
Abstractions and Types 
for Concurrent 
Programming

Yaron Minsky
Jane Street

Friday, November 23, 12



Programming Models

Friday, November 23, 12



Event Loop

Programming Models

Friday, November 23, 12



Event Loop Threads

Programming Models

Friday, November 23, 12



Event Loop Threads

Programming Models

Async

Friday, November 23, 12



No new ideas

• 1991: “CML:  A higher-order concurrent 
language”, John Reppy

• 1999: “A Poor Man’s Concurrency Monad”, 
Ken Claessen

• 2002: LWT, Jerome Vouillon

• 2006:  Async for Mlton, Stephen Weeks

• 2007:  Async for F#, Don Syme

Friday, November 23, 12



Async Design Principles

Friday, November 23, 12



Async Design Principles

• No preemption

Friday, November 23, 12



Async Design Principles

• No preemption

• No inversion-of-control

Friday, November 23, 12



Async Design Principles

• No preemption

• No inversion-of-control

• Make blocking explicit in the type system
‘a -> ‘b Def.t vs ‘a -> ‘b

Friday, November 23, 12



Async API

  module Def : sig
    type 'a t

    val return : 'a -> 'a t
    val map    : 'a t -> ('a -> 'b)   -> 'b t
    val bind   : 'a t -> ('a -> 'b t) -> 'b t

    val all    : 'a t list -> 'a list t
  
    ...
  end

Friday, November 23, 12



  let file_length filename =
    Def.map (read_file filename) String.length

  let sum_of_file_lengths files =
    let all_lengths =
      Def.all (List.map ~f:file_length files)
    in
    let sum l = List.fold ~init:0 ~f:(+) l in
    Def.map all_lengths sum

  let manifest_length manifest =
    Def.bind (read_file manifest) (fun manifest ->
      let files = String.split ~on:'\n' manifest in
      sum_of_file_lengths files)

Friday, November 23, 12



What’s a monad?

let handle_message conn =
  Def.bind (Conn.read_message conn) (fun message ->
    Def.bind (process_message message) (fun reply ->
      Conn.send_message conn reply))

Friday, November 23, 12



What’s a monad?

let handle_message conn =
  Conn.read_message conn  >>= fun message ->
  process_message message >>= fun reply   ->
  Conn.send_message conn reply

Friday, November 23, 12



What’s a monad?

let handle_message conn =
  let! message = Conn.read_message conn  in
  let! reply   = process_message message in
  Conn.send_message conn reply

Friday, November 23, 12



Implementation

Friday, November 23, 12



Implementation

• Deferred is (almost) a ref option with 
a place to install callbacks

Friday, November 23, 12



Implementation

• Deferred is (almost) a ref option with 
a place to install callbacks

• Simple scheduler on top of select or epoll

Friday, November 23, 12



Implementation

• Deferred is (almost) a ref option with 
a place to install callbacks

• Simple scheduler on top of select or epoll

• Lots of tricky corner cases!

Friday, November 23, 12



Implementation

• Deferred is (almost) a ref option with 
a place to install callbacks

• Simple scheduler on top of select or epoll

• Lots of tricky corner cases!

• UNIX nonblocking API blocks

Friday, November 23, 12



Implementation

• Deferred is (almost) a ref option with 
a place to install callbacks

• Simple scheduler on top of select or epoll

• Lots of tricky corner cases!

• UNIX nonblocking API blocks

• Tail recursive bind

Friday, November 23, 12



Implementation

• Deferred is (almost) a ref option with 
a place to install callbacks

• Simple scheduler on top of select or epoll

• Lots of tricky corner cases!

• UNIX nonblocking API blocks

• Tail recursive bind

• Pure OCaml (2.5kloc core, 10kloc total)

Friday, November 23, 12



Streams

Friday, November 23, 12



Streams

• Streams are pure and eager

Friday, November 23, 12



Streams

• Streams are pure and eager

• Space leaks + No pushback

Friday, November 23, 12



Streams

• Streams are pure and eager

• Space leaks + No pushback

• Now, Pipes: mutable, buffered channels

Friday, November 23, 12



Error Handling

Friday, November 23, 12



Error Handling

• Trickiest (remaining) part of concurrent 
programming

Friday, November 23, 12



Error Handling

• Trickiest (remaining) part of concurrent 
programming

• Monitors: a place for uncaught exceptions

Friday, November 23, 12



Error Handling

• Trickiest (remaining) part of concurrent 
programming

• Monitors: a place for uncaught exceptions

• try-with and protect built on monitors

Friday, November 23, 12



Error Handling

• Trickiest (remaining) part of concurrent 
programming

• Monitors: a place for uncaught exceptions

• try-with and protect built on monitors

• No terminate operation

Friday, November 23, 12



Async Lessons

Friday, November 23, 12



Async Lessons

• Avoiding preemption is a win

Friday, November 23, 12



Async Lessons

• Avoiding preemption is a win

• Fit in, but don’t be invisible

Friday, November 23, 12



Async Lessons

• Avoiding preemption is a win

• Fit in, but don’t be invisible

• Beware of purity

Friday, November 23, 12



Async Lessons

• Avoiding preemption is a win

• Fit in, but don’t be invisible

• Beware of purity

• Error handling is hard

Friday, November 23, 12



Modeling RPCs
type request = | Listdir of path
               | Read_file of path
               | Move of path * path
               | Put_file of path * string
               | File_size of path
               | File_exists of path
with sexp
            
