
Parallelism and Concurrency

COS 326

David Walker

Princeton University

Data Centers: Generation Z Super Computers

3

Darn!
Intel engineers no
longer optimize my
programs while
I watch TV!

Power to chip
peaking

Core

1

2

3

4

5
...

Last Time: Multi-core Hardware & Data Centers

1

2

3

4

5
...

L2 cache

Core

Main memory

L1 cache L1 cache

ALU

ALU

ALU

ALU

4

Sounds Great!

5

• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

Sounds Great!

6

• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

– no way!

Sounds Great!

7

• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

– no way!

– to upgrade from Intel 386 to 486, the app writer and compiler
writer did not have to do anything (much)

• IA 486 interpreted the same sequential stream of instructions; it
just did it faster

• this is why we could watch TV while Intel engineers optimized our
programs for us

– to upgrade from Intel 486 to dual core, we need to figure out
how to split a single stream of instructions in to two streams of
instructions that collaborate to complete the same task.

• without work & thought, our programs don't get any faster at all

• it takes ingenuity to generate efficient parallel algorithms from
sequential ones

PARALLEL AND CONCURRENT
PROGRAMMING

Speedup

9

• Speedup: the ratio of parallel program execution time to
sequential program execution time.

• If T(p) is the time it takes to run a computation on p processors

• A parallel program has perfect speedup (aka linear speedup) if

• Bad news: Not every program can be effectively parallelized.

– in fact, very few programs will scale with perfect speedups.

– we certainly can't achieve perfect speedups automatically

– limited by sequential portions, data transfer costs, ...

speedup(p) = T(p)/T(1)

T(p)/T(1) = speedup = p

Most Troubling…

10

Most, but not all, parallel and concurrent programming models
are far harder to work with than sequential ones:

• They introduce non-determinism

– the root of (almost all) evil

– program parts suddenly have many different outcomes

• they have different outcomes on different runs

• debugging requires considering all of the possible outcomes

• horrible heisenbugs hard to track down

• They are non-modular

– module A implicitly influences the outcomes of module B

• They introduce new classes of errors

– race conditions, deadlocks

• They introduce new performance/scalability problems

– busy-waiting, sequentialization, contention,

Informal Error Rate Chart

regularity
with which
you shoot
yourself
in the foot

Informal Error Rate Chart

regularity
with which
you shoot
yourself
in the foot

null pointers,
paucity of types,
inheritence

manual
memory
management

kitchen
sink +
manual
memory

heaven
on earth

unstructured
parallel
or concurrent
programming

Solid Parallel Programming Requires

13

1. Good sequential programming skills.
– all the things we’ve been talking about: use modules, types, ...

2. Deep knowledge of the application.

3. Pick a correct-by-construction parallel programming model

– whenever possible, a parallel model with semantics that coincide with
sequential semantics
• whenever possible, reuse well-tested libraries that hide parallelism

– whenever possible, a model that cuts down non-determinism
– whenever possible, a model with fewer possible concurrency bugs
– if bugs can arise, know and use safe programming patterns

4. Careful engineering to ensure scaling.

– unfortunately, there is sometimes a tradeoff:
• reduced non-determinism can lead to reduced resource utilization

– synchronization, communication costs may need optimization

OUR FIRST PARALLEL
PROGRAMMING MODEL: THREADS

Threads: A Warning

• Concurrent Threads: the classic shoot-yourself-in-the-foot
concurrent programming model

– all the classic error modes

• Why Threads?

– almost all programming languages will have a threads library

• OCaml in particular!

– you need to know where the pitfalls are

– the assembly language of concurrent programming paradigms

• we’ll use threads to build several higher-level programming
models

Threads

16

• Threads: an abstraction of a processor.

– programmer (or compiler) decides that some work can be done
in parallel with some other work, e.g.:

– we fork a thread to run the computation in parallel, e.g.:

let _ = compute_big_thing() in

let y = compute_other_big_thing() in

...

let t = Thread.create compute_big_thing () in

let y = compute_other_big_thing () in

 ...

Intuition in Pictures

17

let t = Thread.create f () in

let y = g () in

 ...

Thread.create

execute g ()

...

processor 1

(* doing nothing *)

execute f ()

...

processor 2

time 1

time 2

time 3

Of Course…

18

Suppose you have 2 available cores and you fork 4 threads. In a
typical multi-threaded system,

– the operating system provides the illusion that there are an
infinite number of processors.

