
Parallelism and Concurrency
(Part II)

COS 326

David Walker

Princeton University

Pure Functions

A function (or expression) is pure if it has no effects.

• Valuable expressions should not have effects either

Recall that a function has an effect if its behavior cannot be
completely explained by a deterministic relation between its
inputs and its outputs

Expressions have effects when they:

• don't terminate

• raise exceptions

• read from stdin/print to stdout

• read or write to a shared mutable data structure

Not an effect: reading from immutable data structures

increasingly
difficult
to deal with

Effects and Parallelism

The combination of effects and parallelism is difficult to reason
about: The run-time system is responsible for scheduling the
instructions in each thread. Depending on the schedule, the
effects happen in a different order

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

thread 1 thread 2

print a

print b

print c

print d

Effects and Parallelism

The combination of effects and parallelism is difficult to reason
about: The run-time system is responsible for scheduling the
instructions in each thread. Depending on the schedule, the
effects happen in a different order

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

thread 1 thread 2

print a

print b

print c

print d

Effects and Parallelism

The combination of effects and parallelism is difficult to reason
about: The run-time system is responsible for scheduling the
instructions in each thread. Depending on the schedule, the
effects happen in a different order

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

thread 1 thread 2

print a

print b

print c

print d

Effects and Parallelism

The combination of effects and parallelism is difficult to reason
about: The run-time system is responsible for scheduling the
instructions in each thread. Depending on the schedule, the
effects happen in a different order

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

thread 1 thread 2

print a

print b

print c

print d

Effects and Parallelism

The combination of effects and parallelism is difficult to reason
about: The run-time system is responsible for scheduling the
instructions in each thread. Depending on the schedule, the
effects happen in a different order

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

thread 1 thread 2

print a

print b

print c

print d

Understanding the output requires consideration of all interleavings of
instructions. So many combinations! So much non-determinism!

Benign Effects & Futures

Not all uses of effects create non-determinism. Eg: Futures

sig

 type 'a future

 val future : (unit -> 'a) -> 'a future

 val force : 'a future -> 'a

end

struct

 type ‘a future = {tid : Thread.t ; value : 'a option ref}

 let future (f:'a->'b) (x:'a) : 'b future =

 let r = ref None in

 let t = Thread.create (fun () -> r := Some(f x)) () in

 {tid=t ; value=r}

 let force (f:'a future) : 'a =

 Thread.join f.tid ;

 match !(f.value) with

 | Some v -> v

 | None -> failwith “impossible!”

end

Provided your code contains no other effects, futures do not
introduce non-determinism!

Consequence: when it comes to reasoning about the correctness
of your programs, pure functional code + parallel futures is no
harder than pure functional sequential code!

Equational reasoning laws:

Moreover

Benign Effects & Futures

let x = e1 in

e2

let x = future (fun _ -> e1) in

e2[force x/x]
==

if e1 is valuable then:

Benign Effects & Futures

let x = e1 in

e2

let x = future (fun _ -> e1) in

e2[force x/x]
==

type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b) (t:'a tree) : 'b =

 match t with

 | Leaf -> u

 | Node (n,left,right) ->

 let left' = fold f u left in

 let right' = fold f u right in

 f n left' right'

if e1 is valuable then:

Benign Effects & Futures

let x = e1 in

e2

let x = future (fun _ -> e1) in

e2[force x/x]
==

type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b) (t:'a tree) : 'b =

 match t with

 | Leaf -> u

 | Node (n,left,right) ->

 let left' = future (fun _ -> fold f u left) in

 let right' = fold f u right in

 f n (force left') right'

if e1 is valuable then:

Benign Effects & Futures

let x = e1 in

e2

let x = future (fun _ -> e1) in

e2[force x/x]
==

type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b) (t:'a tree) : 'b =

 match t with

 | Leaf -> u

 | Node (n,left,right) ->

 let left' = future (fun _ -> fold f u left) in

 let right' = fold f u right in

 f n (force left') right'

Moral: It is vastly easier to introduce parallelism in to a pure functional
program using futures than using naked references, locks, join

if e1 is valuable then:

Benign Effects & Futures

• What if your program has effects? (Most useful programs do!)

• Try to push the effects to the edges of your program and put
parallelism in the middle. Especially limit mutable data.

let main () =

 …

 effect

 …

 effect

 …

 effect

let main () =

 …

 effect

 effect

pure
parallelism

LOCKS AND MUTABLE DATA

What happens here?

