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Intel engineers no  
longer optimize my 
programs while 
I watch TV! 
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• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster? 
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– no way! 
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• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster? 

– no way! 

– to upgrade from Intel 386 to 486, the app writer and compiler 
writer did not have to do anything (much) 

• IA 486 interpreted the same sequential stream of instructions; it 
just did it faster 

• this is why we could watch TV while Intel engineers optimized our 
programs for us 

– to upgrade from Intel 486 to dual core, we need to figure out 
how to split a single stream of instructions in to two streams of 
instructions that collaborate to complete the same task. 

• without work & thought, our programs don't get any faster at all 

• it takes ingenuity to generate efficient parallel algorithms from 
sequential ones 



PARALLEL AND CONCURRENT 
PROGRAMMING 



Speedup 
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• Speedup: the ratio of parallel program execution time to 
sequential program execution time. 

• If T(p) is the time it takes to run a computation on p processors 

 

 

 

• A parallel program has perfect speedup (aka linear speedup) if 

 

 

 

• Bad news:  Not every program can be effectively parallelized. 

– in fact, very few programs will scale with perfect speedups. 

– we certainly can't achieve perfect speedups automatically 

– limited by sequential portions, data transfer costs, ... 

 

speedup(p) = T(p)/T(1) 

T(p)/T(1) = speedup = p 



Most Troubling… 
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Most, but not all, parallel and concurrent programming models 
are far harder to work with than sequential ones: 

• They introduce non-determinism 

– the root of (almost all) evil 

– program parts suddenly have many different outcomes 

• they have different outcomes on different runs 

• debugging requires considering all of the possible outcomes 

• horrible heisenbugs hard to track down 

• They are non-modular 

– module A implicitly influences the outcomes of module B 

• They introduce new classes of errors 

– race conditions, deadlocks 

• They introduce new performance/scalability problems 

– busy-waiting, sequentialization, contention, 
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with which 
you shoot  
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Informal Error Rate Chart 
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paucity of types, 
inheritence 

manual 
memory 
management 

kitchen 
sink +  
manual 
memory 

heaven 
on earth 

unstructured 
parallel 
or concurrent 
programming 



Solid Parallel Programming Requires 
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1. Good sequential programming skills. 
– all the things we’ve been talking about: use modules, types, ... 

 
2. Deep knowledge of the application. 
 
3. Pick a correct-by-construction parallel programming model 

– whenever possible, a parallel model with semantics that coincide with 
sequential semantics 
• whenever possible, reuse well-tested libraries that hide parallelism 

– whenever possible, a model that cuts down non-determinism 
– whenever possible, a model with fewer possible concurrency bugs 
– if bugs can arise, know and use safe programming patterns 

 
4. Careful engineering to ensure scaling. 

– unfortunately, there is sometimes a tradeoff: 
• reduced non-determinism can lead to reduced resource utilization 

– synchronization, communication costs may need optimization 



OUR FIRST PARALLEL 
PROGRAMMING MODEL:  THREADS 



Threads: A Warning 

• Concurrent Threads:  the classic shoot-yourself-in-the-foot 
concurrent programming model 

– all the classic error modes 

 

• Why Threads? 

– almost all programming languages will have a threads library 

• OCaml in particular! 

– you need to know where the pitfalls are 

– the assembly language of concurrent programming paradigms 

• we’ll use threads to build several higher-level programming 
models 



Threads 
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• Threads:  an abstraction of a processor. 

– programmer (or compiler) decides that some work can be done 
in parallel with some other work, e.g.: 

 

 

 

 

 

– we fork a thread to run the computation in parallel, e.g.: 

 

let _ = compute_big_thing() in  

let y = compute_other_big_thing() in 

... 

let t = Thread.create compute_big_thing () in  

let y = compute_other_big_thing () in 

 ... 



Intuition in Pictures 
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let t = Thread.create f () in  

let y = g () in 

 ... 

Thread.create   

 

execute g () 

  

... 

processor 1 

(* doing nothing *)   

 

execute f () 

  

... 

processor 2 

time 1 
 
time 2 
 
time 3 



Of Course… 
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Suppose you have 2 available cores and you fork 4 threads.  In a 
typical multi-threaded system,  

 

– the operating system provides the illusion that there are an 
infinite number of processors. 