• not really: each thread consumes space, so if you fork too many
threads the process will die.

– it time-multiplexes the threads across the available processors.

• about every 10 msec, it stops the current thread on a processor,
and switches to another thread.

• so a thread is really a virtual processor.

OCaml, Concurrency and Parallelism

Unfortunately, even if your computer has 2, 4, 6, 8 cores, OCaml
cannot exploit them. It multiplexes all threads over a single core

Hence, OCaml provides concurrency, but not parallelism. Why?
Because OCaml (like Python) has no parallel run time or garbage
collector. Lots of other functional languages (Haskell, F#, ...) do.

Fortunately, when thinking about program correctness, it doesn’t
matter that OCaml is not parallel -- I will often pretend that it is. But
we won’t be able to get the same kinds of speedups. :-(

core

thread … thread thread

Coordination

20

How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in

let y = g () in

 ...

First Attempt

21

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

 match r with

 | Some v -> (* compute with v and y *)

 | None -> ???

Second Attempt

22

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() =

 match r with

 | Some v -> v

 | None -> wait()

in

let v = wait() in

 (* compute with v and y *)

Two Problems

23

First, we are busy-waiting.

• consuming cpu without doing something useful.

• the processor could be either running a useful thread/program or power
down.

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() =

 match r with

 | Some v -> v

 | None -> wait()

in

let v = wait() in

 (* compute with v and y *)

Two Problems

24

Second, an operation like r := Some v may not be atomic.
• r := Some v requires us to copy the bytes of Some v into the ref r

• we might see part of the bytes (corresponding to Some) before we’ve
written in the other parts (e.g., v).

• So the waiter might see the wrong value.

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() =

 match r with

 | Some v -> v

 | None -> wait()

in

let v = wait() in

 (* compute with v and y *)

Atomicity

25

Consider the following:

and suppose two threads are incrementing the same ref r:

Thread 1 Thread 2

inc(r); inc(r);

!r !r

If r initially holds 0, then what will Thread 1 see when it reads r?

let inc(r:int ref) = r := (!r) + 1

Atomicity

26

The problem is that we can’t see exactly what instructions the
compiler might produce to execute the code.

It might look like this:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

Atomicity

27

But a clever compiler might optimize this to:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

Atomicity

28

Furthermore, we don’t know when the OS might interrupt one
thread and run the other.

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

(The situation is similar, but not quite the same on multi-
processor systems.)

Interleaving & Race Conditions

29

We can calculate the possible outcomes for a multi-threaded program by
considering all of the possible interleavings of the atomic actions performed
by each thread.

– Subject to the happens-before relation.
• can’t have a child thread’s actions happening before a parent forks it.

• can’t have later instructions execute earlier in the same thread.

– Here, atomic means indivisible actions.
• For example, on most machines reading or writing a 32-bit word is atomic.

• But, writing a multi-word object is usually not atomic.

• Most operations like “b := b - w” are implemented in terms of a series of
simpler operations such as “r1 = read(b); r2 = read(w); r3 = r1 – r2; write(b,
r3)”

• To better understand what is and isn’t atomic demands detailed knowledge of
the compiler and the underlying architecture (see CS61, CS161 for this kind of
detail.)

Reasoning about all interleavings is hard.

– The number of interleavings grows exponentially with the number of
statements.

– It’s hard for us to tell what is and isn’t atomic in a high-level language.

Atomicity

30

One possible interleaving of the instructions:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

What answer do we get?

Atomicity

31

Another possible interleaving:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

What answer do we get this time?

Atomicity

32

Another possible interleaving:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

What answer do we get this time?

Moral: The system is responsible for scheduling execution of
instructions.

Moral: This can lead to an enormous degree of non-determinism.

Atomicity

33

In fact, today’s multi-core processors don’t treat memory in a
sequentially consistent fashion.

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

That means that we can’t even assume that what we will see
corresponds to some interleaving of the threads’ instructions!

Beyond the scope of this class (and my brain…)

One Solution (using join)

34

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

 Thread.join t ;

 match r with

 | Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

One Solution (using join)

35

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

 Thread.join t ;

 match r with

 | Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

Thread.join t causes
the current thread to wait

until the thread t
terminates.

One Solution (using join)

36

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

 Thread.join t ;

 match r with

 | Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

 So after the join, we know
that any of the operations

of t have completed.

In Pictures

37

Thread 1
create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;
inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

We know that for each
thread the previous
instructions must happen
before the later instructions.

