Press, June 2001.

e [extbook:

Computation and Deduction.
Cambridge University Press, Fall 2001.

e Implementation: twelf.org

1.11

Terms and Propositions of First-Order Logic

e Basic judgments: t term, P prop
e Parametric judgments:

x1 term,...,xnp termt=t term
x1 term,...,xn termt= P prop
e 1; are parameters
e x, term are hypotheses
e Notation: A =zxq term,...,xy term

e Assume all z; distinct!

1.12

Substitution

e Defines meaning of parametric judgment
e Substitution [t/x]s and [t/x]P (defined as usual)

e Substitution property (similarly for propositions):

If A,z term, A" - s term
and A+t term
then A, A’ [t/xz]s term

e Hypothesis rule:

h
A, xterm, A+ x term yP

e Parameters need not be used (weakening)

e Parameters may be used more than once (contraction)

1.13

Logical Connectives

e Implication formation

A+ P prop A+ Q prop
AFPDQ prop

DF

e Negation formation

A+ P prop
A+ =P prop a

e Universal quantification

A, xterm = P prop JF
A+ VYx. P prop

1.14

Free and Bound Variables

e Free variables defined as usual

e Bound variables defined as usual (binder Vz)

e Vx. P =Vy.[y/x]P provided y not free in P

e Identify propositions up to renaming of bound variables

e Substitution avoids capture by silent renaming, e.g.,

ly/z](Vy. Pyz) = [y/z](Vy. Py z)
= Vy. Py y
ly/z](Vy. Pyz) # Vy.Pyy
e Parameters in context x1 term, ..., x, term are all distinct

1.15

Predicate and Function Symbols

e Predicate symbols p™ of arity n
e Functions symbols f™ of arity n

e “Uninterpreted” in first-order logic:
judgments are parametric in p™ and f"

e May be interpreted in arithmetic or other theories:
judgments are no longer parametric

1.16

Representing Terms and Propositions

e | WO critical issues:
— How to represent variables and substitution

— How to represent judgments ¢t term and P prop

e [hree standard variable techniques:
— Named (string) representation
— De Bruijn representation

— Higher-order abstract syntax

e [wo standard judgment techniques:
— Judgments as propositions

— Judgments as types

1.17

Simply-Typed Fragment of LF

e Meta-language: A\ as fragment of LF

Signatures ¥ = .| X,a:type | X, c:A
Contexts I 1= -|,xz:A
Types A = al| A1 — As
Objects M == c|z|Ax:A. M | My M>

e [ype constants a, object constants ¢, object variables x

e Judgments defining meta-language A~ (more later)
— 2 s1g — sSignature 2 is valid
— [ctz — context I is valid
— K A type — type A is a valid
— [M:A— object M has type A

1.18

Representation of Terms

e Introduce type | for terms

| © type
e Property: if t term then "¢ : |
e More generally:
If x1 term, ..., xp term =t term

then x1:,...,xpi "t
e Representing parameters as parameters in LF,
=

e Representing hypotheses as hypotheses in LF,

"xq term,...,xpterm’!' = xq,...,xTni

1.19

Representation of Propositions

e Introduce type o for propositions
o : type

e Property: if P propthen "P':o

e More generally:

If x1 term, ..., xp term = P prop
then x1:,...,xpiiF"P':o0

e Again: parameters as parameters, hypotheses as hypotheses

1.20

Constructors as Constants, Implication

e Implication

A+ P prop A+ Q prop
AFPDQ prop

DF

I_P D) Q—I — Imp I_P—I I_Q—I

imp:o0o—0—0

1.21

Constructors as Constants, Negation

e Negation

A+ P prop

A+F-—-P propﬁ

"—P'=not" P

not . o—o0

1.22

Constructors as Constants, Universal Quantification

e Universal quantification

A, xtermtE—= P prop JF
A+ VYx. P prop

"Va. P = forall (Az:i." P)

forall : (i—o0) — o

e Essential reasoning
"AlziEF"P':o
"ATFforall : (i—0) — o "ATE A TP i—o0
"ATE forall (Axz:i."P) i o

e Bound variables as \-bound variables in LF

1.23

Function and Predicate Symbols

e Propositional or term constants have arity O.

e For function symbols f:

T, tn) T =T L

fra— - i— i

\ 7
Vo
n

e For predicate symbols p™:

T (t1, ..., tn) T =pt1" ...

p:Jd—---1—0
n

e Status as parameters (in context A)

or constants (in signature >) depends on application

I—tn—l

I—tn—l

1.24

Examples of Representations

e Represent predicate parameters by corresponding LF
parameters

e PHO(Q@DP)'=impP (impQ P)
for P:o,Q :o

o "Vz.P(z) D Q(x) "' = forall (Az:i.imp (P x) (Q x))
for P:.i—o0,Q.i—o0

o "Vx.P D Q(x)" = forall (Az:i.imp P (Q x))
for P:o,QQ :i—o
Note: substituent for P cannot refer to x

1.25

Summary of Representation

e [erms and propositions

o
"PO>QT = imprP7 Q" imp
=P = not" P not
"Vax. P71 = forall (Az:i." P) forall

e Variables are represented as variables
Higher-order abstract syntax

e Variable renaming as a-conversion in LF

e Essentially open-ended [Constable]

type
type
0—0—0
0— 0
(i—o0)—o

1.26

Adequacy T heorem for Propositions

e With respect to fixed signature (suppressed)

e Validity:
IfFAFP prop then "A'F"P':o

e Injectivity: IfTP'="Q" then P = Q

e Surjectivity?

IFf"A'FM :o
then M ="P"' for some P with A+ P prop?

e Compositionality:

[I—t—l/ilj] rp1 = '—[t/ZU]P—I

1.27

Surjectivity

e Validity, injectivity, and compositionality by easy inductions

e Surjectivity fails:
— Counterexample, for p:i—o
- forall (Az:i. ((Ag:o.q) (px))) : 0
is not in the image of " _
— Solution: B-reduction to

- forall (Az:i.p x)

— Counterexample, for p:i—o

- forall p : o
is not in the image of " _
— Solution: m-expansion to

- forall (Az:i.p x)

1.28

Definitional Equality for LF

e Equip LF with a notion of definitional equality
o 5 M =N:A—objects M and N are definitionally equal

e Congruence generated from - and n-conversion

(Ax:A.M) N = [N/x]M
M:A— B = Mt:A.M x provided x not free in M

o Definesothat T M =N A
ensuresFM' - M :Aand 'k N A

1.29

Surjectivity Corrected

e Surjectivity (corrected):
IF"A'FM :o

then " A'FM="TP':o0
for some P with A = P prop

e Injectivity (retained):