• not really:  each thread consumes space, so if you fork too many 
threads the process will die. 

 

– it time-multiplexes the threads across the available processors. 

• about every 10 msec, it stops the current thread on a processor, 
and switches to another thread. 

• so a thread is really a virtual processor. 

 

 



OCaml, Concurrency and Parallelism 

Unfortunately, even if your computer has 2, 4, 6, 8 cores, OCaml 
cannot exploit them.  It multiplexes all threads over a single core 

 

 

 

 

Hence, OCaml provides concurrency, but not parallelism. Why? 
Because OCaml (like Python) has no parallel run time or garbage 
collector.  Lots of other functional languages (Haskell, F#, ...) do.   

 

Fortunately, when thinking about program correctness, it doesn’t 
matter that OCaml is not parallel -- I will often pretend that it is.  But 
we won’t be able to get the same kinds of speedups.  :-(   

core 

thread … thread thread 



Coordination 
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How do we get back the result that t is computing? 

 

 

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t 

 

let t = Thread.create f () in  

let y = g () in 

 ... 



First Attempt 
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let r = ref None 

let t = Thread.create (fun _ -> r := Some(f ())) in  

let y = g() in 

  match r with  

    | Some v -> (* compute with v and y *) 

    | None -> ??? 

 

 

 



Second Attempt 
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let r = ref None 

let t = Thread.create (fun _ -> r := Some(f ())) in  

let y = g() in 

let rec wait() =  

  match r with  

    | Some v -> v 

    | None -> wait() 

in 

let v = wait() in 

  (* compute with v and y *)   

 

 

 



Two Problems 
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First, we are busy-waiting.   

• consuming cpu without doing something useful. 

• the processor could be either running a useful thread/program or power 
down.   

 

 

 

let r = ref None 

let t = Thread.create (fun _ -> r := Some(f ())) in  

let y = g() in 

let rec wait() =  

  match r with  

    | Some v -> v 

    | None -> wait() 

in 

let v = wait() in 

  (* compute with v and y *) 



Two Problems 
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Second, an operation like r := Some v may not be atomic. 
• r := Some v  requires us to copy the bytes of Some v into the ref r 

• we might see part of the bytes (corresponding to Some) before we’ve 
written in the other parts (e.g., v). 

• So the waiter might see the wrong value. 

 
 
 

 

let r = ref None 

let t = Thread.create (fun _ -> r := Some(f ())) in  

let y = g() in 

let rec wait() =  

  match r with  

    | Some v -> v 

    | None -> wait() 

in 

let v = wait() in 

  (* compute with v and y *) 



Atomicity 

25 

Consider the following: 

 

 

 

and suppose two threads are incrementing the same ref r: 

 

Thread 1  Thread 2 

inc(r);  inc(r); 

!r   !r 

 

If r initially holds 0, then what will Thread 1 see when it reads r?   

 

let inc(r:int ref) = r := (!r) + 1 



Atomicity 
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The problem is that we can’t see exactly what instructions the 
compiler might produce to execute the code. 

 

It might look like this: 

 

Thread 1               Thread 2 

EAX := load(r);     EAX := load(r); 

EAX := EAX + 1;     EAX := EAX + 1; 

store EAX into r    store EAX into r 

EAX := load(r)      EAX := load(r) 

 

 



Atomicity 
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But a clever compiler might optimize this to: 

 

Thread 1               Thread 2 

EAX := load(r);     EAX := load(r); 

EAX := EAX + 1;     EAX := EAX + 1; 

store EAX into r    store EAX into r 

EAX := load(r)      EAX := load(r) 

 

 

 



Atomicity 
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Furthermore, we don’t know when the OS might interrupt one 
thread and run the other.  

 

Thread 1               Thread 2 

EAX := load(r);     EAX := load(r); 

EAX := EAX + 1;     EAX := EAX + 1; 

store EAX into r    store EAX into r 

EAX := load(r)      EAX := load(r) 

 

(The situation is similar, but not quite the same on multi-
processor systems.) 

 



Interleaving & Race Conditions 
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We can calculate the possible outcomes for a multi-threaded program by 
considering all of the possible interleavings of the atomic actions performed 
by each thread. 

