MapReduce: Programming in the
Very Large

Ari Rabkin: asrabkin@gmail.com
for David Walker's FP class
December 2012

mailto:asrabkin@gmail.com

"The datacenter is the computer”

Google versus Hadoop vs MR

Google published the MapReduce paper in

2004. C.o0 8[e

Doug Cutting had been working on an Open
Source MapReduce. Linked up with Yahoo! to

scale it up.
(r1n=la/ala]n)

Has taken off and become very popula

Other MapReduce implementations also exist

Indexing

e 1:Some Words e Other: 2,3

e 2:Some other words * Some: 1,2

e 3: Other words * Words: 1,2,3

Note that Index is sorted by key.
Helpful for quick lookup of
approximate matches

Generalizing

Inputs Outputs

e Docl™ * Term1

* Term 2

>

* Doc?2

* Term 3

* Doc3 >

Map wesss) Shuffle/Sort messsss) Reduce

Performance Numbers

* Biggest production Hadoop clusters are ~4000
nodes

* Facebook has 100 PB in Hadoop

* Best MapReduce-like system (TritonSort from
UCSD) can sort 900 GB/minute on a 52-node,
800-disk cluster.

Input Data

Distributed Implementation

o

Map Shuffle/Sort Reduce

l

Output Data

A modern software stack

"
Node Node Node Node

The control plane

Controller

Input Input Input
Data Data Data

The flow of information

Heartbeats

—

Tasks to start

—

Job config.

OK

Completec

—

Slots, Tasks, and Attempts

* Ajob is split into tasks. Each task includes many
calls to map() or reduce()

Job

Map Task 1 Map Task 2 Map Task 3

Reduce Task 1 Reduce Task 2

 Workers are long-running processes that are
assigned tasks

 Multiple workers can be assigned the same task;
these are termed separate attempts.

Size and Failures

* Suppose you have a cluster of a thousand
servers. How long between failures?

* How long for one machine to fail?
— Intuition: machines fail once a year or two?

— Depending on model, perhaps 5% of high-end
hard disks fail each year (Schroder, FAST '07). A
server might have ten hard disks.

* So for a thousand machines, we would expect
failures more than once a day

Input Data

Handling Failures

\“(

K
\{* B

e

Output Data

Map Shuffle/Sort Reduce

Failures aren’t absolute

* Some failures make nodes slow
* Reduces can’t start until ALL maps finish

s2onpay

Map Task 1 . Map Task 1
Map Task 2 % Map Task 2
Map Task 3 > Map Task 3

OK

Bad!

Fix: speculation

 Multiple tries at same task; pick first to finish

e Subtlety in deciding which tasks to try to
speculatively execute

Map Task 1 —al

Map Task 2 —al

S9INpPay

Map Task 3 —al

Map Task 2 —a2

Types for Map + Reduce functions

* Map:

(‘K1 *‘V1 2> (‘K2 *‘V2) bag) -> (‘K1 * ‘V1) bag ->
(‘K2 * ‘V2) bag

* Reduce:
(‘K2 * (‘V2 list) = (‘K3 *’'V3) bag) -> ‘K2 * (‘V2
list) bag -> (‘K3 * 'V3) bag
Indexing
Map: (DocID * word bag) =2 (word * DoclID) bag

Reduce: (word * DoclD list) = (word * DoclD) bags

The Java versions

interface Mapper<Kl,V1l,K2,V2> {

public void map (K1 key,
V1l wval,

OutputCollector<K2, V2> output);

The Java versions

interface Reducer<K?2,V2,K3,V3> {

public void reduce (K2 key,
Iterator<VzZ2> wvalues,

OQutputCollector<K3, V3> output):;

lmage to Text

Can use MapReduce for simple parallelization.

Imagine we have code to convert an image to
text. How do we convert a million scanned
images of book pages?

Can just wrap the conversion routine in our
Map() method; reduce is identity

The embarrassingly parallel becomes trivial;
real power of framework is in harder parallel
problems.

True story!

. ’
1] \/1
i) A FaAT

\ RMISTI

"! "." !’ i J '.! J : u ;_"“.‘, (L] i) VISTS: .
New York:Times has:aniarchive going back to
1850. e ’

In 2007, they decided to put together PDFs of
everything from 1850 to 1922.

Total input size: 4 TB

Took about a day for a 100-node Hadoop
cluster, on hardware rented from Amazon for
the day.

Word count?

e Similar to indexing except we only want
counts, not locations

* Map:
(DoclD, String list) -> ?

