
MapReduce: Programming in the
Very Large

Ari Rabkin: asrabkin@gmail.com

 for David Walker's FP class

December 2012

mailto:asrabkin@gmail.com

"The datacenter is the computer"

2

Google versus Hadoop vs MR

• Google published the MapReduce paper in
2004.

• Doug Cutting had been working on an Open
Source MapReduce. Linked up with Yahoo! to
scale it up.

• Has taken off and become very popular

• Other MapReduce implementations also exist

Indexing

• 1: Some Words

• 2: Some other words

• 3: Other words

• Other: 2,3

• Some: 1, 2

• Words: 1,2,3

Note that Index is sorted by key.
Helpful for quick lookup of
approximate matches

Generalizing

• Doc 1

• Doc 2

• Doc 3

• Term 1

• Term 2

• Term 3

Inputs Outputs

Map Shuffle/Sort Reduce

Performance Numbers

• Biggest production Hadoop clusters are ~4000
nodes

• Facebook has 100 PB in Hadoop

• Best MapReduce-like system (TritonSort from
UCSD) can sort 900 GB/minute on a 52-node,
800-disk cluster.

Distributed Implementation
In

p
u

t
D

at
a

O
u

tp
u

t
D

at
a

Map Shuffle/Sort Reduce

Local
Storage

Local
Storage

Local
Storage

A modern software stack

Cluster
Node

Cluster
Node

Cluster
Node

Cluster
Node

Distributed Filesystem

Distributed Execution Engine

Key-value
store

High-level scripting language

Workload Manager

8

The control plane

Input
Data

Input
Data

Input
Data

The flow of information

Heartbeats

Job config.

Tasks to start

OK

Completed

Slots, Tasks, and Attempts

• A job is split into tasks. Each task includes many
calls to map() or reduce()

• Workers are long-running processes that are
assigned tasks

• Multiple workers can be assigned the same task;
these are termed separate attempts.

Map Task 1 Map Task 2 Map Task 3

Job

Reduce Task 1 Reduce Task 2

Size and Failures

• Suppose you have a cluster of a thousand
servers. How long between failures?

• How long for one machine to fail?

– Intuition: machines fail once a year or two?

– Depending on model, perhaps 5% of high-end
hard disks fail each year (Schroder, FAST ’07). A
server might have ten hard disks.

• So for a thousand machines, we would expect
failures more than once a day

Handling Failures
In

p
u

t
D

at
a

O
u

tp
u

t
D

at
a

Map Shuffle/Sort Reduce

X

Failures aren’t absolute

• Some failures make nodes slow

• Reduces can’t start until ALL maps finish

Map Task 1

Map Task 2

Map Task 3

Bad!

R
ed

u
ces

Map Task 1

Map Task 2

Map Task 3

OK
R

ed
u

ces

Fix: speculation

• Multiple tries at same task; pick first to finish

• Subtlety in deciding which tasks to try to
speculatively execute

Map Task 1 – a1

Map Task 2 – a1

Map Task 3 – a1

Map Task 2 – a2

R
ed

u
ces

Types for Map + Reduce functions

• Map:

 (‘K1 * ‘V1  (‘K2 * ‘V2) bag) -> (‘K1 * ‘V1) bag ->
(‘K2 * ‘V2) bag

• Reduce:

 (‘K2 * (‘V2 list)  (‘K3 * ’V3) bag) -> ‘K2 * (‘V2
list) bag -> (‘K3 * ’V3) bag

Indexing

 Map: (DocID * word bag)  (word * DocID) bag

Reduce: (word * DocID list)  (word * DocID) bags

The Java versions

interface Mapper<K1,V1,K2,V2> {

 public void map (K1 key,

 V1 val,

 OutputCollector<K2, V2> output);

 ...

}

The Java versions

interface Reducer<K2,V2,K3,V3> {

 public void reduce(K2 key,

 Iterator<V2> values,

 OutputCollector<K3, V3> output);

 ...

}

Image to Text

• Can use MapReduce for simple parallelization.

• Imagine we have code to convert an image to
text. How do we convert a million scanned
images of book pages?

• Can just wrap the conversion routine in our
Map() method; reduce is identity

• The embarrassingly parallel becomes trivial;
real power of framework is in harder parallel
problems.

True story!

• New York Times has an archive going back to
1850.

• In 2007, they decided to put together PDFs of
everything from 1850 to 1922.

• Total input size: 4 TB

• Took about a day for a 100-node Hadoop
cluster, on hardware rented from Amazon for
the day.

Word count?

• Similar to indexing except we only want
counts, not locations

• Map:
 (DocID, String list) -> ?

• Reduce:
 …. -> (String, int)

Word count?

• Similar to indexing except we only want
counts, not locations

• Map:
 (DocID, String list) -> (String, _) bag

• Reduce:
 (String, _ list) -> (String, int)

Word count?