So for instance, inst1,1 must
happen before inst1,2.

In Pictures

38

Thread 1
create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;
inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

We also know that the
fork must happen before
the first instruction of the
second thread.

In Pictures

39

Thread 1
create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;
inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

We also know that the
fork must happen before
the first instruction of the
second thread.

And thanks to the join,
we know that all of the
instructions of the second
thread must be completed
before the join finishes.

In Pictures

40

Thread 1
create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;
inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

However, in general, we
do not know whether
inst1,i executes before or
after inst2,j.

In general, synchronization
instructions like fork and
join reduce the number of
possible interleavings.

Synchronization cuts down
non-determinism.

In the absence of
synchronization we don’t
know anything…

FUTURES: A PARALLEL
PROGRAMMING ABSTRACTION

Futures

42

The fork-join pattern we just saw is so common, we’ll create an abstraction for it:

module type FUTURE =

sig

 type ‘a future

 (* future f x forks a thread to run f(x)

 and stores the result in a future when complete *)

 val future : (’a->’b) -> ’a -> ‘b future

 (* force f causes us to wait until the

 thread computing the future value is done

 and then returns its value. *)

 val force :’a future -> ‘a

end

Future Implementation

43

module Future : FUTURE =

struct

 type ‘a future = {tid : Thread.t ;

 value : ’a option ref }

 let future(f:’a->’b)(x:’a) : ‘b future =

 let r = ref None in

 let t = Thread.create (fun () -> r := Some(f x)) ()

 in

 {tid=t ; value=r}

 let force (f:’a future) : ‘a =

 Thread.join f.tid ;

 match !(f.value) with

 | Some v -> v

 | None -> failwith “impossible!”

end

Now using Futures

44

let x = future f () in

let y = g () in

let v = force x in

(* compute with v and y *)

Back to the Futures

45

let x = future f () in

let y = g () in

let v = force x in

y + v

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

Back to the Futures

46

what happens if
we delete these
lines?

let x = future f () in

let y = g () in

let v = force x in

y + v

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

Back to the Futures

47

let x = future f () in

let y = g () in

let v = force x in

y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

what happens if
we use x and
forget to force?

Back to the Futures

48

let x = future f () in

let y = g () in

let v = force x in

y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

Moral: Futures + typing ensure
entire categories of errors can’t
happen -- you protect yourself
from your own stupidity

Back to the Futures

49

let x = future f () in

let v = force x in

let y = g () in

y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

Thread.join t ;

let y = g() in

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

what happens if you
relocate force, join?

Back to the Futures

50

let x = future f () in

let v = force x in

let y = g () in

y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

Thread.join t ;

let y = g() in

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

Moral: Futures are
not a universal savior

An Example: Mergesort on Arrays

51

let mergesort (cmp:'a->'a->int) (arr : 'a array) : 'a array =

 let rec msort (start:int) (len:int) : 'a array =

 match len with

 | 0 -> Array.of_list []

 | 1 -> Array.make 1 arr.(start)

 | _ -> let half = len / 2 in

 let a1 = msort start half in

 let a2 = msort (start + half) (len - half) in

 merge a1 a2

 and merge (a1:'a array) (a2:'a array) : 'a array =

 let a = Array.make (Array.length a1 + Array.length a2) a1.(0) in

 let rec loop i j k =

 match i < Array.length a1, j < Array.length a2 with

 | true, true -> if cmp a1.(i) a2.(j) <= 0 then

 (a.(k) <- a1.(i) ; loop (i+1) j (k+1))

 else (a.(k) <- a2.(j) ; loop i (j+1) (k+1))

 | true, false -> a.(k) <- a1.(i) ; loop (i+1) j (k+1)

 | false, true -> a.(k) <- a2.(j) ; loop i (j+1) (k+1)

 | false, false -> ()

 in

 loop 0 0 0 ; a

 in

 msort 0 (Array.length arr)