– Subject to the happens-before relation. 
• can’t have a child thread’s actions happening before a parent forks it. 

• can’t have later instructions execute earlier in the same thread. 

– Here, atomic means indivisible actions. 
• For example, on most machines reading or writing a 32-bit word is atomic. 

• But, writing a multi-word object is usually not atomic. 

• Most operations like “b := b - w” are implemented in terms of a series of 
simpler operations such as “r1 = read(b); r2 = read(w); r3 = r1 – r2; write(b, 
r3)” 

• To better understand what is and isn’t atomic demands detailed knowledge of 
the compiler and the underlying architecture (see CS61, CS161 for this kind of 
detail.) 

Reasoning about all interleavings is hard. 

– The number of interleavings grows exponentially with the number of 
statements. 

– It’s hard for us to tell what is and isn’t atomic in a high-level language. 



Atomicity 
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One possible interleaving of the instructions: 
 

Thread 1               Thread 2 

EAX := load(r);     EAX := load(r); 

EAX := EAX + 1;     EAX := EAX + 1; 

store EAX into r    store EAX into r 

EAX := load(r)       EAX := load(r) 

 

What answer do we get? 

 



Atomicity 
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Another possible interleaving: 
 

Thread 1               Thread 2 

EAX := load(r);     EAX := load(r); 

EAX := EAX + 1;     EAX := EAX + 1; 

store EAX into r    store EAX into r 

EAX := load(r)       EAX := load(r) 

 

What answer do we get this time? 

 



Atomicity 
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Another possible interleaving: 
 

Thread 1               Thread 2 

EAX := load(r);     EAX := load(r); 

EAX := EAX + 1;     EAX := EAX + 1; 

store EAX into r    store EAX into r 

EAX := load(r)       EAX := load(r) 

 

What answer do we get this time? 

 

Moral:  The system is responsible for scheduling execution of 
instructions. 

 

Moral:  This can lead to an enormous degree of non-determinism. 

 



Atomicity 
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In fact, today’s multi-core processors don’t treat memory in a 
sequentially consistent fashion. 

 

Thread 1               Thread 2 

EAX := load(r);     EAX := load(r); 

EAX := EAX + 1;     EAX := EAX + 1; 

store EAX into r    store EAX into r 

EAX := load(r)      EAX := load(r) 

 

That means that we can’t even assume that what we will see 
corresponds to some interleaving of the threads’ instructions! 

 

Beyond the scope of this class (and my brain…) 

 



One Solution (using join) 

34 

 

 let r = ref None 

 let t = Thread.create (fun _ -> r := Some(f ())) in  

let y = g() in 

    Thread.join t ;  

    match r with  

  | Some v -> (* compute with v and y *) 

    | None -> failwith “impossible” 

 

 

 



One Solution (using join) 

35 

 

 let r = ref None 

 let t = Thread.create (fun _ -> r := Some(f ())) in  

let y = g() in 

    Thread.join t ;  

    match r with  

  | Some v -> (* compute with v and y *) 

    | None -> failwith “impossible” 

 

 

 

Thread.join t causes 
the current thread to wait 

until the thread t 
terminates. 



One Solution (using join) 
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 let r = ref None 

 let t = Thread.create (fun _ -> r := Some(f ())) in  

let y = g() in 

    Thread.join t ;  

    match r with  

  | Some v -> (* compute with v and y *) 

    | None -> failwith “impossible” 

 

 

 So after the join, we know 
that any of the operations 

of t have completed. 



In Pictures 
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Thread 1 
create f x 
inst1,1;  
inst1,2; 
inst1,3; 
inst1,4; 
… 
inst1,n-1; 
inst1,n; 
join t 

Thread 2 
 
 
inst2,1;  
inst2,2; 
inst2,3; 
… 
inst2,m; 

We know that for each 
thread the previous 
instructions must happen 
before the later instructions. 
 
So for instance, inst1,1 must 
happen before inst1,2. 