IF"A'FTPT="Q":0
then P=(Q for A+ P prop and A () prop

e Recall: everything modulo renaming of bound variables

e Proofs via canonical forms

1.30

Canonical Forms

o [- My A— M is canonical of type A
e Intuition: canonical is g-normal and n-long:
MJAL—...2>Ar—a
iff
M = Ax1:Aq. ... dxp Ap.h My ... My

for a variable or constant h, type constant a,
and canonical My,..., My,

e More formal definition later

e T heorem: Every valid object has an unique, equivalent
canonical form

e Obtained by p-reduction and n-expansion

1.31

Injectivity Interpreted

e Recall injectivity:

IF"A'FTPT="TQ"':0
then P = (@ for every A+ P prop and A+ Q) prop

e NO ambiguity in representation

e Stronger than usual in data representation:
data type = representation type + equivalence relation

e Operations on objects well defined (coherence)

e Sometimes sacrificed, e.g.,
integers "¢ ' = diff n m for n,m:nat with t =n —m

1.32

Surjectivity Interpreted

e Recall surjectivity:

IFTA'EM:o
then " A'FM="TP':o0
for some P with A = P prop

e NO “junk’” in representation type

e Stronger than usual in data representation:
data structure = data type <+ invariants

e Incorporate invariants when possible

e Not always feasible, e.qg.,
linear A\-terms = A\-terms -+ linearity

1.33

Compositionality Interpreted

e Recall compositionality:
[I‘t—l/w]l_P—l — l_[t/x]P—l

e Representation commutes with substitution
e Consequence of representing variables as variables

e Substitution represented by B-reduction in LF, e.g.,

"Vx. P = forall (Az:i." P)
t/x]PT=["t/z]" PT=g (Az:i." P) t

e Critical advantage of higher-order abstract syntax

1.34

Summary of Lecture 1

e Introduction and overview

e Parametric and hypothetical judgments,
defined by substitution property

e Sample object language is first-order logic
e Meta-language is simply-typed fragment of LF

e Representation via higher-order abstract syntax
— Variables as variables in LF
— Variable renaming as «a-conversion in LF

— Substitution as @-conversion in LF

e Representation is injective, surjective, compositional

1.35

Preview of Lecture 2: Judgments as Types

1. Natural Deduction
. Judgments as Types

Dependent Function Types in LF

AW N

. Representing Parametric and Hypothetical Judgments

1.36

Reminder

e If you play squash see me now!

1.37

Logical and Meta-Logical Frameworks
Lecture 2: Judgments as Types

1. Natural Deduction
. Judgments as Types

Dependent Function Types in LF

sl

Representing Parametric and Hypothetical Judgments

2.1

Review of Lecture 1: Higher-Order Abstract Syntax

e Meta-language: simply-typed A-calculus as fragment of LF

e Representing terms and proposition

i . type

0 . type
"POQQ'" = imp"P'"TQ" imp . 0o—0—0
TP = not" P not : o—o
"Vax. P71 = forall (Az:i." P) forall : (i—o0) —o

e Variables represented as variables in LF

e \Variable renaming via a-conversion in LF

e Definitional equality in LF generated from [n-conversion

e Adequacy: representation is compositional bijection
'_[t/:v]s—' — ['—t—l/ib]'—S—l, '—[t/ZU]P—I — ['—t—I/ZU]I—P—I

2.2

Natural Deduction

e Basic judgment: P true, presupposing P prop
e Intuitively: P has a verification [Martin-L6f'83,'96]
e Parametric and hypothetical judgment A - P true

e Need hypotheses
— ¢ term for term parameter x (for V)
— p prop for propositional parameter p (for —)

— w.(Q true for proposition @ and proof parameter u (for D)

e Hypothesis rule

u
A, u:Ptrue, A' - P true

2.3

Substitution Principles

e Recall: meaning of parametric judgments

e More complicated than before, because hypotheses may
contain parameters (A has internal dependencies)

e Example: =z term,uw:P(x) truet P(x) true

e For term parameters (similarly for propositional parameters)

If A,z term, A’ = P true
and At term
then A, [t/x] A"+ [t/x] P true

e For proof parameters

If A\, u:P true, A' - Q true
and A+ P true
then A\, A"+ Q true

2.4

Introduction and Elimination Rules

e The meaning of a connective is given by the rule(s) for
inferring it, the introduction rule(s)

e Corresponding elimination rule(s) justified from
introduction rule(s)

e Local soundness: we cannot gain information by an
introduction followed by an elimination

e Local soundness is guaranteed by a local reduction

e |.ocal completeness: we can recover the information in a
connective by elimination(s)

e Local completeness is guaranteed by a local expansion

e For local completeness and expansion see [notes]

2.5

Truth of Implication

e Introduction rule;:

A, u.Ptruet Q@ true
AFPDQ true

u

e Elimination rule:

AFPDQ true AI—PtrueDE
A Q true

e Local reduction (soundness of elimination rule)

D
A, u.Ptruet Q true Tu £
AFP>Qtrue ~° AF P true . (€ /u]D
A Q true = — A FQ true

by substitution principle for proofs

2.6

Truth of Negation

e Introduction rule;:

A, qprop,u.P truet q true
A+ —-P true

—|Iq7u

e Note propositional parameter q

e Elimination rule:

AP true AI—Ptrueﬁ

E
AFQ true

e Definition of logical connectives only via judgmental notions

e Orthogonality and open-endedness

2.7

Local Reduction for Negation

e Local reduction

D
A, qprop,u.P truet- q true - £
A —P true A P true
AFQ true
[€/u][Q/q]D
— A Q true

e First substitution for proposition q

[Q/q]lD
A, u.Ptruet Q true

e Second substitution for proof u

[€/u][Q/q]D
A Q true

2.8

Truth of Universal Quantification

e Introduction rule;:

A, xtermt P true
A FVx. P true

e Elimination rule:
A FVz. P true A+t term

A F [t/x]P true VE
e Local reduction:
D
A, xtermt P true I T
A Vz. P true At term v [t/z]D
A F [t/x]P true — A& [t/x] P true

by substitution principle for terms

2.9

Representation of Deductions

e Represent judgments as types in LF (ignoring hyps.)

"P true'=true" P
- true " P type

true : o — type

e true iS a type family indexed by objects of type o

e Represent deductions as objects in LF

r 1

D
Ptrue =M suchthat +FM :true" P

e Requires extension of simply-typed fragment of LF

2.10

Representation of Inference Rules as Constants

e Example: implication elimination (ignoring A)

r 1

D E
AFPDQ true A+ P true
OF

AFQ true = impe " D'"E!

e Translation into LF (ignoring A)
D7 ¢ true (imp "TPTTQM)
"ET : true" P
impe "D'TET 1 true" Q'

e Declaration for constant impe in LF

impe : true (imp "P'"Q") —>true" P — true" Q!

