
David Walker

Optional Reading:

“Beautiful Concurrency”,

“The Transactional Memory / Garbage Collection Analogy”
“A Tutorial on Parallel and Concurrent Programming in Haskell”

Thanks to Kathleen Fisher and recursively to

Simon Peyton Jones for much of the content of these slides.

Atomic blocks

Library Library Library

Library

Library
Library

Library

Hardware

Atomic blocks are

much easier to

use, and do

compose

Atomic blocks

are pieces of

code that you

can count on to

operate exactly

like sequential

programs

Tricky gaps, so a

little harder than

immutable data but

you can do more

stuff

Coding style
Difficulty of queue

implementation

Sequential code Undergraduate (COS 226)

Efficient parallel code

with locks and

condition variables

Publishable result at

international conference1

Parallel code with STM Undergraduate

1 Simple, fast, and practical non-blocking and blocking concurrent queue

algorithms.

http://www.research.ibm.com/people/m/michael/podc-1996.pdf
http://www.research.ibm.com/people/m/michael/podc-1996.pdf
http://www.research.ibm.com/people/m/michael/podc-1996.pdf
http://www.research.ibm.com/people/m/michael/podc-1996.pdf

read x
write x
read x
write x

read x
write x
read x
write x

action 1: action 2:

without transactions:

with transactions:

read x

write x

read x

write x

read x

write x

read x

write x

or
read x
write x
read x
write x

read x
write x
read x
write x

read x
write x
read x
write x

read x
write x
read x
write x

(programmer gets to cut down non-determinism
as much as he/she wants)

(some interleaving -- the programmer must worry about which one)

in parallel:

 (atomic action1) (atomic action2)

just a function call in Haskell

An interface declares some new abstract types and some operations over

values with those abstract types. For example:

module type CONTAINER = sig

 type ‘a t (* the type of the container *)

 val empty : ‘a t

 val insert : ‘a -> ‘a t -> ‘a t

 val remove : ‘a t -> ‘a option * ‘a t

 val fold : (‘a -> ‘b -> ‘b) -> ‘b -> ‘a t -> ‘b

end

There are lots of different

implementations of such

containers: queues, stacks,

sets, randomized sets, ...

Interfaces can come with

some equations one expects

every implementation to

satisfy. eg:

fold f base empty == base

The equations specify some,

but not all of the behavior of

the module (eg: stacks and

queues remove elements in

different orders)

A monad is just a particular interface. Two views:

- interface for a very generic container, with operations designed to support composition of

computations over the contents of containers

- interface for an abstract computation that does some “book keeping” on the side. Book keeping is

code for “has an effect”. Once again, the support for composition is key.

- since functional programmers know that functions are data, the two views actually coincide

Many different kinds of monads:

- monads for handling/accumulating errors (last week)

- monads for processing collections en masse

- monads for logging strings that should be printed

- monads for coordinating concurrent threads (Jane St. Talk)

- monads for back-tracking search

- monads for transactional memory

Because a monad is just a particular interface (with many useful

implementations), you can implement monads in any language

- But, Haskell is famous for them because it has a special built-in syntax that makes monads

particularly easy and elegant to use

- F#, Scala have adopted similar syntactic ideas

- Monads also play a very special role in the overall design of the Haskell language

+ some equations specifying
how return and bind are
required to interact

Consider first the “container interpretation”: ‘a M is a container for

values with type ‘a

 return x puts x in the container

 bind c f takes the values in c out of the container and applies f to

them, forming a new container holding the results

- bind c f is often written as: c >>= f

module type MONAD = sig

 type ‘a M

 val return : ‘a -> ‘a M

 val (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M

end

module type MONAD = sig

 type ‘a M

 val return : ‘a -> ‘a M

 val (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M

end

module OptionMonad = struct

 type ‘a M = ‘a option

 let return x = Some x

 let (>>=) c f =
 match c with
 None -> None
 | Some v -> f v

end

put value in

a container
take value v out

of a container c

and then apply f,

producing a new container

module type MONAD = sig

 type ‘a M

 val return : ‘a -> ‘a M

 val (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M

end

module OptionMonad = struct

 type ‘a M = ‘a option

 let return x = Some x

 let (>>=) c f =
 match c with
 None -> None
 | Some v -> f v

end

type file_name = string

val read_file : file_name -> string M

let concat f1 f2 =
 readfile f1 >>= (fun contents1 ->
 readfile f2 >>= (fun contents2 ->
 return (contents1 ^ contents2)
;;