type response = | Ok
                | Error of string
                | File_size of int
                | Contents of string list
                | File_exists of bool
with sexp

Friday, November 23, 12



RPC Types

Friday, November 23, 12



RPC Types

type 'a embedding = {
  inj : 'a -> Sexp.t;
  prj : Sexp.t -> 'a;
}

serialization

Friday, November 23, 12



RPC Types

type 'a embedding = {
  inj : 'a -> Sexp.t;
  prj : Sexp.t -> 'a;
}

type ('a,'b) rpc = {
  tag     : string;
  query   : 'a embedding;
  resp    : 'b embedding;
}

serialization function

Friday, November 23, 12



RPC Interface
let delete_file = {
  tag = "delete_file";
  query = <:embedding<path>>;
  resp = <:embedding<[`Ok | `Error of string]>>;
}   

Friday, November 23, 12



RPC Interface
let delete_file = {
  tag = "delete_file";
  query = <:embedding<path>>;
  resp = <:embedding<[`Ok | `Error of string]>>;
  version = 0;
}   

Friday, November 23, 12



RPC Interface
let delete_file = {
  tag = "delete_file";
  query = <:embedding<path>>;
  resp = <:embedding<[`Ok | `Error of string]>>;
  version = 0;
  help = "Deletes the specified file, returning [`Ok] \
          if successful, [`Error msg] otherwise";
}   

Friday, November 23, 12



RPC Interface
let delete_file = {
  tag = "delete_file";
  query = <:embedding<path>>;
  resp = <:embedding<[`Ok | `Error of string]>>;
  version = 0;
  help = "Deletes the specified file, returning [`Ok] \
          if successful, [`Error msg] otherwise";
  examples =
    [ Path.of_string "/etc/bashrc", Error "permission denied"
    ; Path.of_string "/home/yminsky/.bashrc", Ok ];
}   

Friday, November 23, 12



Client Side

Friday, November 23, 12



Client Side

val exec_rpc :
  ('a,'b) rpc
  -> (Conn.t -> 'a -> 'b Deferred.t)

Friday, November 23, 12



Client Side

let delete_file = exec_rpc Rpc_specs.delete_file
let listdir     = exec_rpc Rpc_specs.listdir

val exec_rpc :
  ('a,'b) rpc
  -> (Conn.t -> 'a -> 'b Deferred.t)

Friday, November 23, 12



Server Side

Friday, November 23, 12



Server Side
type rpc_impl
val implement_rpc : ('a, 'b) rpc -> ('a -> 'b) -> rpc_impl
val start_server : rpc_impl list -> port:int -> unit

Friday, November 23, 12



Server Side

let filesystem_server () =
  let rpcs = [
    implement_rpc Rpc_specs.delete_file Sys.unlink;
    implement_rpc Rpc_specs.listdir     Sys.listdir;
  ]
  in
  start_server rpcs ~port:8080

type rpc_impl
val implement_rpc : ('a, 'b) rpc -> ('a -> 'b) -> rpc_impl
val start_server : rpc_impl list -> port:int -> unit

Friday, November 23, 12



RPC Lessons

Friday, November 23, 12



RPC Lessons

• Type precision eases programmer’s lives

Friday, November 23, 12



RPC Lessons

• Type precision eases programmer’s lives

• Fit in, but don’t be invisible

Friday, November 23, 12



RPC Lessons

• Type precision eases programmer’s lives

• Fit in, but don’t be invisible

• Fine-grained protocol versioning is a win

Friday, November 23, 12



RPC Lessons

• Type precision eases programmer’s lives

• Fit in, but don’t be invisible

• Fine-grained protocol versioning is a win

• Polytypic programming matters

Friday, November 23, 12



RPC Lessons

• Type precision eases programmer’s lives

• Fit in, but don’t be invisible

• Fine-grained protocol versioning is a win

• Polytypic programming matters

• Not just about RPC!

Friday, November 23, 12



Interested?

http://opam.ocamlpro.com

opam install async

Friday, November 23, 12

http://opam.ocamlpro.com
http://opam.ocamlpro.com