2.11

Schematic Rules

e Rules are schematic, e.qg.,

AFPDQ true A+ P true

E
A Q true =

iIs schematic in propositions P and Q.
e Representation is schematic, e.q.,

impep o : true (imp P Q) — true P — true Q

for any P:.o, Q.0 by adequacy for propositions
e Internalize schematic judgments in LF (read I as “Pi")

impe : MMP:o.MQ:o.true (imp P Q) — true P — true

2.12

Representing Schematic Judgments

o [1lx:A. B must be a type, e.q.,

impe : MMP:o.MQ:o.true (imp P Q) — true P — true

e Constant impe takes 4 arguments

an object P :o

an object @ : o

an object D : true (imp P Q)

an object E : true P

and constructs

the object impe P QQ D E : true Q)

a proposition P
a proposition @
a deduction of P D @ true

a deduction of P true

a deduction of @ true

2.13

Dependent Function Type in LF, Formation

e Dependent function type, formation

[= A type [,x: A+ B type
[+ Tx:A. B type

MF

[~ A type [+ B : type

- A— B type —F

e In Nx:A. B, x can occur in B
e Example:

= MP:o.MQ:o.true (imp P Q) — true P — true Q : type

e Different from polymorphism (not available in LF)

= Aa:type. Ax.a. x . Vaitype. a — «

2.14

Dependent Function Type, Intro and Elim

e Dependent function type, introduction
= A type ,e:AFM:B
= Xz:A. M : Mz A B

= A type L, e:AFM:B

M- Az A M:A— B -1
e Dependent function type, elimination
=M :Tlx:A. B I’I—N:AHE

r-MN:[N/z]|B

r-M: A— B I‘I—N:A_>
Fr'-M N : B

E

e Regard A — B as shorthand for lNx:A. B,
where x not free in B

2.15

Representing Parametric Judgments

e Recall natural deduction judgment A - P true

e Hypotheses A contain
— ¢ term for term parameter x (for V)
— p prop for propositional parameter p (for —)

— w:(QQ true for proposition @ and proof parameter u (for D)

e Represent parameters as parameters in LF

roo= .
"A,xterm! = TA x:i
"A,pprop’ = "A' po

A uQtrue’ = TA L utrue" Q!

2.16

Adequacy Theorem for Deductions, Bijection

e With respect to fixed signature (see later)
e Validity: If D proves A+ P true then "A "D : true" P

e Injectivity:

IF"A'F"™DT'="E" . true" P
for D and £ proving A+ P true
then D = & (modulo variable renaming)

e Surjectivity:
IF"A'H M :true" P

then "A'-M="D":true" P
for some D proving A+ P prop

2.17

Adequacy for Deductions, Compositionality

e Compositionality:

Terms "[t/x]D" = ["t/z]" D"
Propositions "[Q/plD'" = ["Q'/p]" D
Proofs "[E/u]DY = [TE€/u]" D"

e Assume appropriate well-formedness for substitution, e.g.,

D proves A\, p prop, A" = P true and A\ = Q prop
so that [Q/p]D proves A, [Q/p]A" = [Q/p]P true

e Follows from the representation of variables as variables,
hypotheses as hypotheses

2.18

Representing Uses of Hypotheses

e Hypothesis rule

r 1

u
A, u:Q true, A' - Q true

e Map to use of proof parameter in LF

"TAT witrue TQT,TAT R w : true TQT

e Represent hypotheses as hypotheses

e Hypothesis labels v avoid ambiguity

2.19

Representation of Deductions, Implication Elim

e Implication elimination (review)

[]
D E
AFPDQ true A+ P true =
A Q true =
"AT F TP':0
I_A—I |_ I_Q—I "0
"A7T F "DV itrue (imp"PTTQ)
"AT F TEV: true" P
"AT F impe"P'TQ'TD'TE i true" Q"

impe : [P:o.MQ:o.true (imp P Q) — true P — true QQ

2.20

Representation of Deductions, Implication Intro

e Implication introduction

r 1
D
A, u.Ptruet Q@ true
DOIY
AFPDQ true

"AT F TP':o

I—A—I |_ I_Q—I o)
"A L utrue" P F "D itrue" Q!

"AT F impi"P'TQ T (A\uitrue"P1.TD)

true (imp "P'TQT)
impi : MNP:o.MQ:0. (true P — true Q) — true (imp P Q)

e Critical step:
"A L utrue"P'ETD U true" Q!
"ATE (Auitrue"P LD (true " P —true T Q)

2.21

Representation of Deductions, Negation Intro

e Negation introduction

r 1
D
A, qprop,u.P truet- q true

—Jou
A+ =P true

"AT F "TP':o
"A vV go,utrue"P' F "D7':true"q'
"AT7 F noti"P'(Ag:io. Autrue"P.TDT)
. true (not " P)

noti : MP:o. (Mgq:o.true P — true q) — true (not P)

e Critical step:
"A TV qgo,utrue" P'F"D 1 trueq"

"ATE (Ag:true. Auitrue "P.TDT) 1 (Mg:true. true" P — true "g ")

2.22

Representation of Deductions, Negation Elim

e Negation elimination

A+ =P true AFPtrueﬁ

E
AFQ true

e Development analogous to before (omitted)
e Representation

note : MP:o.true (not P) — lMNQ:o.true P — true Q)

e Order of quantification over @ is irrelevant

2.23

Representation of Deductions, Universal Intro

e Recall "Vz. P = forall (Axz:i." P")

e Universal introduction
[]

D
A, xtermt P true

A FVYx. P true

"Alzi F "P'l:o
"Alzi F "D'V':true" P

"AT F foralli (Az:i."PT) (Az:i."D") : true (forall (Ax:i. [P))
P D P x

e Need to abstract P over x

P D P x
—=

foralli : MP1 — 0. r(l‘l:v:i.trJe (P z)) — true (forall (A\z:i. P z))

2.24

Representation of Deductions, Universal Elim

e Recall compositionality,
"[t/x]P = ["t"/x]" P =3 (Az:i."P) ¢!

e Universal elimination

r 1
D T
A FVz. P true At term 5
A F [t/x]P true v

"AVxi F "TP7:o P x

"AT F "D true (forall (Ax:i. "P))

AT R T

AT+ foralle (Ax:i."P) "Dt true ([t/x]" PT)

j2 Pt
P Pz Pt

et P —
foralle : M P:i — o.true (forall (Az:i. P x)) — lMt:i.true (P t)

2.25

Representation of Deductions, Summary

e All rules for natural deduction with O, =, V

true : o — type

impi : TMP:o.MNQ:o. (true P — true Q) — true (imp P Q)
impe : [MP:o0.MQ:o.true (imp P Q) — true P — true Q)
noti : [P:o.(lMgq:o0.true P — true q) — true (not P)
note : [P:o.true (not P) — MNQ:o.true P — true QQ
foralli : MP:i — o. (Mx:i. true (P x)) — true (forall (Ax:i. P x))
foralle : TMP:i — o.true (forall (Az:i. P x)) — Mt:i.true (P t)

e NoO hidden assumptions or missing definitions!

