
Modular Reasoning

COS 326: Functional Programming

November 7, 2012

1 What can type systems do?

1.1 Express invariance about values

v: bool then v = true or v = false
v: char then v = ’a’ or v = ’b’ or...
v: list then v = [] or v = hd::tail and hd: T and tail: T list
v: T1 * T2 then v = (v1, v2) and v1 : T1 and v2 : T2

v: T1 -> T2 then v is a function and if you assume its input v1 satisfies the invariants of
T1 and v v1 -> v2 then v2:T2

1.2 Enable abstraction

Actually a series of bits, not ”true”. But actually actually wires and signals and such.
Quarks and ”what’s that boson thing they just discovered.”

1.2.1 Relationship

Abstraction is a relationship between two worlds, imaginary and concrete.

2 Boolean module

module B :BOOL = struct

type b = int

let tru = 1

let fal = 0

let not b =

match b with

| 0 -> 1

| 1-> 0

| _ -> raise BrokenRepInv

1

// satisfies because guaranteed only 0 or 1 will come in

;;

let and bs =

match bs with

| (0, 0) | (0, 1) | (1, 0) -> 0

| (1, 1) -> 1

| (_, _) -> raise BrokenRepInv

end

2.1 Invariant

v: B.b then v = 1 or v = 1
defining a type b that will always be 1 or 0. claiming it’s true; must check that everything
satisfies it

2.2 Proof

tru according to signature has type b; has to be either 1 or 0; is 1, so ok.
fal as above
not : b ->b. pick input v1. Assume v1:b. Show v v1 -> v2 and v2 satisfies the invariants of b.
and b*b ->b. Assume arg v. Assume v: b * b. Prove: and v ->v’ and v’:b.

2.3 Moral of the story

To check that your module satisfies a representation invariant, for all operations assume
the rep inv holds for all inpurs. Prove it holds for all outputs.

3 Sets

3.1 Representation 1: Duplicates

list. represents particular set if members of the list are the same as members of the set.

3.2 Representation 2: No Duplicates

Lists, but only those without duplicates. e.g. [1,1] is not a set.

3.3 Implementation 1: Duplicates

module Set1 : SET = struct

type ’a set = ’a list

let empty = []

2

let add x l = x::l

let size l =

match l with

| [] -> 0

| hd:: tl ->size tl + (if List.mem hd tl then 0 else 1)

...

end

3.4 Implementation 2: No Duplicates

module Set1 : SET = struct

type ’a set = ’a list

let empty = []

let add x l =

if List.mem x l then l

else x::l

let size l = List.length l \\ exploiting representation invariant

...

end

3.5 Proving stuff

The stronger the representation invariant, the more stuff you have to prove.

4 Protect from Client

module SET client
type ’a set set, set, set...
v: ’a set sets are abstract

no way to inject bad code

5 Back to Bool

module S: BOOL = struct

type b = bool

let tru = true

let fal = false

let not b =

match b with

| true -> false

| false -> true

3

let and bs =

match bs with

| true, true -> true

| _, _ -> false

end

5.1 Mapping

Some concrete things represent imaginary ones. not maps an imaginary object to another
imaginary object. We must make sure out implementation maps a related input to a related
output.

5.2 Proof on our abstract types

Show that the abstraction function is correctly implemented. C a:b f f : t1 →t2
Assume a pair of inputs c, a such that c a:t1.
Must prove f c g a :t2

5.3 What?

To prove a module M1 faithfully implements a spec S, show that every element of the
module is related like that (above).

5.4 Let’s do it?

5.4.1 Step 1

1 true :b
0 false:b
tru tru:b
iff 1 tru : b
iff 1 true : b
iff valid

5.4.2 Step 2

Show: f fal: b
iff 0 false :b
iff valid

4

5.4.3 Step 3

Show: not not : b → b
Asume on inputs such that
c a :b
Must prove not c not a : b

case a = true
Assumption looks like:
c true :b
By definition of
Therefore c = 1
Must prove n 1 not true: b
iff 0 not true:b
iff 0 false :b
iff valid!

case a = false
Assumption looks like:
c false
therefore c = 0
must prove:
not 0 not false
1 true
valid

5.4.4 Step 4

and and : b * b → b
Assume we have an input
c a : b * b
That means
c = (c1, c2)
a (a1, a2)
and
c1 a1 : b
and
c2 a2 : b
Must prove:
and (c1, c2) and (a1, a2) : b
Cases → and applied to any combination gives a result related to the result that and

5

produces.

6 Final morals

Reasoning about representation invariants and abstraction relations based on types.

6.1

c : Abs then we show RI(v) (module writer gets to pick) (representation invariant of v
holds)

6.2

c a : Abs (module writer gets to pick the abstraction function)

6.3

f : Assume RI(inputs), Show RI(outputs)

6.4

f: Assume inputs are related, Show outputs are related

6.5 Logical Relations

From relation to implication. Assume input, show output.

6.6 Module Comments

In module comments, say what the abstraction relation is and what the representation
invariant is.

6