put value in

a container
take value v out

of a container c

and then apply f,

producing a new container

using the option container:

module type MONAD = sig

 type ‘a M

 val return : ‘a -> ‘a M

 val (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M

end

module ErrorMonad = struct

 type ‘a M = ‘a option

 let return x = Some x

 let (>>=) c f =
 match c with
 None -> None
 | Some v -> f v

end

type file_name = string

val read_file : file_name -> string M

let concat f1 f2 =
 readfile f1 >>= (fun contents1 ->
 readfile f2 >>= (fun contents2 ->
 return (contents1 ^ contents2)
;;

setting up

book keeping

for error

processing

check to see if

error has occurred,

if so return None,

else continue

using the error monad:

module type MONAD = sig

 type ‘a M

 val return : ‘a -> ‘a M

 val (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M

end

module ListMonad = struct

 type ‘a M = ‘a list

 let return x = [x]

 let (>>=) c f =
 List.flatten (List.map f c)

end

random_sample : unit -> int M
monte_carlo : int -> int -> int -> result

let experiments : result M =
 random_sample() >>= (fun s1 ->
 random_sample() >>= (fun s2 ->
 random_sample() >>= (fun s3 ->
 return (monte_carlo s1 s2 s3)
;;

put element

in to list

container
apply f to all elements

of the list c, creating a

list of lists and then

flatten results in to

single list

using the list monad:

module type MONAD = sig

 type ‘a M

 val return : ‘a -> ‘a M

 val (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M

end

module ListMonad = struct

 type ‘a M = ‘a list

 let return x = [x]

 let (>>=) c f =
 List.flatten (List.map f c)

end

random_sample : unit -> int M
monte_carlo : int -> int -> int -> result

let experiments : result M =
 random_sample() >>= (fun s1 ->
 random_sample() >>= (fun s2 ->
 random_sample() >>= (fun s3 ->
 return (monte_carlo s1 s2 s3)
;;

one result;

no non-determinism compose many

possible results (c)

with a non-deterministic

continuation f

using the non-determinism monad:

module type MONAD = sig

 type ‘a M

 val return : ‘a -> ‘a M

 val (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M

end

module LoggingMonad = struct

 type ‘a M = ‘a * string

 let return x = (x, “”)

 let (>>=) c f =
 let (v, s) = c in
 let (v’,s’) = f v in
 (v’, s ^ s’)
end

record : (‘a -> ‘b) -> ‘a -> string -> ‘b M

let record f x s = (f x, s)

let do x =
 record read x “read it” >>= (fun v ->
 record write v “wrote it” >>= (fun _ ->
 record write v “wrote it again” >>= (fun _ ->
 return v
;;

nothing logged

yet concatenate the

log of c with

the log produced

by running f

using the logging monad:

Just like one expects any CONTAINER to behave in a particular way, one

has expectations of MONADs.

Left identity: “return does nothing observable”

(1) return v >>= f == f v

Right identity: “return still doesn’t do anything observable”

(2) m >>= return == m

Associativity: “composing m with f first and then doing g is the same as

doing m with the composition of f and g”

(3) (m >>= f) >>= g == m >>= (fun x -> f x >>= g)

Just like one expects any CONTAINER to behave in a particular way, one

has expectations of MONADs.

Left identity: “return does nothing observable”

(1) return v >>= f == f v

module LoggingMonad = struct

 type ‘a M = ‘a * string

 let return x = (x, “start”)

 let (>>=) c f =
 let (v, s) = c in
 let (v’,s’) = f v in
 (v’, s ^ s’)
end

return 3 >>= fun x -> return x
== (3,”start”) >>= fun x -> return x
== (3, “start” ^ “start”)
== (3, “startstart”)

(fun x -> return x) 3
== return 3
== (3, “start”)

What are the consequences of breaking the law?

Well, if you told your friend you’ve implemented a monad and they can use it
in your code, they will expect that they can rewrite their code using equations
like this one:

return x >>= f == f x

If you tell your friend you’ve implemented the monad interface but none of the
monad laws hold your friend will probably say: Ok, tell me what your
functions do then and please stop using the word monad because it is
confusing. It is like you are claiming to have implemented the QUEUE
interface but insert and remove are First-In, First-Out like a stack.