In Pictures 
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Thread 1 
create f x 
inst1,1;  
inst1,2; 
inst1,3; 
inst1,4; 
… 
inst1,n-1; 
inst1,n; 
join t 

Thread 2 
 
 
inst2,1;  
inst2,2; 
inst2,3; 
… 
inst2,m; 

We also know that the  
fork must happen before 
the first instruction of the  
second thread. 
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Thread 1 
create f x 
inst1,1;  
inst1,2; 
inst1,3; 
inst1,4; 
… 
inst1,n-1; 
inst1,n; 
join t 

Thread 2 
 
 
inst2,1;  
inst2,2; 
inst2,3; 
… 
inst2,m; 

We also know that the  
fork must happen before 
the first instruction of the  
second thread. 

And thanks to the join,  
we know that all of the 
instructions of the second 
thread must be completed 
before the join finishes. 



In Pictures 
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Thread 1 
create f x 
inst1,1;  
inst1,2; 
inst1,3; 
inst1,4; 
… 
inst1,n-1; 
inst1,n; 
join t 

Thread 2 
 
 
inst2,1;  
inst2,2; 
inst2,3; 
… 
inst2,m; 

However, in general, we 
do not know whether 
inst1,i executes before or  
after inst2,j. 
 
In general, synchronization 
instructions like fork and 
join reduce the number of 
possible interleavings. 
 
Synchronization cuts down  
non-determinism. 
 
In the absence of  
synchronization we don’t 
know anything… 



FUTURES:  A PARALLEL 
PROGRAMMING ABSTRACTION 



Futures 
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The fork-join pattern we just saw is so common, we’ll create an abstraction for it: 

 

module type FUTURE =  

sig 

  type ‘a future  

 

  (* future f x forks a thread to run f(x) 

     and stores the result in a future when complete *) 

  val future : (’a->’b) -> ’a -> ‘b future  

    

  (* force f causes us to wait until the  

     thread computing the future value is done 

     and then returns its value. *) 

  val force :’a future -> ‘a   

end 



Future Implementation 
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module Future : FUTURE =  

struct  

  type ‘a future = {tid   : Thread.t      ;  

                    value : ’a option ref } 

 

  let future(f:’a->’b)(x:’a) : ‘b future =  

    let r = ref None in  

    let t = Thread.create (fun () -> r := Some(f x)) ()  

    in 

    {tid=t ; value=r} 

 

  let force (f:’a future) : ‘a =  

    Thread.join f.tid ;  

    match !(f.value) with 

    | Some v -> v 

    | None -> failwith “impossible!” 

end  



Now using Futures 
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let x = future f () in 

let y = g () in 

let v = force x in 

(* compute with v and y *) 

 

 

 

 

 



Back to the Futures 
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let x = future f () in 

let y = g () in 

let v = force x in 

y + v 

 

 

 

 

 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with futures library: without futures library: 

module type FUTURE =  

sig 

  type ‘a future  

 

  val future : (’a->’b) -> ’a -> ‘b future  

  val force :’a future -> ‘a   

end 



Back to the Futures 

46 

what happens if 
we delete these 
lines? 

let x = future f () in 

let y = g () in 

let v = force x in 

y + v 

 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with futures library: without futures library: 

module type FUTURE =  

sig 

  type ‘a future  

 

  val future : (’a->’b) -> ’a -> ‘b future  

  val force :’a future -> ‘a   

end 



Back to the Futures 
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let x = future f () in 

let y = g () in 

let v = force x in 

y + x 

 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with futures library: without futures library: 

module type FUTURE =  

sig 

  type ‘a future  

 

  val future : (’a->’b) -> ’a -> ‘b future  

  val force :’a future -> ‘a   

end 

what happens if 
we use x and 
forget to force? 



Back to the Futures 
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let x = future f () in 

let y = g () in 

let v = force x in 

y + x 

 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with futures library: without futures library: 

module type FUTURE =  

sig 

  type ‘a future  

 

  val future : (’a->’b) -> ’a -> ‘b future  

  val force :’a future -> ‘a   

end 

Moral:  Futures + typing ensure 
entire categories of errors can’t  
happen -- you protect yourself 
from your own stupidity 



Back to the Futures 
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let x = future f () in 

let v = force x in 

let y = g () in 

y + x 

 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

Thread.join t ;  

let y = g() in 

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with futures library: without futures library: 

module type FUTURE =  

sig 

  type ‘a future  

 

  val future : (’a->’b) -> ’a -> ‘b future  

  val force :’a future -> ‘a   

end 

what happens if you 
relocate force, join? 