2.26

Adequacy, Revisited

e Representation function is a compositional bijection
modulo definitional equality in LF

e Proof as before via canonical forms

e Object M represents deduction directly if and only if
"A'TE M :true" P'"and M is canonical

e For an arbitrary object "TA ' N : true" P!
calculate its uniqgue canonical form

e Proof checking by type checking in LF

2.27

Representation Example

e Natural deduction

u
x term,uw:P(x) truet P(x) true
xtermt P(x) D P(x) true
-Vz. P(x) D P(x) true

(v

X

e In LF, for constant or paramater P:i— o
- foralli (Ax:i.imp (P z) (P x))
(Az:i.impi (P z) (P z) (Au:true (P x).u))
. true (forall (Az:i.imp (P x) (P x)))
e Note redundant representation of propositions

e Abbreviated form used in practice ([Lect.3] [Necula])

- foralli (Az. impi (Au. w)) : true (forall (Az.imp (P xz) (P x)))

2.28

Summary of Lecture 2: Judgments as Types

e Natural deduction (for D, —, V)

e Judgments as types

e Dependent function types in LF

e Hypothetical deductions as functions

e Parametric deduction as dependently typed functions

e Consistent with higher-order abstract syntax

e Renaming of bound variables and substitution immediate
e Representation is compositional bijection

e Proof checking as type checking in LF

2.29

Further Examples

e lechnique successful in many logics, e.qg.,
— Sequent calculus (2 judgments P hyp, P true)
— Hilbert calculus (1 judgment P valid [Lect.4])
— Categorical formulation (1 binary judgment P — Q)
— Curry-Howard formulation (1 binary judgment e : P)

— Temporal logic (2 judgments P true att, t <t')

e lechnique successful in programming languages, e.g.,
— functional programming: typing, evaluation, compilation
— logic programming: typing, evaluation, compilation

— more: [notes] [Computation & Deduction, CUP'01]

2.30

Limitations of LF

e Limitations are questions of practice, not theory
e Hypotheses not subject to weakening, contraction

e Solution: linear LF based on linear \-calculus
[Cervesato & Pf."97]

e Hypotheses not subject to exchange

e Solution: ordered LF based on ordered M-calculus
[Polakow'01]

e Built-in theories (integers, reals, strings)

e Approach: LF and dependently typed rewriting, constraints
[Necula] [Virga'99]

e Implementation at twelf.org

2.31

Preview of Lecture 3:
Proof Search and Representation

e Summary of LF
e Canonical forms
e Redundancy elimination

e Constraint logic programming in LF

2.32

Logical and Meta-Logical Frameworks
Lecture 3: Proof Search and Representation

e Summary of LF
e Canonical forms
e Redundancy elimination

e Constraint logic programming in LF

3.1

Review of Lecture 2: Judgments as Types

e Represent propositions via higher-order abstract syntax
e Represent judgments as types, deductions as objects

e Represent hypothetical deductions as functions

e Represent parametric deductions as dependent functions
e Example: natural deduction

e Representation is compositional bijection

e Inherit renaming and substitution from LF

e Proof checking via type checking in LF

3.2

From Simple to Dependent Types

e M type theory from LF generalizes A\~
— Generalize atomic types a to a My ... My, €.9.,
~o: type tO q.o I true q : type

— Extend type constants a to type families a, e.g.,
~o: type tO F true: o — type

— Introduce kinds K and declare a:K, e.g.,
true:o — type

— Generalize function types A — B to
dependent function types Nz:A. B, e.g.,
not : o — o to
note : MP:o. true (not P) — MNQ:o. true P — true Q

o A~ B =1I1x:A. B for x not free in B
o A K =1TIlz:A. K for x not free in K

3.3

Example: Classical First-Order Logic

e A rule of classical reasoning

D
A, u.~Ptrue,q propt- q true

A+ P true

contr

e Typing in LF

"A'" F "TP':o
"A 7V utrue (not"P'),q:0 F "D7':trueq

"AT7 F contr" P (Au:true (not "P). A\q:0."D")
true " P

e Declaration in LF

contr : MP:o. (true (not P) — lNgq:o. true q) — true P

3.4

Summary of LF Type Theory

e Meta-language: A\ type theory

Signatures * XK | X, cA

Contexts I 1= -|[,x:A
Kinds K ::= type|MNx:A. K
Types A = aMqp ... Mp|Nx:Aq1. A | A1 — Ao
Objects M == c|z|Ax:A. M | M1 M>

e Main judgments
— [k A: K — family A has kind K

[M : A— object M has type A

— 'k A=B: K — A and B are definitionally equal
(' M =N:A— M and N are definitionally equal

™M

3.5

Critical Rules of LF

e Type conversion (recall: definitial equality is 6n)

r-M: A A= B: type
r-M:B

conv

e Dependent function type, introduction
= A type ,e:AFM:B
=X A.M : Mx:A. B

e Dependent function type, elimination
=M :TMx:A. B r=N: A

=M N :[N/x]B e
e Dependent Kind, elimination
[FA:Tzx:B. K I’I—N:BI_IE,

AN : [N/z]K

3.6

Theory of LF

e Complex, because types depend on objects and vice versa
e Complex, because typing depends on equality and vice versa

e Main results [Harper,Honsell,Plotkin’'87'93] [Cogand’'91] ...
— Types are unigue modulo definitional equality
— Canonical forms exist and are unique
— Definitional equality is decidable

— Type checking is decidable

e New approach to theory [Harper&Pf'00]

e By adequacy: proof checking via LF type checking

3.7

Type Checking versus Proof Search

Type checking (suppressing signature 3)
Given ', M, A, decide ifT M . A
Type synthesis
Given ', M, synthesize A such that T = M . A or fail

Type checking and synthesis are decidable

Proof search
Given I, A, search for M such that '+ M : A

Proof search is undecidable

3.8

The Central Importance of Canonical Forms

e T heorem: For every M such that ' - M : A, there is a
unique canonical N suchthat T+t M =N : A

e Four applications of canonical forms:
1. Adequacy theorems formulated on canonical forms

There is a compositional bijection between
deductions D of A+ P true and canonical objects
M such that "A '+ M : true™ P!