In Haskell or Fsharp or Scala, breaking the monad laws may have more
severe consequences, because the compiler actually uses those laws to do
some transformations of your code.

val read_file : file_name -> string M

let concat f1 f2 =
 readfile f1 >>= (fun contents1 ->
 readfile f2 >>= (fun contents2 ->
 return (contents1 ^ contents2)
;;

do readfile f1
then do readfile f2
then do contents1 ^
 contents2

module type MONAD = sig
 type ‘a M
 return : ‘a -> ‘a M
 (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M
end

OCaml

val read_file : file_name -> string M

let concat f1 f2 =
 readfile f1 >>= (fun contents1 ->
 readfile f2 >>= (fun contents2 ->
 return (contents1 ^ contents2)
;;

do readfile f1
then do readfile f2
then do contents1 ^
 contents2

concat :: filename -> filename -> Maybe string

concat y z =
 do
 contents1 <- readfile f1
 contents2 <- readfile f2
 return (contents1 ^ contents2)
 .

module type MONAD = sig
 type ‘a M
 return : ‘a -> ‘a M
 (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M
end

the kind of monad is
controlled by the type
Maybe == option

syntax is pretty!
Compiler automatically
translates in to something
very similar to the OCaml

OCaml

Haskell

keyword do begins
monadic block of code!

foo : int -> int

Haskell function types are pure -- totally effect-free

Haskell’s type system forces* purity on
functions with type a -> b
• no printing
• no mutable data
• no reading from files
• no concurrency
• no benign effects (like memoization)

* except for a function called unsafePerformIO

foo :: int -> int totally pure function

<code> :: IO int

suspended (lazy)
computation
that performs effects
when executed

foo :: int -> int totally pure function

<code> :: IO int

suspended (lazy)
computation
that performs effects
when executed

bar :: int -> IO int totally pure function
that returns suspended
effectful computation

foo :: int -> int totally pure function

<code> :: IO int

use monad operations to compose suspended computations

all effects in Haskell are treated as a kind of book keeping IO is the catch-all monad

suspended (lazy)
computation
that performs effects
when executed

bar :: int -> IO int totally pure function
that returns suspended
effectful computation

print :: string -> IO ()

reverse :: string -> string

reverse “hello” :: string

print (reverse “hello”) :: IO ()

the “IO monad”
-- contains effectful computations
like printing

the type system always tells you when an
effect has happened – effects can’t “escape” the I/O monad

read :: Ref a -> IO a

(+) :: int -> int -> int

r :: Ref int

(read r) + 3 :: int

Doesn’t type
check

read :: Ref a -> IO a

(+) :: int -> int -> int

r :: Ref int

(read r) >>= \x ->

x + 3 :: IO int

Use Bind to keep
the computation
in the monad!!

read :: Ref a -> IO a

(+) :: int -> int -> int

r :: Ref int

do

 x <- read r

 return (x + 3)

Prettier!!

Haskell uses new, read, and write* functions

within the IO Monad to manage mutable state.

main = do {r <- new 0; -- int r := 0

 inc r; -- r := r+1

 s <- read r; -- s := r;

 print s }

inc :: Ref Int -> IO ()

inc r = do { v <- read r; -- temp = r

 write r (v+1) } -- r = temp+1

new :: a -> IO (Ref a)

read :: Ref a -> IO a

write :: Ref a -> a -> IO ()

* actually newRef, readRef, writeRef, …

Haskell is already using monads to implement state

It’s type system controls where mutation can occur

So now, software transactional memory is just a

slightly more sophisticated version of Haskell’s

existing IO monad.

Check out James Iry blog:

- http://james-iry.blogspot.com/2007/09/monads-are-

elephants-part-1.html + 3 more parts

- he’s a hacker and he’s using equational reasoning to

explain monads!

Main thing to remember:

- bind is called “flatmap” in Scala

- return is called “unit” in Scala

- do notation in Haskell is similar to for notation in Scala

 for (x <- monad) yield result
== monad >>= (fun x -> return result)
== map (fun x -> result) monad

PPS: Check out monads in Python via generators:
http://www.valuedlessons.com/2008/01/monads-in-python-with-nice-syntax.html

http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html

main = do

 id <- fork action1

 action2

 ...

 The fork function spawns a thread.

 It takes an action as its argument.

 fork :: IO a -> IO ThreadId

action 1 and
action 2 in
parallel

main = do

 id <- fork (atomic action1)

 atomic action2

 ...