16

val bank : account array

let rec atm (loc:string) =

 let id = getAccountNumber() in

 let w = getWithdrawAmount() in

 let d = withdraw (bank.(id)) w in (* mutate *)

 dispenseDollars d ; (* bank account *)

 atm loc

let world () =

 Thread.create atm “Princeton, Nassau” ;

 Thread.create atm “NYC, Penn Station” ;

 Thread.create atm “Boston, Lexington Square”

Consider a Bank Acount ADT

17

type account = { name : string; mutable bal : int }

let create (n:string) (b:int) : account =

 { name = n; bal = b }

let deposit (a:account) (amount:int) : unit =

 if a.bal + amount < max_balance then

 a.bal <- a.bal + amount

let withdraw (a:account) (amount:int) : int =

 if a.bal >= amount then (

 a.bal <- a.bal – amount;

 amount

) else 0

Synchronization: Locks

18

This is not a problem we can fix with fork/join/futures.

– The ATMs shouldn’t ever terminate!

– Yet join only allows us to wait until one thread terminates.

Instead, we’re going to us a mutex lock to synchronize threads.

– mutex is short for “mutual exclusion”

– locks will give us a way to introduce some controlled access to
resources – in this case, the bank accounts.

– controlled access to a shared resource is a concurrency problem,
not a parallelization problem

Mutex Locks in OCaml

19

module type Mutex :

 sig

 type t (* type of mutex locks *)

 val create : unit -> t (* create a fresh lock *)

 (* try to acquire the lock – makes
 the thread go to sleep until the lock
 is free. So at most one thread “owns” the lock. *)

 val lock : t -> unit

 (* releases the lock so other threads can
 wake up and try to acquire the lock. *)

 val unlock : t -> unit

 (* similar to lock, but never blocks. Instead, if
 the lock is already locked, it returns “false”. *)

 val try_lock : t -> bool

 end

Adding a Lock

20

type account = { name : string; mutable bal : int; lock : Mutex.t }

let create (n:string) (b:int) : account =

 { name = n; bal = b; lock = Mutex.create() }

let deposit (a:account) (amount:int) : unit =

 Mutex.lock a.lock;

 if a.bal + amount < max_balance then

 a.bal <- a.bal + amount;

 Mutex.unlock a.lock

let withdraw (a:account) (amount:int) : int =

 Mutex.lock a.lock;

 let result =

 if a.bal >= amount then (

 a.bal <- a.bal – amount;

 amount) else 0

 in

 Mutex.unlock a.lock;

 result

Better

21

type account = { name : string; mutable bal : int; lock : Mutex.t }

let create (n:string) (b:int) : account =

 { name = n; bal = b; lock = Mutex.create() }

let deposit (a:account) (amount:int) : unit =

 with_lock a.lock (fun () ->

 if a.bal + amount < max_balance then

 a.bal <- a.bal + amount))

let withdraw (a:account) (amount:int) : int =

 with_lock a.lock (fun () ->

 if a.bal >= amount then (

 a.bal <- a.bal – amount;

 amount) else 0

)

let with_lock (l:Mutex.t)

 (f:unit->’b) : ’b =

 Mutex.lock l;

 let res = f () in

 Mutex.unlock l;

 res

General Design Pattern

22

Associate any shared, mutable thing with a lock.

– Java takes care of this for you (but only for one simple case.)

– In Ocaml, C, C++, etc. it’s up to you to create & manage locks.

In every thread, before reading or writing the object, acquire the lock.

– This prevents other threads from interleaving their operations on the
object with yours.

– Easy error: forget to acquire or release the lock.

When done operating on the mutable value, release the lock.

– It’s important to minimize the time spent holding the lock.

– That’s because you are blocking all the other threads.

– Easy error: raise an exception and forget to release a lock…

– Hard error: lock at the wrong granularity (too much or too little)

Better Still

23

type account = { name : string; mutable bal : int; lock : Mutex.t }

let create (n:string) (b:int) : account =

 { name = n; bal = b; lock = Mutex.create() }

let deposit (a:account) (amount:int) : unit =

 with_lock a.lock (fun () ->

 if a.bal + amount < max_balance then

 a.bal <- a.bal + amount))

let withdraw (a:account) (amount:int) : int =

 with_lock a.lock (fun () ->

 if a.bal >= amount then (

 a.bal <- a.bal – amount;

 amount) else 0

)

let with_lock (l:Mutex.t)

 (f:unit->’b) : ‘a =

 Mutex.lock l;

 let res =

 try f ()

 with exn -> (Mutex.unlock l;

 raise exn)

 in

 Mutex.unlock l;

 res

Another Example

24

type ‘a stack = { mutable contents : ‘a list;

 lock : Mutex.t

 };;

let empty () = {contents=[]; lock=Mutex.create()};;

let push (s:‘a stack) (x:‘a) : unit =

 with_lock s.lock (fun _ ->

 s.contents <- x::s.contents)

;;

let pop (s:‘a stack) : ‘a option =

 with_lock s.lock (fun _ ->

 match s.contents with

 | [] -> None

 | h::t -> (s.contents <- t ; Some h)

;;

Unfortunately…

25

This design pattern of associating a lock with each object, and
using with_lock on each method works well when we need to
make the method seem atomic.