2. Redundancy elimination in representation [Necula]
3. Focused proof search [Andreoli'91]
4. Higher-order constraint simplification (unification)

e Caveat: canonical forms may be too large [Statman’78]

e In practice we permit definitionsc: A =M

3.9

Canonical Objects, Definition

e Judgments
— M|y A— M is canonical at type A
— M1t A— M is neutral of type A

e Canonical objects are type-directed

e Canonical objects of function type are A-abstractions

=AY type [, x:AF-M | B
[FXx:A.M | lNx:A. B

I

e Canonical objects of atomic type are neutral

r-M+aMy.. My
T-M{aMy... M,

3.10

Neutral Objects, Definition

e Neutral objects are term-directed
e Assume in declarations c:A and z:A, A is canonical
e can(A) calculates canonical form of A

e Variables and constants are neutral
c:Ain 2 z.Ain I
[FcT A [FxT A

e Applications of neutral functions to canonical arguments
are neutral

M1 Nx:A B FrENJ| A

=M N 1 can([N/z]B) e

3.11

Application: Bi-Directional Type Checking

e |LF so far is based entirely on type synthesis

e (Generalize to eliminate all type labels from M-abstractions
without compromising decidability

e Bi-directional checking is robust idea, also applies to
— subtyping and intersection types [Davies & Pf’'00]
— polymorphic recursion

— polymorphism and subtyping [Pierce& Turner’'00]

e Based on minor variant of canonical forms

3.12

Type Checking and Canonical Objects

e Judgments (on objects without type labels)
—I'=-=MJ|A—gqgivenl, M, A, check if M : A
—I'=-M*1T A —given I, M, synthesize A

e Checking at function type (MNz:A. B given)

[, x:AF-M]| B
[(FXe. M | lNx:A. B

e Checking at atomic type (a My ... M, given)

r=M1T A [FA=aMy... My : type
r-M{yaMi... My

3.13

Type Synthesis and Neutral Objects

e Synthesis of variables

c:Ain 2 rAin [
FectT A Fx T A

e Synthesis of applications

MMMz A B FrENJ A
r-M N1 [N/z]|B

3.14

Type Ascription

e NO type labels needed for canonical objects
e For other objects, introduce type ascription (M : A)

e Insert ascription where synthesis is impossible

r-MJ{ A
TE(M:A)T A

e Example

pok ((A\g.q) i0o—0)plo

or (assuming definitions let z:A = M in N)

pokFletqgo=ping|o

3.15

Bi-Directional Checking, Example

e In practice, most objects are canonical

e Example, proof of Va. P(xz) D P(x) for parameter P:i—o

= foralli (Az.imp (P x) (P x)) (Ax.impi (P z) (P x) (Au.u))
| true (forall (Az.imp (P x) (P x)))

e Reduced, but not completely eliminated redundancy

- foralli (Az. impi (Au.u))
| true (forall (Az.imp (P x) (P x)))

e Extend the idea of bi-directional checking

3.16

Redundant Dependent Arguments

e Recall implication elimination

impe : MP:o.MQ:o.true (imp P Q) — true P — true QQ

e Representation (eliding P:o and Q:o)

I+ D :true (imp P Q)
 + E :true P
[+ impe PQ D E :true @

e Examples of redundancy:

— If we can synthesize ' = D 1 true (imp P Q)
we can determine P and Q and erase them from
[F impe D E 1 true Q)

— If we check ' - impe P () D E | true Q
we can determine and erase) but not P

3.17

Bi-Directional LF

e Split true P into truel P and truet P

e Split each constant into one or several instances
e Either by hand or by LF signature analysis

e [~ M : truel P must synthesize P

o [~ M : true¥ P checks M against true P

e Annotations must be consistent

3.18

Bi-Directional LF, Examples

e Analyse types for consistent annotations (by example only)

e X — we may assume x known
X — we must check if £ is known

e Example: implication elimination, standard annotation

impeq : :crueT PQ— true? P — true’ Q
IP1Q 7P 70

e Example: implication elimination, non-standard annotation

impes> : N P:o. trueV P Q — true¥ P —s trueV Q
H,—/ N A 4 H,—/ H,—/
| P 7P 70 7P Q)

3.19

Bi-Directional LF and Higher-Order Matching

e Example: universal introduction, standard annotation

foralliq : (Mx:i. ’\crueil (Pz)) — 1crueil (forall (A\x. P x))
7P P

e Example: universal elimination, incorrect annotation

foralley : ’\crueil (forall (A\z. P z)) — ’\crueil (Pt)
7P 1P It

e Problem: even if we know (P t) we may not know P and ¢!

e Example: solve Pt=q0>q0 for P:i—o and t:i:
P=((Az.qxD>qzxz) and t =0 or
P=(Az.q0D>qxz) and t=0 or
P = (Ax.q0>q0) and t arbitrary
etc.

3.20

Strict Occurrences

e Theorem [Schiirmann’00]: Higher-order matching yields a

unique answer or fails if every existential variable has at
least one strict occurrence

e Strict occurrences of P must satisfy two conditions
1. Have the form P x7...xyn for distinct parameters x;

2. Not be in an argument to an existential variable

e Example: universal elimination with existentials P and ¢

)

foralle : true (forall (Ax. P x)) — true (P ¢
X I

1 is strict occurrence of P

2 is not strict (argument t is existential)

3 is not strict (appears in argument to existential P)

3.21

Type and Object Reconstruction for LF

e Bi-directional LF requires strict higher-order matching

e Reconstruction is always unique or fails

e For practical experience see [Necula]

e Unrestricted LF requires dependent higher-order unification
e Full reconstruction may have multiple solutions or loop

e Use safe approximation via constraint simplification

e Reconstruction may
— succeed with principal type
— fail with error message
— request more information

e Works well for small objects (see Twelf)

3.22

How Do We Compute With Representations?

e LF is functional, but there is no recursion
e Recursion (even prim. rec.) destroys adequacy of encodings
e Counterexample: recall

forall : (i—o0) — o
Then
forall f: o

for recursive f :i— o is not in the image of the " _"
e Also: would violate essential open-endedness

e | — o0 Mmust be the parametric function space, i.e., canonical
M :i— o must have the form A\z:i." P! for some P