 Idea: add a function atomic that guarantees atomic

execution of a suspended (effectful) computation

action 1 and
action 2
atomic
and parallel

read x
write x
read x
write x

read x
write x
read x
write x

action 1: action 2:

without transactions:

with transactions:

read x

write x

read x

write x

read x

write x

read x

write x

or
read x
write x
read x
write x

read x
write x
read x
write x

read x
write x
read x
write x

read x
write x
read x
write x

(programmer gets to cut down non-determinism
as much as he/she wants)

(some interleaving -- the programmer must worry about which one)

main = do

 id <- fork (atomic action1)

 atomic action2

 ...

 Introduce a type for imperative transaction variables

(TVar) and a new Monad (STM) to track transactions.

- STM a == a computation producing a value with type a that

does transactional memory book keeping on the side

- Haskell type system ensures TVars can only be modified in

transactions.

atomic :: STM a -> IO a

new :: a -> STM (TVar a)

read :: TVar a -> STM a

write :: TVar a -> a -> STM ()

TVar a == ‘a ref

Haskell OCaml

-- inc adds 1 to the mutable reference r

inc :: TVar Int -> STM ()

inc r = do

 v <- read r

 write r (v+1)

main = do

 r <- atomic (new 0)

 fork (atomic (inc r))

 atomic (inc r);

-- inc adds 1 to the mutable reference r

inc :: TVar Int -> STM ()

inc r = do

 v <- read r

 write r (v+1)

main = do

 r <- atomic (new 0)

 fork (atomic (inc r))

 atomic (inc r);

Haskell is lazy so these
computations are suspended
and executed within the atomic
block

The STM monad includes a specific set of operations:

 Can’t use TVars outside atomic block

 Can’t do IO inside atomic block:

 atomic is a function, not a syntactic construct

- called atomically in the actual implementation

 ...and, best of all...

atomic :: STM a -> IO a

new :: a -> STM (TVar a)

read :: TVar a -> STM a

write :: TVar a -> a -> STM()

atomic (if x<y then launchMissiles)

The type guarantees that

an STM computation is

always executed

atomically.

- Glue many STM

computations together

inside a “do” block

- Then wrap with atomic to

produce an IO action.

inc r = do

 v <- read r

 write r (v+1)

inc2 r = do

 inc r

 inc r

foo = atomic (inc2 r)

Composition is THE way to build big programs that work

 The STM monad supports exceptions:

 In the call (atomic s), if s throws an exception, the

transaction is aborted with no effect and the exception is

propagated to the enclosing code.

 No need to restore invariants, or release locks!

throw :: Exception -> STM a

catch :: STM a ->(Exception -> STM a) -> STM a

 retry means “abort the current transaction and re-
execute it from the beginning”.

 Implementation avoids early retry using reads in the
transaction log (i.e. acc) to wait on all read variables.

- ie: retry only happens when one of the variables read on the path
to the retry changes

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n =

 do bal <- readTVar acc

 if bal < n then retry

 writeTVar acc (bal-n)
retry :: STM ()

 Retrying thread is woken up automatically when acc is

written, so there is no danger of forgotten notifies.

 No danger of forgetting to test conditions again when

woken up because the transaction runs from the

beginning.

 Correct-by-construction design!

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n =

 do { bal <- readTVar acc;

 if bal < n then retry;

 writeTVar acc (bal-n) }

 retry can appear anywhere inside an atomic block,
including nested deep within a call. For example,

waits for:

 a1 balance > 3

 and a2 balance > 7

 without any change to withdraw function.

atomic (do { withdraw a1 3;

 withdraw a2 7 })

 Suppose we want to transfer 3 dollars from

either account a1 or a2 into account b.

orElse :: STM a -> STM a -> STM a

atomic (

 do

 (withdraw a1 3) `orElse` (withdraw a2 3)

 deposit b 3

)

Try this ...and if it retries, try this

then afterward, do this

transfer ::

 TVar Int ->

 TVar Int ->

 TVar Int ->

 STM ()

transfer a1 a2 b =

 do

 withdraw a1 3 `orElse` withdraw a2 3

 deposit b 3

atomic (

 transfer a1 a2 b

 `orElse` transfer a3 a4 b

)

 The function transfer calls orElse, but calls to

transfer can still be composed with orElse.

STM supports nice equations for reasoning:

a `orElse` (b `orElse` c) == (a `orElse` b) `orElse` s

retry `orElse` s == s

s `orElse` retry == s

(These equations make STM an instance of a structure known

as a MonadPlus -- a Monad with some extra operations and

properties.)

The route to sanity is to establish invariants that
are assumed on entry, and guaranteed on exit, by
every atomic block.