• Similar to indexing except we only want
counts, not locations

• Map:
 (DocID, string list) -> (string, unit) bag
 emit (w, ()) for each word w in list

• Reduce:
 (string, unit list) -> (string, int)
 emit length of list

Map in Java

 class WordCountMap implements Map {

public void map (DocID key,

List<String> val,

OutputCollector<String, Integer> output) {

 for (String s: val)

 output.collect(s, 1)

 }

}

Reduce in Java

class WordCountReduce {

public void reduce(String key,

Iterator<Integer> vals,

OutputCollector<String, Integer> output) {

 int count = 0;

 for (int v: vals)

 count += 1;

 output.collect(key, count)

 }

}

Map + Reduce, and Combine functions

• Map:

 (‘K1 * ’V1)  (‘K2 * ’V2) bag

• Reduce:

 (‘K2 * ‘V2 list)  (‘K3 * ’V3) bag

• Combine
 (‘K2 * ’V2 list)  (‘K2 * ’V2) bag

Reduce / Combine in Java

class WordCountReduce {

public void reduce(String key,

Iterator<Integer> vals,

OutputCollector<String, Integer> output) {

 int count = 0;

 for (int v: vals)

 count += v;

 output.collect(key, count)

 }

}

Word Count with Combine

• Almost the same functional code, different
configuration

conf.setOutputKeyClass(String.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(WordCountMap.class);

conf.setReducerClass(WordCountReduce.class);

conf.setCombinerClass(WordCountReduce.class);

A hypothetical….

HashMap<String, Integer> counts =

new HashMap<String, Integer>();

public void map (DocID key,

 List<String> val,

OutputCollector<String, Integer>

output) {

 for (String s: val) {

 count = 1;

 if (counts.contains(s))

 count += counts.get(s);

 counts.put(s, count);

 }

 }

A: Correct
program

B: Compiler Error

C: Program
produces wrong
answer

PageRank: measuring how much a
webpage matters

• Model: user is clicking around
randomly.

• With probability k, will start
over at random; else follows a
[random] link off current page.

• Matrix M encodes probabilities
of transition from page p to
page q

• Pr[on page] = M • ep

PageRank: The link matrix

A B C

A 0 1 1

B 0 0 1

C 0 0 0

The Stable State

• Distribution has a stationary point where
 v = M • v (v is an eigenvector)

• Can solve by iteration: vk+1 = M • vk

• We can compute this as a MapReduce job

Defining the types

• Class PageInfo;

• Class LinksInfo extends PageInfo {

 List<DocID> links;

}

• Class Increment extends PageInfo {

 double inWeight;

}

The logic
Reduce(DocID key, Iterator<PageInfo> vals,

OutputCollector<DocID, PageInfo> output {

 double total_score = 0;

 LinksInfo info;

 for (PageInfo i: vals) {

 if (i instanceof LinksInfo) {

 info = (LinksInfo) vals.next();

 output.collect(key, info)

 } else

 total_score += ((Increment) i).inWeight;

 }

 double s = total_score / info.links.size()

 for (DocID out: links.links)

 output.collect(key, Increment(s))

}

Iterative Jobs are common…
In

p
u

t
D

at
a

O
u

tp
u

t
D

at
a

In
p

u
t

D
at

a

O
u

tp
u

t
D

at
a

W
o

rk
in

g
Se

t

Joins

Name ZIP Code

John Doe 08540

Richard Roe 20037

ZIP code State

08540 NJ

14850 NY

20037 DC

Name ZIP
Code

State

John
Doe

08540 NJ

Richard
Roe

20037 DC

Joins with MapReduce

Name ZIP Code

John Doe 08540

Richard
Roe

20037

ZIP code State

08540 NJ

14850 NY

20037 DC

• If one table is small, just keep it in memory at every
location and join in the Map method

• Can also join on Reduce side
– Can emit whole contents of both tables in Map.
– Use “join column” as sort key, then join in reduce().

• Higher-level languages help. (Pig, Hive, etc)

Joins with MR, continued

• Class TableCell [could be int, string, etc]

• Class RowWithSource

map(NullWritable inKey, TableRow val …){

 int fileId = getInputFileNumber();

 int joinCol = config.get(“join_column_” +

fileId);

 TableCell c = val.get(joinCol);

 RowWithSource v2 =new RowWithSource(val, fileId);

 output.collect(c, v2);

}

Joins with MR, continued

 Initialize joinCol1 and joinCol2 [class members] somewhere

reduce(TableCell key, Iterator <RowWithSource> values …){
 List<RowWithSource> src1 = new List<RowWithSource> ();
 List<RowWithSource> src2 = new List<RowWithSource> ();

 for (RowWithSource r: values)
 if (r.src == “1”)
 src1.append(r);
 else
 src2.append(r);

 for (RowWithSource r1: src1)
 for (RowWithSource r2: src2) {
 TableRow res = join(r1, r2, joinCol1, joinCol2);
 output.collect(null, res);
 }
}

Observations

• Code is basically doing nested-loops over all
pairs of rows which match on the join key.

• This doesn’t require materializing the whole
set of results, but does materialize the sets of
inputs on each side.

• This code would be a lot easier with product
types (e.g. Pair<A,B>)

What I work on

MapReduce is the Wrong Thing if the data is spread out:
need more optimization to reduce wide-area transfer
costs

Deeper pipes for more locality

Consolidated
results

W
 A

 N

Partial
results

Partial
results

Extract
Data

Extract
Data L

A
 N

Partial
results

Extract
Data

L
A

 N

Extract
Data

Extract
Data

L
A

 N

Extract
Data

Take-aways

• Big data needs specialized tools to process.

• Higher-order functions help manage complexity.

• Determinism and the absence of side-effects
make parallelism and failure recovery simpler.

• If you have complicated functionality, consider
building a language

For more information

• Hadoop is public and open source.

• See http://hadoop.apache.org for information.

• Amazon’s EC2 will let you run stuff at large scale
for low (and incremental) costs.