3.23

Constraint Logic Programming with LF

e \We cannot easily compute functionally
(but [Schirmann,Despeyroux,Pf'97][Schiirmann’00])

e Solution: compute as in constraint logic programming
e Operational semantics via search with fixed strategy

e Note: not general theorem proving

e Related to informal practice of reading rules as algorithms

e Example: bi-directional checking

3.24

Example: Recognizing Negation-Free Propositions

e Judgment: A+ P nfsupposing A P prop
e Assume constants p:i—o0 and q.o

e Four rules:

A qnf AFptnf

A+ Pnf AFQ nf A, xtermtE P nf
AFPDQnf A FVzx. P nf

e In LF (omitting implicit arguments as in Twelf):

nf . 0 — lype

nfq . nfgqg

nfp . nf (pT)

nfimp : nf P—nf Q — nf (imp P Q)

nfall : (Mxz:i.nf (P z)) — nf (forall (Az. P x))

3.25

Logic Programming Notation in Twelf

e Now reverse the arrows

nf . 0 — type
nfq . nfgq
nfp . nf(pT)
nfimp : nf (imp P Q)
+—nf Q
+—nf P
nfall : nf (forall (Az. P x))

+— (Nz:i.nf (P x))

e Given a query nf P for a closed, ground P
match heads of rules in order,
then solve subgoals in order

3.26

A Program Elimination Double Negation

q : o.
p:1i->o0.

nf : o -> type.

Jmode nf +P.

nfq : nf q.

nfp : nf (p T).

nfimp : nf (P imp Q)
<- nf P
<- nf Q.

nfall : nf (forall [x] P x)
<- ({x:i} nf (P x)).

hquery 1 * nf (forall [x] p x imp p x).
hquery O * nf (forall [x] not (p x)).
3.27

Constraint Simplification in Twelf

e Given example requires only strict higher-order matching
(goal has no existential variables, heads are strict)

e In general requires higher-order unification
(non-deterministic and undecidable)

e Implemented instead as constraint simplification
(pattern unification [Miller'91] 4+ constraints [Pf'91'96])

e Success with constraints is conditional:
Any solution to remaining constraints is solution to query

e Methodology: write programs to lie within the strict
higher-order matching fragment whenever possible

3.28

Operational Semantics of Twelf as in Prolog

e Solve subgoal lNMx:A. B by assuming z:A and solving B

e When goal is atomic, unify with head of each hypothesis
and constant in order

e When heads unify, solve subgoals from left to right
e Backtrack upon failure to most recent choice point

e In general only non-deterministically complete:
— Finite failure implies no deduction can exist

— May loop on judgment with a deduction

e Technique: focused proofs [Andreoli’90],
uniform proofs [Miller,Nadathur,Pf.,Scredov’'91]

3.29

Experience with Logic Programming in Twelf

e Many algorithms can be specified at a very high level

e A few algorithms can be very difficult
(e.g., non-parametric operations)

e Not intended for general purpose programming,
(e.g., no cut, input/output, other impure features)

e Often possible to prove correctness inside Twelf [Lect.4]

e Examples:
cut-elimination, logical interpretations, type checking, type
inference, evaluation, compilation

3.30

Another Example: Eliminating Double Negations

e elim P) with input P generates output @
e [his “directionality” is called a mode

e Can be checked in Twelf implementation

3.31

Program in Twelf

elim : o -> o -> type.
Jmode elim +P -Q.

eq : elim q q.
ep : elim (p T) (p T).
eimp : elim (P1 imp P2) (Q1 imp Q2)
<- elim P1 Q1
<- elim P2 Q2.
eall : elim (forall [x] P x) (forall [x] Q x)
<- ({x:i} elim (P x) (Q x)).
enn : elim (not (not P)) Q
<- elim P Q.
enq : elim (not q) (not q).
enp : elim (not (p T)) (not (p T)).
enimp : elim (not (P1 imp P2)) (not (Q1 imp Q2))
<- elim P1 Q1
<- elim P2 Q2.
enall : elim (not (forall [x] P x)) (not (forall [x] Q x))
<- ({x:i} elim (P x) (Q x)).

3.32

A Query and Answer in Twelf

hquery 1 =*
M : elim (not (not q) imp forall [x] p x imp p x) Q.

—————————— Solution 1 --—-—=——-—-
Q = q imp forall ([x:i] p x imp p x).
M = eimp (eall ([x:i] eimp ep ep)) (enn eq).

3.33

Summary of Lecture 3:
Proof Search and Representation

e LF type theory is dependently typed A-calculus
e Absence of recursion is crucial for adequacy

e EXistence and uniqueness of canonical forms is crucial:
— adequacy theorems
— redundancy elimination in representation [Necula]
— strict higher-order matching and constraint simplification

— focused and uniform proof search

e Implementing algorithms via constraint logic programming

e Specifications and implementations in the same language!

3.34

Preview of Lecture 4:
Meta-Logical Frameworks

e Hilbert's axiomatic calculus in LF

e [he Deduction Theorem

e Meta-theoretic proofs as judgments relating derivations

e Mode, termination, and coverage checking for verification

e Summary

3.35

Logical and Meta-Logical Frameworks
Lecture 4: Meta-Logical Frameworks

e Hilbert's axiomatic calculus in LF

e [he Deduction Theorem

e Meta-theoretic proofs as judgments relating dedeductions
e Mode, termination, and coverage checking for verification
e Summary

e Note: in this lecture, “proof” always refers to meta-theory
of deductive systems (encoded in LF)

4.1

Review of Lecture 3:
Proof Search and Representation

e Central role of canonical forms:
— adequacy theorems
— bi-directional type-checking and redundancy elimination
— strict higher-order matching and constraint simplification
— focused and uniform proof search

e Absence of recursion is crucial

e Implementing algorithms via constraint logic programming

e Specifications and implementations in the same language!

4.2

Hilbert’'s Axiomatic Calculus

e Judgment A~ P valid for A+ P prop
e A =zxqterm,...,xn term (no assumptions Q true or Q valid)

e Many axioms (= inference rules with no premises)

K AFP>(QDP)valid

S AFPDO@DOR)DPDOQ)D(PDR)valid

N1 AF(PD-Q)D((PD>Q)D-P)valid

No AF-PD>(PD>Q)valid

Fi AF (Vz.P) D [t/z]P valid

Fr AFNx.QDP)D(QDVe.P)valid (x not freein Q)

4.3

Two Inference Rules

e Modus Ponens

AFPDQ valid A~ P valid
< MP

A F Q valid

e Universal Generalization

A, xtermt+— P valid
A FVz. P valid

4.4

Representation in Twelf

valid :

k

S

nl
n2

f1

f2

mp :
ug :

o —> type.