* Reduce:
.. => (String, int)

Word count?

e Similar to indexing except we only want
counts, not locations

* Map:
(DoclD, String list) -> (String,) bag

e Reduce:

(String, _list) -> (String, int)

Word count?

e Similar to indexing except we only want
counts, not locations

* Map:
(DoclD, string list) -> (string, unit) bag
emit (w, ()) for each word w in list
* Reduce:
(string, unit list) -> (string, int)
emit length of list

Map in Java

class WordCountMap implements Map {

public void map (DocID key,

List<String> val,

OutputCollector<String, Integer> output) {

for (String s: val)
output.collect (s, 1)

Reduce in Java

class WordCountReduce {
public void reduce (String key,
Iterator<Integer> vals,
OutputCollector<String, Integer> output) {

int count = 0;
for (int wv: wvals)
count += 1;
output.collect (key, count)
}
}

Map + Reduce, and Combine functions

* Map:
(‘K1 *’V1) = (‘K2 *’V2) bag
* Reduce:
(‘K2 * ‘V2 list) =2 (‘K3 * 'V3) bag

e Combine
(‘K2 *’V2 list) =2 (‘K2 * ’V2) bag

Reduce / Combine in Java

class WordCountReduce {
public void reduce (String key,
Iterator<Integer> vals,
OutputCollector<String, Integer> output) {

int count = 0;
for (int wv: wvals)
count += wv;
output.collect (key, count)
}
}

Word Count with Combine

 Almost the same functional code, different
configuration

conf.setOutputKeyClass (String.class) ;
conf.setOutputValueClass (IntWritable.class);
cont.setMapperClass (WordCountMap.class) ;
conf.setReducerClass (WordCountReduce.class);

conf.setCombinerClass (WordCountReduce.class) ;

A hypothetical....

HashMap<String, Integer> counts =
new HashMap<String, Integer>(); A: Correct
public void map (DocID key, program
List<String> val,
OutputCollector<String, Integer>

output) { B: Compiler Error

count = 1; .
1if (counts.contains (s)) ; Program

count += counts.get(s);
counts.put (s, count);

}

PageRank: measuring how much a
webpage matters

 Model: user is clicking around
randomly.

* With probability k, will start
over at random; else follows a

[random] link off current page.

 Matrix M encodes probabilities
of transition from page p to

page g

* Prlon page]=M e e,

PageRank: The link matrix

I
A 0 1 1

The Stable State

* Distribution has a stationary point where
v=Mev (visan eigenvector)

* Can solve by iteration: v,,;, =M e v,
 We can compute this as a MapReduce job

Defining the types

* Class PagelInfo;

* Class LinksInfo extends PagelInfo {
List<DocID> 1links;

}

* Class Increment extends PagelInfo {
double 1nWeight;

The logic

Reduce (DocID key, Iterator<PagelInfo> wvals,
OutputCollector<DocID, PageInfo> output {
double total score = 0;
LinksInfo 1info;

for (PageInfo 1: vals) {
1f (1 1nstanceof LinksInfo) {
info = (LinksInfo) wvals.next () ;
output.collect (key, 1nfo)
} else
total score += ((Increment) 1) .inWeight;
}
double s = total score / info.links.size ()

for (DocID out: links.links)
output.collect (key, Increment(s))

Input Data

Iterative Jobs are common...

|

Output Data
Input Data

WorkingCel

|

Output Data

Joins

Name ZIP Code ZIP code State
08540 NJ
John Doe 08540
14850 NY
Richard Roe | 20037 50037 e
Name ZIP State
Code
John 08540 |NJ
Doe
Richard | 20037 |DC
Roe

with MapR

ZIP code
08540 NJ\
14850 N)#
20037 | DC

Name /ZIPCode

John Do(e 08540
Richard
Roe

* |f one table is small, just keep it in memory at every
location and join in the Map method

* Can also join on Reduce side
— Can emit whole contents of both tables in Map.
— Use “join column” as sort key, then join in reduce().

* Higher-level languages help. (Pig, Hive, etc)

20037

Joins with MR, continued

* Class TableCell [could be int, string, etc]
* Class RowWithSource

map (NullWritable 1inKey, TableRow wval ..) {

int filelId = getInputFileNumber ()

int joinCol = config.get(“join column ” +
fileId);

TableCell ¢ = val.get (joinCol);

RowWithSource vZ2 =new RowWithSource(val, fileId):;

output.collect(c, Vv2);
}

Joins with MR, continued

Initialize joinColl and joinColZ [class members] somewhere

reduce (TableCell key, Iterator <RowWithSource> wvalues ..) {
List<RowWithSource> srcl = new List<RowWithSource> ()
List<RowWithSource> src2 = new List<RowWithSource> ()

for (RowWithSource r: wvalues)
if (r.src == “17)
srcl.append(r);
else
src2.append(r) ;

for (RowWithSource rl: srcl)
for (RowWithSource r2: src2) {
TableRow res = join(rl, r2, joinColl, joinColZ2);
output.collect (null, res);

}

Observations

* Code is basically doing nested-loops over all
pairs of rows which match on the join key.

* This doesn’t require materializing the whole
set of results, but does materialize the sets of

inputs on each side.

* This code would be a lot easier with product
types (e.g. Pair<A,B>)

What | work on

MapReduce is the Wrong Thing if the data is spread out:
need more optimization to reduce wide-area transfer
costs

Extract
Data

Extract
Data

Extract
Data

Extract
Data

Extract
Data

Extract
Data

Deeper pipes for more locality

\

LAN

Partial
results

\

LAN

Partial
results

\

LAN

Yol |

Partial
results

WAN

s

Consolidated
results

p,

Take-aways

Big data needs specialized tools to process.
Higher-order functions help manage complexity.

Determinism and the absence of side-effects
make parallelism and failure recovery simpler.

If you have complicated functionality, consider
building a language

For more information

* Hadoop is public and open source.
* See http://hadoop.apache.org for information.

 Amazon’s EC2 will let you run stuff at large scale
for low (and incremental) costs.

