
Precept 5 

This precept will help familiarize you with material on closure conversion, tail recursion and 

continuation-passing style.  You will also continue work on skills for proving things about programs.   

 

Refer to these notes to help you through this week’s precept materials. 

 

http://www.cs.princeton.edu/~dpw/courses/cos326-12/notes/reasoning.php 

http://www.cs.princeton.edu/~dpw/courses/cos326-12/notes/reasoning-data.php 

http://www.cs.princeton.edu/~dpw/courses/cos326-12/lec/10-space-model.pdf 

 

Part I: Continuation-passing style 

 

Consider the following functions. 

 

type nat = int ;; 

 

let rec fact (n:nat) : nat = 

  if n <= 0 then 1 

  else fact (n-1) * n    

;; 

 

let rec fib (n:nat) : nat = 

  match n with 

    0 -> 0 

  | 1 -> 1 

  | n -> fib (n-1) + fib (n-2) 

;; 

 

Write the following tail-recursive functions: 

 

type cont = nat -> nat 

fact_cont : nat -> cont -> nat 

fib_cont : nat -> cont -> nat 

 

Prove that your continuation-passing function fact_cont is equivalent to the version of fact presented 

above.  In other words, prove the following lemma and then the theorem: 

 

Lemma 1: For all natural numbers n,  

         for all k:cont, fact_cont n k == k (fact n) 

 

Theorem 2: For all natural numbers n,  

           fact_cont n (fun m -> m) == fact n 

http://www.cs.princeton.edu/~dpw/courses/cos326-12/notes/reasoning.php
http://www.cs.princeton.edu/~dpw/courses/cos326-12/notes/reasoning-data.php
http://www.cs.princeton.edu/~dpw/courses/cos326-12/lec/10-space-model.pdf


Part II: Closure Conversion 

 

Closure-convert the following code.  In other words, rewrite the functions apply and sum (call them 

apply_code and sum_code) so that they contain no free variables.  Ensure the resulting code type 

checks.  

 

let c = 5;; 

let d = 6;; 

 

let apply (f : int -> int) : int = f (c*d) ;; 

 

let sum (y : int) : int = y + c + d;; 

 

let result = apply sum;; 

 

 

Part III: Induction: Trees 

 

type tree = Leaf | Node of int * tree * tree;; 

 

let rec inc (t:tree) (a:int) : tree = 

  match t with 

    Leaf -> Leaf 

  | Node(i,left,right) -> Node(i+a, inc left a, inc right a) 

;; 

 

Prove the following theorem: 

 

Theorem 3: for all t:tree, inc (inc t a) b == inc t (a+b). 