: valid (P imp (Q imp P)).
: valid ((P imp (Q imp R)) imp ((P imp Q) imp (P imp R))).

: valid ((P imp (not Q)) imp ((P imp Q) imp (not P))).
: valid ((not P) imp (P imp Q)).

{T:i} valid ((forall [x:i] P x) imp (P T)).

: valid ((forall [x:i] (Q imp P x)) % incorporates proviso!

imp (Q imp forall [x:i] P x)).

valid (P imp Q) -> valid P -> valid Q.
({x:i} valid (P x)) -> valid (forall [x:i] P x).

4.5

The Deduction Theorem

e Theorem: If A, Pvalid+ Q valid then A+ (P D Q) valid

e Proof: By induction on the deduction ‘H of
A, Pvalid+ Q valid.

e Case: H ends in the hypothesis rule
hyp

A, P valid = P valid

Then (written in abbreviated form)

1 (PODO((PDP)DP)D(PD(PDP))D(PDP)) S
2 (PO((PDP)DP)) K
3 (P>(PDO>P))D(PDP) MP12
4 P> (PDP) K

5 PDOP MP34

4.6

Axiom Cases

e Case: H ends in axiom K

A, P valid- (Q1 2 (Q> D Q1)) validK

Then
1 (Q1D(@2DQ1))D(PD(Q1D(Q2DQ1))) K
2 Q1 D(Q2DQ1) K
3 PO(Q12(Q2DQ1)) MP12

e Other axiom cases analogous

4.7

Modus Ponens

e Case: H ends in Modus Ponens

Hq Ho
A, Pvalid- Q1 D Qo valid A, Pvalid+- Q1 valid P
H = A, Pvalid- Qo valid

1 AFPD Q1D Q) valid IH on H;q

2 AF(PD(Q12Q2))
O ((PD>Q1) D(PD>Qy)) valid S
AF(PD>Q1)D(PDQy) valid MP?21
A+ PD>DQq valid IH on Ho»

AF P> Qs valid MP34

4.8

Universal Generalization

e Case: H ends in Universal Generalization:

Hq

A, xterm, Pvalid - Q1 valid N

H = A, PtruetVz. Q1 valid uG
1 A,xtermt+ P D Q1 valid IH. on H;q
2 AFVz. (P DQq) valid UG” 1
3 AFMVz.(PDQ1)) D(PDVe.Qq) valid F>
4 A+ P >DVz. Qq valid MP 32

e QED

4.9

A Task for a Meta-Logical Framework

e How do we represent this proof?
e Simpler question: what is its computational contents?

e Answer: a translation of deductions A, P validt) valid to
deductions of A+ (P D Q) valid

e Or, after representation (ignoring A):

ded : MNP:o0.MQ:0. (valid P — valid Q) — valid (imp P Q)

e This function would be defined by recursion (induction) over

H : (valid P — valid Q)

e \What does this mean?
e Anyway, recursive functions cannot be part of LF

4.10

Possible Answers

e Give up on higher-order abstract syntax and use inductive
encodings [many refs]

— Lose advantages of renaming and substitution!

— More indirect encodings and more difficult formal proofs

e Use same trick as for algorithms! [Pf'89'91]

— Implement computational contents of proof
as a logic program

— Verify that this logic program describes a proof

— Y“lLogic programs as realizers”

e Other approaches [Despeyroux et al.’94'98]
[McDowell&Miller'97] [Schirmann&Pf’'98] [Hofmann'99]
[Gabbay& Pitts'99] [Schirmann’00'01]

4.11

Proofs as Relations

e [he proof of the deduction theorem describes a
judgment relating deductions of A, P validt+ @ valid and
A+ (P>Q)valid

e In LF:

ded : MNP:0.MQ:0. (valid P — valid Q) — valid (imp P Q) — type

e [his can be represented easily, case by case

e Elide P and @ as in implementation

4.12

Hypothesis Case

e Case: H ends in the hypothesis rule

: — hyp
A, P valid+= P valid

Then (written in abbreviated form)

1 (POD>((PDP)DP)DW(PDOD(PDP))D(PDP)) S
2 (P>({(PDP)DP) K
3 (P>(PD>P))D(PDP) MP12
4 PO>(PDP) K
5 PDOP MP34

e Recall ded : (valid P — valid Q) — valid (imp P Q) — type

e This case ded.id : ded (Au.u) (mp (mp s k) k)

4.13

Axiom Cases

e Case: H ends in axiom K

A, P valid- (Q1 2 (Q> D Q1)) validK

Then
1 (QiD(Q2D0Q1))D(PD(QR1D(Q2DQ1))) K
2 Q1D (Q2DQ1) K
3 PO (Q12(Q2DQ01)) MP12

e Recall ded : (valid P — valid Q) — valid (imp P Q) — type

e [his case:

ded_k : ded (Au.k) (mp k k)

e Other axiom cases are analogous

4.14

Modus Ponens

e Case: H ends in Modus Ponens

H1 Ho
A, Pvalidt- Q1 D Q2 valid A, Pvalidt Q1 valid
H = A, Pvalid+ Q» valid MP
AFPD(Q1DQ2) valid IH on H;
2 AF(PD(Q12Q2))
O ((P D> Q1) D (PDQy)) valid S
3 AF(PDQ1)D (P D) valid MP?21
AP DQ valid IH on H>
5 A+ PD>Qyvalid MP34

e Appeal to induction hypothesis as recursive call

ded_mp : ded (Au.mp (H1 u) (Hou)) (mp (mp s Hll) HIQ)
< ded ()\u. Hl u) Hll

<+ ded ()\u. Ho- u) H’Q
4.15

Universal Generalization

e Case: H ends in Universal Generalization:

A, x term, P?\;[;/id - Q1 valid
H = A, PtruetVz. Q1 valid var
1 A,ztermt- P D Q1 IH. on H;
2 AFVe.(PDQ1) UG* 1
3 AFWMz.(PDQ1)) D(PDOVe.Q1) Fs
4 A+ PDVx.(Q1 MP 32

e Appeal to induction hypothesis as recursive call

ded_ug : ded (Au.ug (A\z. Hy uwx)) (mp 2 (ug H}))
< MNz:i.ded (Au. Hy uwz) (H])

e QED

4.16

Executing the Proof Representation

e One can now execute the proof as a logic program with
queries

ded H H'

where H is a given hypothetical deduction and H’ is a
variable that will be bound to the output deduction

e Computational content fully represented
e \We know each output will be correct by adequacy

ded : (valid P — valid Q) — valid (imp P Q) — type

4.17

Is the Program a Proof?

