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No new ideas

• 1991: “CML:  A higher-order concurrent 
language”, John Reppy

• 1999: “A Poor Man’s Concurrency Monad”, 
Ken Claessen

• 2002: LWT, Jerome Vouillon

• 2006:  Async for Mlton, Stephen Weeks

• 2007:  Async for F#, Don Syme
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Async Design Principles

• No preemption

• No inversion-of-control

• Make blocking explicit in the type system
‘a -> ‘b Def.t vs ‘a -> ‘b
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Async API

  module Def : sig
    type 'a t

    val return : 'a -> 'a t
    val map    : 'a t -> ('a -> 'b)   -> 'b t
    val bind   : 'a t -> ('a -> 'b t) -> 'b t

    val all    : 'a t list -> 'a list t
  
    ...
  end
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  let file_length filename =
    Def.map (read_file filename) String.length

  let sum_of_file_lengths files =
    let all_lengths =
      Def.all (List.map ~f:file_length files)
    in
    let sum l = List.fold ~init:0 ~f:(+) l in
    Def.map all_lengths sum

  let manifest_length manifest =
    Def.bind (read_file manifest) (fun manifest ->
      let files = String.split ~on:'\n' manifest in
      sum_of_file_lengths files)
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What’s a monad?

let handle_message conn =
  Def.bind (Conn.read_message conn) (fun message ->
    Def.bind (process_message message) (fun reply ->
      Conn.send_message conn reply))
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What’s a monad?

let handle_message conn =
  Conn.read_message conn  >>= fun message ->
  process_message message >>= fun reply   ->
  Conn.send_message conn reply
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What’s a monad?

let handle_message conn =
  let! message = Conn.read_message conn  in
  let! reply   = process_message message in
  Conn.send_message conn reply
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Implementation

• Deferred is (almost) a ref option with 
a place to install callbacks

• Simple scheduler on top of select or epoll

• Lots of tricky corner cases!

• UNIX nonblocking API blocks

• Tail recursive bind

• Pure OCaml (2.5kloc core, 10kloc total)
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Streams

• Streams are pure and eager

• Space leaks + No pushback

• Now, Pipes: mutable, buffered channels
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Error Handling

• Trickiest (remaining) part of concurrent 
programming

• Monitors: a place for uncaught exceptions

• try-with and protect built on monitors

• No terminate operation
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Async Lessons

• Avoiding preemption is a win

• Fit in, but don’t be invisible

• Beware of purity

• Error handling is hard
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Modeling RPCs
type request = | Listdir of path
               | Read_file of path
               | Move of path * path
               | Put_file of path * string
               | File_size of path
               | File_exists of path
with sexp
            
type response = | Ok
                | Error of string
                | File_size of int
                | Contents of string list
                | File_exists of bool
with sexp
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RPC Types

type 'a embedding = {
  inj : 'a -> Sexp.t;
  prj : Sexp.t -> 'a;
}

serialization
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RPC Types

type 'a embedding = {
  inj : 'a -> Sexp.t;
  prj : Sexp.t -> 'a;
}

type ('a,'b) rpc = {
  tag     : string;
  query   : 'a embedding;
  resp    : 'b embedding;
}

serialization function
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RPC Interface
let delete_file = {
  tag = "delete_file";
  query = <:embedding<path>>;
  resp = <:embedding<[`Ok | `Error of string]>>;
}   
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RPC Interface
let delete_file = {
  tag = "delete_file";
  query = <:embedding<path>>;
  resp = <:embedding<[`Ok | `Error of string]>>;
  version = 0;
  help = "Deletes the specified file, returning [`Ok] \
          if successful, [`Error msg] otherwise";
  examples =
    [ Path.of_string "/etc/bashrc", Error "permission denied"
    ; Path.of_string "/home/yminsky/.bashrc", Ok ];
}   
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Client Side

val exec_rpc :
  ('a,'b) rpc
  -> (Conn.t -> 'a -> 'b Deferred.t)
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Client Side

let delete_file = exec_rpc Rpc_specs.delete_file
let listdir     = exec_rpc Rpc_specs.listdir

val exec_rpc :
  ('a,'b) rpc
  -> (Conn.t -> 'a -> 'b Deferred.t)
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Server Side
type rpc_impl
val implement_rpc : ('a, 'b) rpc -> ('a -> 'b) -> rpc_impl
val start_server : rpc_impl list -> port:int -> unit
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Server Side

let filesystem_server () =
  let rpcs = [
    implement_rpc Rpc_specs.delete_file Sys.unlink;
    implement_rpc Rpc_specs.listdir     Sys.listdir;
  ]
  in
  start_server rpcs ~port:8080

type rpc_impl
val implement_rpc : ('a, 'b) rpc -> ('a -> 'b) -> rpc_impl
val start_server : rpc_impl list -> port:int -> unit
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RPC Lessons

• Type precision eases programmer’s lives

• Fit in, but don’t be invisible

• Fine-grained protocol versioning is a win

• Polytypic programming matters

• Not just about RPC!
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Interested?

http://opam.ocamlpro.com

opam install async
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