
Precept 4:  Proofs about Fuctional Programs 

This precept will help familiarize you with material on proving things about programs.  As part of your 

homework this week, you must read the online notes about proving things about programs.  Refer to 

these notes to help you through this week’s precept materials. 

 

http://www.cs.princeton.edu/~dpw/courses/cos326-12/notes/reasoning.php 

 

http://www.cs.princeton.edu/~dpw/courses/cos326-12/notes/reasoning-data.php 

 

Part I 

 

1.  Consider the function tail: 

 

let tail (xs: ‘a list) : ‘a list = 

  match xs with hd :: tail -> tail 

;; 

 

Is tail a total function? 

 

Is tail [] a valuable expression? 

 

Is tail [3] a valuable expression? 

 

2. Consider safediv: 

 

let safediv (nums : int * int) : int option = 

  let (x,y) = nums in 

  if y == 0 then None 

  else Some (x/y) 

;; 

 

Is safediv a total function? 

 

Is safediv (1, 0) valuable? 

  



3. Consider the following type and function declarations 

 

type form =  

  Var of string 

| And of form list 

 

let rec free_var (f : form) = 

  match f with 

    Var s -> [s] 

  | And fs -> free_vars fs 

 

and free_vars (fs: form list) = 

  match fs with 

    [] -> [] 

  | f :: rest -> free_var f @ free_vars rest 

;; 

 

Is free_var total?   

 

Is free_vars total? 

 

4.   

 

let rec f (x:int) = 

  if x > 50 then 1 + f (x-1) else g x 

 

and g (y: int) = 

  if y > 0 then 1 else f (x-1) 

;; 

 

Is f total? 

 

Is g total? 

 

5. 

 

let f x = … ;; 

 

let g x =  

  if f x then 1 else 0 

;; 

 

What do we need to know about f to know that g is total? 



Part II 

Give justifications for each of the following equations using the equational rules given in the online 

notes.  Whenever you need to use reflexivity, transitivity, symmetry, congruence, etc., say so. 

 

let inc x = x + 1;; 

(1) inc 3 == 4   ___________________________________________ 

(2) inc 4 == 5   ___________________________________________ 

(3) inc (inc 3) == 5   ___________________________________________ 

(4) fun x -> x + 1 == inc  ___________________________________________ 

(5) for all values v, v + 1 == inc v      ___________________________________________ 

(6) for all valuable expressions e, e + 1 == inc e __________________________________ 

Part III 

Consider the following code: 

let multo (x:int option) (y:int option) = 

  match (x,y) with 

    (Some m, Some n) -> Some ((m + m)*n) 

  | (_, _) -> None 

;; 

 

Prove the following equation holds, step by step, for all o : int option 

multo o o == (match o with Some i -> Some (2*(i*i)) | None -> None) 

Proof:  (Note: You can start top down, or you can start bottom up, or go from both ends to the middle) 

   multo o o 

==  

 

 

 

 

 

 

 

== (match o with Some i -> Some (2*(i*i)) | None -> None) 



Part IV 

Consider the following function. 

let compose (f:’a -> ‘b) (g:’b -> ‘c) (x:’a) = g (f x);; 

Prove using equational reasoning that for all n : int 

   compose (fun x -> x * 2) (fun y -> y * 8) n 

== compose (fun z -> z * 4) (fun w -> w * 4) n 

Proof (put one reasoning step on each line with a justification): 

(again, recall you can start from the left-hand side and prove to the right; or start on the right-hand side 

and prove to the left or go from both sides and try to meet in the middle) 

  



Part V 

 

Consider the functions double and half: 

 

let rec double (xs: int list) : int list = 

  match xs with 

    [] -> [] 

  | hd :: rest -> hd::hd::double rest 

;; 

 

let rec half (xs: int list) : int list = 

  match xs with 

    [] -> [] 

  | [x] -> [] 

  | x::y::rest -> y::half rest 

;; 

 

(a) Disprove this conjecture: for all l, double(half l) == l.   

    (Rhetorical question:  How does one disprove such a conjecture?) 

 

 

(b) Prove that for all integer lists l. half (double l) == l. 

Proof:  By induction on the structure of the list l: 

 

case l = []             To show: 

Proof: 

 

 

 

 

 

 

 

case l = hd::tail            To show: 

 

IH: 

 

Proof: 

 

 

(continue on back if  necessary)  



Part VI 

 

Recall the familiar map and function composition operators: 

 

let rec map (f: 'a -> 'b) (xs : 'a list) : 'b list = 

  match xs with 

      [] -> [] 

    | hd::tail -> f hd :: map f tail 

;; 

 

(* this is the same as the function “compose” defined earlier,  

 * but we are using the infix operator % instead this time for fun *) 

let (%) (g:'b -> 'c)  (f:'a -> 'b) (x:'a) : 'c =  

  g (f x) 

;; 

 

A common program optimization is to take a series of several map operations and compress them in to 

a single map operation.  Instead of traversing a list multiple times (once for each application of the map 

operation), one only traverses the list once.  More specifically, the following property of map is true (for 

any total functions f and g with the correct types): 

 

map (g % f) == (map g) % (map f) 

 

We are going to prove this fact with the aid of the following lemma: 

 

Lemma 1: For all types ‘a, ‘b and values f : ‘a -> ‘b, if f is total then map f is valuable and total. 

 

Now the theorem.  We will provide each step in the proof of the theorem.  It is up to you to provide the 

correct justification.  However, you can omit mentioning reflexivity, transitivity, symmetry or 

congruence explicitly (just use these laws wherever you see fit from now on without mentioning them). 

 

Theorem 2: For all types ‘a, ‘b, ‘c and for all values f : ‘a -> ‘b and g : ‘b -> ‘c and l : ‘a list, if f and g are 

total then 

 

 ((map g) % (map f)) l == map (g % f) l 

 

Proof: 

First we write down our assumptions and give them numbers to refer to them: 

 

(1) f is total 

(2) g is total 

 

(skip to the next page)  



Now, let’s write down some initial facts that may be of use to us. Give justifications on the blank lines 

next to each statement: 

 

(3) map f is valuable and total     ________________________________________________ 

(4) map g is valuable and total _________________________________________________ 

(5) g % f is valuable   _________________________________________________ 

(6) g % f is total   _________________________________________________ 

(7) map (g % f) is valuable and total  _________________________________________________ 

 

Next, observe the following: 

 

(8) ((map g) % (map f)) l   

(9) == (fun x -> map g (map f y)) l _________________________________________________ 

(10)  ==  map g (map f l)  _________________________________________________ 

 

Therefore, (by transitivity of equality), we only have to prove that: 

 

map g (map f l) == map (g % f) l 

 

We do the above by induction on the structure of the list l using the standard list template: 

 

Case for l = []: 

Must prove in this case:     _______________________________________________ 

(11)  map g (map f [])   _______________________________________________ 

(12)  == (map g [])   _______________________________________________ 

(13)  == []    _______________________________________________ 

(14)  (map (g % f) [])   _______________________________________________ 

 

Case for l = x::xs: 

 Must prove in this case:     _______________________________________________ 

 Induction hypothesis:  _______________________________________________ 

(15)  map g (map f (x::xs))  _______________________________________________ 

(16) == map g (f x :: map f xs) _______________________________________________ 

(17) == g (f x) :: map g (map f xs) several comments:________________________________ 

_______________________________________________ 

(18) == (g % f) x :: map g (map f xs) _______________________________________________ 

(19) == (g % f) x :: map (g % f) xs _______________________________________________ 

(20) == map (g % f) (x::xs)  _______________________________________________ 

 

QED! 