e Just knowing
ded : NP:0.MQ:0. (valid P — valid Q) — valid (imp P Q) — type
IS not enough

e Need

For every A = xqi,...,xn’l
and every object P such that A+ P :o

and every object Q such that A FQ :o
and every object H such that A+ H : (valid P —valid Q)

there exists an H’ such that A+ H’ : valid (imp P Q)
and an M such that A+ M :ded PQ H H’

4.18

Proof Verification

e How could this property fail for a type-correct query?

ded H H’

— H' could fail to be ground — mode checking
— Query could fail to terminate — termination checking

— Query could fail finitely — coverage checking

e Mode, termination, and coverage checking together with
adequacy of representation guarantee that the type family
ded implements a proof of the deduction theorem

4.19

Mode Checking

e Quite straightforward, using strictness

ded : (valid P -> valid Q) -> valid (P imp Q) -> type.
Jmode ded +H -H’.

ded_mp : ded ([u] mp (H1 u) (H2 u)) (mp (mp s H1’) H2’)
<- ded ([u] H1 u) H1’
<- ded ([u] H2 u) H2’.

e Input argument (+4):
assume ground for head, check ground for recursive call

e Output argument (—):
assume ground for recursive call, check ground for head

e Good, informative error messages!

4.20

Termination Checking

e AsSsume user gives termination order
e Based on subterm ordering corresponding to structural

induction

ded : (valid P -> valid Q) -> valid (P imp Q) -> type.
Jterminates H (ded H _)

ded_mp : ded ([u] mp (H1 u) (H2 u)) (mp (mp s H1’) H2’)

<- ded ([u] H1 u) H1’
<- ded ([u] H2 u) H2’.

4.21

Termination Checking in Twelf

e Can construct lexicographic and simultaneous orders

e Difficult part: higher-order subterm orderings [Pientka]
e EXxplicit specification expresses “By induction over H"
e Informative error messages

e Improve checking mutual recursion [Abel][Jones]

4.22

Coverage Checking

e Guarantees that for every combination of (ground) inputs
some clause applies

e Coverage entails progress (no finite failure)
e Difficult, because it contradicts open-endedness

e Inherently, to check an inductive proof, we need to fix the
set of constructors

e NO paradoxes, since there is no new object constructor

4.23

Regular Worlds

e Recall

For every A = x1i, ..., Tyl
and every object P such that AF P :o

and every object Q such that A F Q@ : o
and every object H such that A+ H : (valid P — valid Q)

there exists an H’ such that A+ H’ : valid (imp P Q)
and an M such that A+ M :ded PQ H H’

e Need to describe the form of possible contexts
e Use regular worlds defined schematically [Schirmann0OQ]

Aded =+ | Dged, =]

4.24

Coverage Checking

e With respect to regular world definition (e.g., Agey)
e Coverage set = exhaustive set of possible query shapes
e Initialize with most general query ded H _

e Algorithm:
1. Pick and remove a query shape G from the coverage set

2. Check if G is an instance of a clause head (strict
higher-order matching)

3. If not, pick a candidate variable (halt if none), generate
all possible instances (higher-order unification) and add
them to the coverage set

4. Go to 1.

e Re-implementation still in progress
(not available in current Twelf)

4.25

Implementing Meta-T heoretic Proofs, Summary

e Represent computational contents as judgment relating
deductions
(here: ded : (valid P — valid Q) — valid (imp P Q) — type)
e logether
— dependent type checking (no invalid deductions)
— mode checking (no missing constructors)
— termination checking (no divergence)
— coverage checking (no finite failure)

guarantee that implementation represents meta-theoretic
proof

e All of these are efficiently decidable with good or
acceptable error messages

e Logic Programs as Proofs

4.26

Experience with Relational Meta-T heory

e Proofs are often very compact
— Immediacy of encoding (hoas, judgments as types)

— Type reconstruction

e Applicable in many case studies

— logical interpretations (nd vs axiomatic, nd vs sequent,
classical vs intuitionistic, nd vs categorical)

— logical properties (cut elimination, normalization,
deduction theorem)

— X-calculus (CR theorem, CPS transform)

— small programming languages (functional, logic) (type
preservation and progress for various type systems,
compiler correctness)

e Used succesfully in teaching several times

4.27

Automation

e Due to high level of representation, many meta-theorems
can be proven automatically [Schirmann&Pf'98]
[Schiirmann’00]

e Input: specification, Y4 meta-theorem, induction order
e Output: proof in relational form

e Alternate direct search in LF (bounded depth-first search)
with case splitting

e Often very fast (type preservation, deduction theorem)
e Not very robust with respect to signature extension

e Not very robust with respect to number of inputs

4.28

Some Limitations

e Logical relations or reducibility candidates [Girard'71]

e Where encodings are awkward (linear, ordered), proofs are
infeasible

e Proofs are “write only”

e Some work on “uncompressing’ into readable format
(TCS paper on cut elimination 50% written by machine)

4.29

Summary

e Meta-logical frameworks for reasoning about deductive
systems
e T wo choices

— Techniques for representation:
usually inductive (low level), here judgments as types

— Techniques for proof representation:
usually recursive functions, here judgments relating
derivations

— Techniques for proof checking:
similar in both approaches

e \Various hybrid techniques have been investigated

e High-level representation facilitates both manual and
automatic proofs

4.30

Course Summary

e Lecture 1: Higher-Order Abstract Syntax
Variables as variables, representation is compositional
bijection, substitution as substitution

e Lecture 2: Judgments as Types
Parametric judgments as functions, checking deductions via
type checking in LF

e Lecture 3: Search and Representation
Canonical forms, bi-directional checking, logic programming

e Lecture 4: Meta-Logical Frameworks
Meta-theoretic proofs as judgments relating derivations,
checking modes, termination, coverage

4.31

Course Slogans

e Specifications, algorithms, meta-theory in the same
minimal language (only type constructor: MNz:A. B!)

e Elegance matters!

e \We had to slaughter some holy cows:
— inductive types and explicit induction principles

— tactic-based theorem proving

e Logical frameworks are not for general mathematics

4.32

On the Horizon

e Module system

e Constraint domains (rationals)

e Linearity and order in the framework
e Compression of deductions

e Specialization with respect to fixed signature?

4.33

Reference Material

e Lecture Material:

LLogical frameworks.

Handbook of Automated Reasoning,
Chapter 16, pp. 977-1061,

Elsevier Science and MIT Press, June 2001.

e [extbook:

Computation and Deduction.
Cambridge University Press, Fall 2001.

e Implementation: twelf.org

4.34