An Example: Mergesort on Arrays

52

let mergesort (cmp:'a->'a->int) (arr : 'a array) : 'a array =

 let rec msort (start:int) (len:int) : 'a array =

 match len with

 | 0 -> Array.of_list []

 | 1 -> Array.make 1 arr.(start)

 | _ -> let half = len / 2 in

 let a1 = msort start half in

 let a2 = msort (start + half) (len - half) in

 merge a1 a2

 and merge (a1:'a array) (a2:'a array) : 'a array =

 let a = Array.make (Array.length a1 + Array.length a2) a1.(0) in

 let rec loop i j k =

 match i < Array.length a1, j < Array.length a2 with

 | true, true -> if cmp a1.(i) a2.(j) <= 0 then

 (a.(k) <- a1.(i) ; loop (i+1) j (k+1))

 else (a.(k) <- a2.(j) ; loop i (j+1) (k+1))

 | true, false -> a.(k) <- a1.(i) ; loop (i+1) j (k+1)

 | false, true -> a.(k) <- a2.(j) ; loop i (j+1) (k+1)

 | false, false -> ()

 in

 loop 0 0 0 ; a

 in

 msort 0 (Array.length arr)

Opportunity for
parallelization

Making Mergesort Parallel

53

let mergesort (cmp:'a->'a->int) (arr : 'a array) : 'a array =

 let rec msort (start:int) (len:int) : 'a array =

 match len with

 | 0 -> Array.of_list []

 | 1 -> Array.make 1 arr.(start)

 | _ -> let half = len / 2 in

 let a1_f = Future.future (msort start) half in

 let a2 = msort (start + half) (len - half) in

 merge (Future.force a1_f) a2

 and merge (a1:'a array) (a2:'a array) : 'a array =

 let a = Array.make (Array.length a1 + Array.length a2) a1.(0) in

 let rec loop i j k =

 match i < Array.length a1, j < Array.length a2 with

 | true, true -> if cmp a1.(i) a2.(j) <= 0 then

 (a.(k) <- a1.(i) ; loop (i+1) j (k+1))

 else (a.(k) <- a2.(j) ; loop i (j+1) (k+1))

 | true, false -> a.(k) <- a1.(i) ; loop (i+1) j (k+1)

 | false, true -> a.(k) <- a2.(j) ; loop i (j+1) (k+1)

 | false, false -> ()

 in

 loop 0 0 0 ; a

 in

 msort 0 (Array.length arr)

Divide-and-Conquer

54

This is an instance of a basic divide-and-conquer pattern in
parallel programming

– take the problem to be solved and divide it in half

– fork a thread to solve the first half

– simultaneously solve the second half

– synchronize with the thread we forked to get its results

– combine the two solution halves into a solution for the whole
problem.

Warning: the fact that we only had to rewrite 2 lines of code for
mergesort made the parallelization transformation look
deceptively easy

– we also had to verify that any two threads did not touch
overlapping portions of the array -- if they did we would have to
again worry about scheduling non-determinism

Caveats

55

There is some overhead for creating a thread.
– On a uni-processor, parallel code will run slower than the sequential code.

Even on a multi-processor, we probably do not always want to fork a thread
– when the sub-array is small, faster to sort it than to fork a thread to sort it.

• similar to using insertion sort when arrays are small vs. quicksort

– this is known as a granularity problem
• more parallelism than we can effectively take advantage of.

In a good implementation of futures, a compiler and run-time system might
look to see whether the cost of doing the fork is justified by the amount of
work that will be done. Today, it’s up to you to figure this out… 

– typically, use parallel divide-and-conquer until
• (a) we have generated at least as many threads as there are processors

– often more threads than processors because different jobs take different
amounts of time to complete and we would like to keep all processors busy

• (b) the sub-arrays have gotten small enough that it’s not worth forking.

We’re not going to worry about these performance-tuning details but rather
focus on the distinctions between parallel and sequential algorithms.

Another Example

56

type 'a tree = Leaf | Node of 'a node

and 'a node = {left : 'a tree ;

 value : 'a ;

 right : 'a tree }

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b)

 (t:'a tree) : 'b =

 match t with

 | Leaf -> u

 | Node n ->

 f n.value (fold f u n.left) (fold f u n.right)

let sum (t:int tree) = fold (+) 0 t

Another Example

57

type 'a tree = Leaf | Node of 'a node

and 'a node = {left : 'a tree ;

 value : 'a ;

 right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)

 (t:'a tree) : 'b =

 match t with

 | Leaf -> u

 | Node n ->

 let l_f = Future.future (pfold f u) n.left in

 let r = pfold f u n.right in

 f n.value (Future.force l_f) r

let sum (t:int tree) = pfold (+) 0 t

Note

58

• If the tree is imbalanced, then we’re not going to get the
same speedup as if it’s balanced.

• Consider the degenerate case of a list.

– The forked child will terminate without doing any useful work.

– So the parent is going to have to do all that work.