- just like in a module with representation invariants

- this gives you local reasoning about your code

always :: STM Bool -> STM ()

newAccount :: STM (TVar Int)

newAccount =

 do { r <- new 0;

 always (accountInv r);

 return v }

accountInv r = do { x <- read r;
 return (x >= 0)};

An arbitrary boolean valued

STM computation

Any transaction that modifies the account will check the

invariant (no forgotten checks). If the check fails, the

transaction restarts. A persistent assert!!

always

 The function always adds a new invariant to a global

pool of invariants.

 Conceptually, every invariant is checked as every

transaction commits.

 But the implementation checks only invariants that read

TVars that have been written by the transaction

 ...and garbage collects invariants that are checking dead

Tvars.

always :: STM Bool -> STM ()

 Everything so far is intuitive and arm-wavey.

 But what happens if it’s raining, and you are inside an

orElse and you throw an exception that contains a

value that mentions...?

 We need a precise specification!

No way to wait for complex conditions

One

exists

See “Composable Memory Transactions” for details.

http://research.microsoft.com/~simonpj/papers/stm/stm.pdf

 There are similar proposals for adding STM to

Java and other mainstream languages.

class Account {

 float balance;

 void deposit(float amt) {

 atomic { balance += amt; }

 }

 void withdraw(float amt) {

 atomic {

 if(balance < amt) throw new OutOfMoneyError();

 balance -= amt; }

 }

 void transfer(Acct other, float amt) {

 atomic { // Can compose withdraw and deposit.

 other.withdraw(amt);

 this.deposit(amt); }

 }

}

 Unlike Haskell, type systems in mainstream

languages don’t control where effects occur.

 What happens if code outside a transaction

conflicts with code inside a transaction?

- Weak Atomicity: Non-transactional code can see

inconsistent memory states. Programmer should

avoid such situations by placing all accesses to

shared state in transaction.

- Strong Atomicity: Non-transactional code is

guaranteed to see a consistent view of shared state.

This guarantee may cause a performance hit.

For more information: “Enforcing Isolation and Ordering in STM”

http://www.cs.washington.edu/homes/djg/papers/tm_pldi07.pdf

The essence of shared-memory concurrency is deciding
where critical sections should begin and end. This is
still a hard problem.

- Too small: application-specific data races (Eg, may see
deposit but not withdraw if transfer is not atomic).

- Too large: delay progress because deny other threads
access to needed resources.

In Haskell, we can compose STM subprograms but at
some point, we must decide to wrap an STM in "atomic"

- When and where to do it can be a hard decision

 Atomic blocks (atomic, retry, orElse) dramatically raise the level of
abstraction for concurrent programming.

- Gives programmer back some control over when and where they have to
worry about interleavings

 It is like using a high-level language instead of assembly code. Whole
classes of low-level errors are eliminated.

- Correct-by-construction design

 Not a silver bullet:

- you can still write buggy programs;

- concurrent programs are still harder than sequential ones

- aimed only at shared memory concurrency, not message passing

 There is a performance hit, but it is usually acceptable in Haskell (and
things can only get better as the research community focuses on the
question.)

STM and monads bring together multiple threads of interest in this course:

- functional programming

- high-level, higher-order abstractions

- modularity, local reasoning and composition

- correct-by-construction design

- equational reasoning & proofs about programs

- controlling non-determinism in parallel programs

The development of STM is also an example of modern PL research

- Just like with polymorphism, garbage collection, monads and functional parallelism,
the ideas may take a while to catch on in the mainstream. In the meantime, you
can be ahead of the curve

- if you want to see more math like the kind underpinning the semantics of STM,
check out COS 510

This is just an intro. There’s way more to learn. Have fun with FP.

- Take the next step: http://lambda-the-ultimate.org/

http://lambda-the-ultimate.org/
http://lambda-the-ultimate.org/
http://lambda-the-ultimate.org/
http://lambda-the-ultimate.org/
http://lambda-the-ultimate.org/
http://lambda-the-ultimate.org/
http://lambda-the-ultimate.org/

 A complete, multiprocessor implementation of
STM exists as of GHC 6.

 Experience to date: even for the most
mutation-intensive program, the Haskell STM
implementation is as fast as the previous MVar
implementation.

- The MVar version paid heavy costs for (usually
unused) exception handlers.

 Need more experience using STM in practice,
though!

 You can play with it. See the course website.

 At first, atomic blocks look insanely expensive.