– In fact, Java has a synchronize construct to cover this.

But it does not work when we need to do some set of actions on
multiple objects.

MANAGING MULTIPLE
MUTABLE DATA STRUCTURES

Another Example

27

type ‘a stack = { mutable contents : ‘a list;

 lock : Mutex.t }

val empty : () -> ‘a stack

val push : ‘a stack -> a -> unit

val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =

 with_lock s1.lock (fun _ ->

 match pop s1 with

 | None => ()

 | Some x => push s2 x)

Another Example

28

type ‘a stack = { mutable contents : ‘a list;

 lock : Mutex.t }

val empty : () -> ‘a stack

val push : ‘a stack -> a -> unit

val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =

 with_lock s1.lock (fun _ ->

 match pop s1 with

 | None => ()

 | Some x => push s2 x)

Unfortunately, we
already hold
s1.lock

when we invoke
pop s1

which tries to acquire
the lock.

Another Example

29

type ‘a stack = { mutable contents : ‘a list;

 lock : Mutex.t }

val empty : () -> ‘a stack

val push : ‘a stack -> a -> unit

val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =

 with_lock s1.lock (fun _ ->

 match pop s1 with

 | None => ()

 | Some x => push s2 x)

Unfortunately, we
already hold
s1.lock

when we invoke
pop s1

which tries to acquire
the lock.

So we end up dead-
locked.

Another Example

30

type ‘a stack = { mutable contents : ‘a list;

 lock : Mutex.t }

val empty : () -> ‘a stack

val push : ‘a stack -> a -> unit

val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =

 with_lock s1.lock (fun _ ->

 match pop s1 with

 | None => ()

 | Some x => push s2 x)

Avoid deadlock by
deleting the line that

aquires s1.lock
initially

A trickier problem

31

type ‘a stack = { mutable contents : ‘a list;

 lock : Mutex.t }

val empty : () -> ‘a stack

val push : ‘a stack -> a -> unit

val pop : ‘a stack -> ‘a option

let pop_two (s1:‘a stack)

 (s2:‘a stack) : (‘a * ‘a) option =

 match pop s1, pop s2 with

 | Some x, Some y -> Some (x,y)

 | Some x, None -> push s1 x ; None

 | None, Some y -> push s2 y ; None

Either:

(1) pop one from each if both

non-empty, or

(2) have no effect at all

A trickier problem

32

type ‘a stack = { mutable contents : ‘a list;

 lock : Mutex.t }

val empty : () -> ‘a stack

val push : ‘a stack -> a -> unit

val pop : ‘a stack -> ‘a option

let pop_two (s1:‘a stack)

 (s2:‘a stack) : (‘a * ‘a) option =

 match pop s1, pop s2 with

 | Some x, Some y -> Some (x,y)

 | Some x, None -> push s1 x ; None

 | None, Some y -> push s2 y ; None

But some other
thread could sneak in

here and try to
perform an operation

on our contents
before we’ve

managed to push the
value back on.

Yet another broken solution

33

let no_lock_pop (s1:‘a stack) : ‘a option =

 match s1.contents with

 | [] -> None

 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =

 contents <- x::contents

let pop_two (s1:‘a stack)

 (s2:‘a stack) : (‘a * ‘a) option =

 with_lock s1.lock (fun _ ->

 with_lock s2.lock (fun _ ->

 match no_lock_pop s1, no_lock_pop s2 with

 | Some x, Some y -> Some (x,y)

 | Some x, None -> no_lock_push s1 x ; None

 | None, Some y -> no_lock_push s2 y ; None))

Yet another broken solution

34

let no_lock_pop (s1:‘a stack) : ‘a option =

 match s1.contents with

 | [] -> None

 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =

 contents <- x::contents

let pop_two (s1:‘a stack)

 (s2:‘a stack) : (‘a * ‘a) option =

 with_lock s1.lock (fun _ ->

 with_lock s2.lock (fun _ ->

 match no_lock_pop s1, no_lock_pop s2 with

 | Some x, Some y -> Some (x,y)

 | Some x, None -> no_lock_push s1 x ; None

 | None, Some y -> no_lock_push s2 y ; None))

Problems?