– Pure overhead… 

• In general, lists are a horrible data structure for parallelism.

– we can’t cut the list in half in constant time

– for arrays and trees, we can do that (assuming the tree is
balanced.)

Side Effects?

59

type 'a tree = Leaf | Node of 'a node

and 'a node = { left : 'a tree ;

 value : 'a ;

 right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)

 (t:'a tree) : 'b =

 match t with

 | Leaf -> u

 | Node n ->

 let l_f = Future.future (pfold f u) n.left in

 let r = pfold f u n.right in

 f n.value (Future.force l_f) r

let print (t:int tree) =

 pfold (fun n _ _ -> Printf.print “%d\n” n) ()

Huge Point

60

If code is purely functional, then it never matters in what order it is run.
If f () and g () are pure then all of the following are equivalent:

As soon as we introduce side-effects, the order starts to matter.
– This is why, IMHO, imperative languages where even the simplest of

program phrases involves a side effect, are doomed.

– Of course, we’ve been saying this for 30 years!

– See J. Backus’s Turing Award paper, “Can Programming be Liberated from
the von Neumann Style? A Functional Style and Its Algebra of Programs.”

 http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf

let x = f() in

let y = g() in

e

let y = g () in

let x = f () in

e

let y_g = future g () in

let x = f () in

let y = force y_g in

e

let x_f = future f () in

let y = g () in

let x = force x_f in

e

MANAGING MUTABLE DATA

Consider a Bank Acount ADT

62

type account = { name : string; mutable bal : int }

let create (n:string) (b:int) : account =

 { name = n; bal = b }

let deposit (a:account) (amount:int) : unit =

 if a.bal + amount < max_balance then

 a.bal <- a.bal + amount

let withdraw (a:account) (amount:int) : int =

 if a.bal >= amount then (

 a.bal <- a.bal – amount;

 amount

) else 0

What happens here?

63

val bank : account array

let rec atm (loc:string) =

 let id = getAccountNumber() in

 let w = getWithdrawAmount() in

 let d = withdraw (bank.(id)) w in

 dispenseDollars d ;

 atm loc

let world () =

 Thread.create atm “Princeton, Nassau” ;

 Thread.create atm “NYC, Penn Station” ;

 Thread.create atm “Boston, Lexington Square”

Bad Situation

64

• Suppose two ATMs, running in separate threads, try to
perform a withdrawal from the same bank account around
the same time.

• For example, suppose bank.(0) is an account that starts with
$100 in its balance.

• And suppose we have two threads, each executing the service
loop, trying to withdraw $50 and $75 respectively.

Simplifying the situation…

65

let w = 50 in

if b > w then

 (b <- b - w ;

 w)

else

 0

b = 100

let w = 75 in

if b > w then

 (b <- b - w ;

 w)

else

 0

Simplifying the situation…

66

let w = 50 in

if b > w then

 (b <- b - w ;

 w)

else

 0

b = 100

let w = 75 in

if b > w then

 (b <- b - w ;

 w)

else

 0

b = 50

Simplifying the situation…

67

let w = 50 in

if b > w then

 (b <- b - w ;

 w)

else

 0

b = 100

let w = 75 in

if b > w then

 (b <- b - w ;

 w)

else

 0

b = 25

Another schedule ...

68

let w = 50 in

if b > w then

 (b <- b - w ;

 w)

else

 0

b = 100

let w = 75 in

if b > w then

 (b <- b - w ;

 w)

else 0

b = -25

Good for you ... (less so for the bank)

69

let w = 50 in

if b > w then

 b - w

 (b <- b - w ;

 w)

else 0

b = 100

let w = 75 in

if b > w then

 (b <- b - w ;

 w)

else 0

b = 50

Good for you ... (less so for the bank)

70

let w = 50 in

if b > w then

 b - w

 (b <- b - w ;

 w)

else 0

b = 100

let w = 75 in

if b > w then

 (b <- b - w ;

 w)

else 0

b = 50

Yet we
paid out
$125!!!

More Synchronization: Locks

71

This is not a problem we can fix with fork/join.

– The ATMs shouldn’t ever terminate!

– Yet join only allows us to wait until one thread terminates.

Instead, we’re going to us a mutex lock to synchronize threads.

– mutex is short for “mutual exclusion”

– locks will give us a way to introduce some controlled access to
resources – in this case, the bank accounts.

– controlled access to a shared resource is a concurrency problem,
not a parallelization problem

END