A naive implementation (c.f. databases):

- Every load and store instruction logs information into

a thread-local log.

- A store instruction writes the log only.

- A load instruction consults the log first.

- Validate the log at the end of the block.

 If succeeds, atomically commit to shared memory.

 If fails, restart the transaction.

N
o
rm

a
lis

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

Sequential

baseline (1.00x)

Coarse-grained

locking (1.13x)

Fine-grained

locking (2.57x)

Traditional STM

(5.69x)

Workload: operations on

a red-black tree, 1

thread, 6:1:1

lookup:insert:delete mix

with keys 0..65535

See “Optimizing Memory Transactions” for more information.

http://doi.acm.org/10.1145/1133255.1133984

 Direct-update STM

- Allows transactions to make updates in place in the heap

- Avoids reads needing to search the log to see earlier writes
that the transaction has made

- Makes successful commit operations faster at the cost of
extra work on contention or when a transaction aborts

 Compiler integration

- Decompose transactional memory operations into
primitives

- Expose these primitives to compiler optimization
(e.g. to hoist concurrency control operations out of a loop)

 Runtime system integration

- Integrates transactions with the garbage collector to scale
to atomic blocks containing 100M memory accesses

N
o
rm

a
lis

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

Sequential

baseline (1.00x)

Coarse-grained

locking (1.13x)

Fine-grained

locking (2.57x)

Direct-update

STM (2.04x)

Direct-update STM +

compiler integration

(1.46x)

Traditional STM

(5.69x)

Scalable to multicore

Workload: operations on

a red-black tree, 1

thread, 6:1:1

lookup:insert:delete mix

with keys 0..65535

#threads

Fine-grained locking

Direct-update STM +

compiler integration

Traditional STM

Coarse-grained locking

M
ic

ro
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n

 Naïve STM implementation is hopelessly inefficient.

 There is a lot of research going on in the compiler and

architecture communities to optimize STM.

 This work typically assumes transactions are smallish

and have low contention. If these assumptions are

wrong, performance can degrade drastically.

 We need more experience with “real” workloads and

various optimizations before we will be able to say for

sure that we can implement STM sufficiently efficiently

to be useful.

 Consider the following program:

 Successful completion requires A3 to run after A1
but before A2.

 So adding a critical section (by uncommenting A0)
changes the behavior of the program (from
terminating to non-terminating).

Thread 1

// atomic { //A0

 atomic { x = 1; } //A1

 atomic { if (y==0) abort; } //A2

//}

Thread 2

atomic { //A3

 if (x==0) abort;

 y = 1;

}

Initially, x = y = 0

 Worry: Could the system “thrash” by continually

colliding and re-executing?

 No: A transaction can be forced to re-execute

only if another succeeds in committing. That

gives a strong progress guarantee.

 But: A particular thread could starve:

Thread 1

Thread 2

Thread 3

 In languages like ML or Java, the fact that the language
is in the IO monad is baked in to the language. There is
no need to mark anything in the type system because IO
is everywhere.

 In Haskell, the programmer can choose when to live in
the IO monad and when to live in the realm of pure
functional programming.

 Interesting perspective: It is not Haskell that lacks
imperative features, but rather the other languages that
lack the ability to have a statically distinguishable pure
subset.

 This separation facilitates concurrent programming.

Arbitrary effects

No effects

Safe

Useful

Useless

Dangerous

Arbitrary effects

No effects

Useful

Useless

Dangerous Safe

Nirvana

Plan A

(everyone else)

Plan B

(Haskell)

Examples

 Regions

 Ownership types

 Vault, Spec#, Cyclone

Arbitrary effects

Default = Any effect

Plan = Add restrictions

Two main approaches:

 Domain specific languages
(SQL, Xquery, Google
map/reduce)

 Wide-spectrum functional
languages + controlled
effects (e.g. Haskell)

Value oriented

programming

Types play a major role

Default = No effects

Plan = Selectively permit effects

Arbitrary effects

No effects

Useful

Useless

Dangerous Safe

Nirvana

Plan A

(everyone else)

Plan B

(Haskell)

Envy

Arbitrary effects

No effects

Useful

Useless

Dangerous Safe

Nirvana

Plan A

(everyone else)

Plan B

(Haskell)

Ideas; e.g. Software

Transactional Memory (retry,

orElse)

One of Haskell’s most significant
contributions is to take purity seriously, and
relentlessly pursue Plan B.

Imperative languages will embody growing
(and checkable) pure subsets.

 -- Simon Peyton Jones