Yet another broken solution

35

let no_lock_pop (s1:‘a stack) : ‘a option =

 match s1.contents with

 | [] -> None

 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =

 contents <- x::contents

let pop_two (s1:‘a stack)

 (s2:‘a stack) : (‘a * ‘a) option =

 with_lock s1.lock (fun _ ->

 with_lock s2.lock (fun _ ->

 match no_lock_pop s1, no_lock_pop s2 with

 | Some x, Some y -> Some (x,y)

 | Some x, None -> no_lock_push s1 x ; None

 | None, Some y -> no_lock_push s2 y ; None))

What happens if we call
pop_two x x?

Yet another broken solution

36

let no_lock_pop (s1:‘a stack) : ‘a option =

 match s1.contents with

 | [] -> None

 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =

 contents <- x::contents

let pop_two (s1:‘a stack)

 (s2:‘a stack) : (‘a * ‘a) option =

 with_lock s1.lock (fun _ ->

 with_lock s2.lock (fun _ ->

 match no_lock_pop s1, no_lock_pop s2 with

 | Some x, Some y -> Some (x,y)

 | Some x, None -> no_lock_push s1 x ; None

 | None, Some y -> no_lock_push s2 y ; None))

What happens if two
threads are trying to call

pop_two at the same
time?

In particular, consider:

Thread.create (fun _ -> pop_two x y)

Thread.create (fun _ -> pop_two y x)

Yet another broken solution

37

let no_lock_pop (s1:‘a stack) : ‘a option =

 match s1.contents with

 | [] -> None

 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =

 contents <- x::contents

let pop_two (s1:‘a stack)

 (s2:‘a stack) : (‘a * ‘a) option =

 with_lock s1.lock (fun _ ->

 with_lock s2.lock (fun _ ->

 match no_lock_pop s1, no_lock_pop s2 with

 | Some x, Some y -> Some (x,y)

 | Some x, None -> no_lock_push s1 x ; None

 | None, Some y -> no_lock_push s2 y ; None))

In particular, consider:

Thread.create (fun _ -> pop_two x y)

Thread.create (fun _ -> pop_two y x)

One possible interleaving:
T1 acquires x’s lock.
T2 acquires y’s lock.

T1 tries to acquire y’s lock
and blocks.

T2 tries to acquire x’s lock
and blocks.

A fix

38

type ‘a stack = { mutable contents : ‘a list; lock : Mutex.t; id : int }

let new_id : unit -> int =

 let c = ref 0 in (fun _ -> c := (!c) + 1 ; !c)

let empty () = {contents=[]; lock=Mutex.create(); id=new_id()};;

let no_lock_pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =

 match no_lock_pop s1, no_lock_pop s2 with

 | Some x, Some y -> Some (x,y)

 | Some x, None -> no_lock_push s1 x; None

 | None, Some y -> no_lock_push s2 y; None

let pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =

 if s1.id < s2.id then

 with_lock s1.lock (fun _ ->

 with_lock s2.lock (fun _ ->

 no_lock_pop_two s1 s2))

 else if s1.id > s2.id then

 with_lock s2.lock (fun _ ->

 with_lock s1.lock (fun _ ->

 no_lock_pop_two s1 s2))

 else with_lock s1.lock (fun _ -> no_lock_pop_two s1 s2)

sigh ...

39

type ‘a stack = { mutable contents : ‘a list; lock : Mutex.t; id : int }

let new_id : unit -> int =

 let c = ref 0 in let l = Mutex.create() in

 (fun _ -> with_lock l (fun _ -> (c := (!c) + 1 ; !c)))

let empty () = {contents=[]; lock=Mutex.create(); id=new_id()};;

let no_lock_pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =

 match no_lock_pop s1, no_lock_pop s2 with

 | Some x, Some y -> Some (x,y)

 | Some x, None -> no_lock_push s1 x; None

 | None, Some y -> no_lock_push s2 y; None

let pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =

 …

;;

Refined Design Pattern

40

• Associate a lock with each shared, mutable object.

• Choose some ordering on shared mutable objects.

– doesn’t matter what the order is, as long as it is total.

– in C/C++, often use the address of the object as a unique
number.

– Our solution: add a unique ID number to each object

• To perform actions on a set of objects S atomically:

– acquire the locks for the objects in S in order.

– perform the actions.

– release the locks.

SUMMARY

Programming with mutation, threads and locks

Reasoning about pure parallel programs that include futures is
easy -- no harder than ordinary, sequential programs

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Reasoning about concurrent programs with
effects requires considering all interleavings of
instructions of concurrently executing threads.

– often too many interleavings for normal
humans to keep track of

– non-modular: you often have to look at the
details of each thread to figure out what is
going on

– locks cut down interleavings

– but knowing you have done it right still
requires deep analysis

thread 1 thread 2

END