Back to the Futures 
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let x = future f () in 

let v = force x in 

let y = g () in 

y + x 

 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

Thread.join t ;  

let y = g() in 

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with futures library: without futures library: 

module type FUTURE =  

sig 

  type ‘a future  

 

  val future : (’a->’b) -> ’a -> ‘b future  

  val force :’a future -> ‘a   

end 

Moral:  Futures are 
not a universal savior 



An Example:  Mergesort on Arrays 
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let mergesort (cmp:'a->'a->int) (arr : 'a array) : 'a array =  

  let rec msort (start:int) (len:int) : 'a array =  

    match len with  

      | 0 -> Array.of_list [] 

      | 1 -> Array.make 1 arr.(start) 

      | _ -> let half = len / 2 in 

             let a1 = msort start half in 

             let a2 = msort (start + half) (len - half) in 

               merge a1 a2 

  and merge (a1:'a array) (a2:'a array) : 'a array =  

    let a = Array.make (Array.length a1 + Array.length a2) a1.(0) in 

    let rec loop i j k =  

      match i < Array.length a1, j < Array.length a2 with  

        | true, true -> if cmp a1.(i) a2.(j) <= 0 then 

                          (a.(k) <- a1.(i) ; loop (i+1) j (k+1)) 

                        else (a.(k) <- a2.(j) ; loop i (j+1) (k+1)) 

        | true, false -> a.(k) <- a1.(i) ; loop (i+1) j (k+1) 

        | false, true -> a.(k) <- a2.(j) ; loop i (j+1) (k+1) 

        | false, false -> () 

    in  

      loop 0 0 0 ; a 

  in 

    msort 0 (Array.length arr) 



An Example:  Mergesort on Arrays 
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let mergesort (cmp:'a->'a->int) (arr : 'a array) : 'a array =  

  let rec msort (start:int) (len:int) : 'a array =  

    match len with  

      | 0 -> Array.of_list [] 

      | 1 -> Array.make 1 arr.(start) 

      | _ -> let half = len / 2 in 

             let a1 = msort start half in 

             let a2 = msort (start + half) (len - half) in 

               merge a1 a2 

  and merge (a1:'a array) (a2:'a array) : 'a array =  

    let a = Array.make (Array.length a1 + Array.length a2) a1.(0) in 

    let rec loop i j k =  

      match i < Array.length a1, j < Array.length a2 with  

        | true, true -> if cmp a1.(i) a2.(j) <= 0 then 

                          (a.(k) <- a1.(i) ; loop (i+1) j (k+1)) 

                        else (a.(k) <- a2.(j) ; loop i (j+1) (k+1)) 

        | true, false -> a.(k) <- a1.(i) ; loop (i+1) j (k+1) 

        | false, true -> a.(k) <- a2.(j) ; loop i (j+1) (k+1) 

        | false, false -> () 

    in  

      loop 0 0 0 ; a 

  in 

    msort 0 (Array.length arr) 

Opportunity for 
parallelization 



Making Mergesort Parallel 
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let mergesort (cmp:'a->'a->int) (arr : 'a array) : 'a array =  

  let rec msort (start:int) (len:int) : 'a array =  

    match len with  

      | 0 -> Array.of_list [] 

      | 1 -> Array.make 1 arr.(start) 

      | _ -> let half = len / 2 in 

             let a1_f = Future.future (msort start) half in 

             let a2 = msort (start + half) (len - half) in 

               merge (Future.force a1_f) a2 

  and merge (a1:'a array) (a2:'a array) : 'a array =  

    let a = Array.make (Array.length a1 + Array.length a2) a1.(0) in 

    let rec loop i j k =  

      match i < Array.length a1, j < Array.length a2 with  

        | true, true -> if cmp a1.(i) a2.(j) <= 0 then 

                          (a.(k) <- a1.(i) ; loop (i+1) j (k+1)) 

                        else (a.(k) <- a2.(j) ; loop i (j+1) (k+1)) 

        | true, false -> a.(k) <- a1.(i) ; loop (i+1) j (k+1) 

        | false, true -> a.(k) <- a2.(j) ; loop i (j+1) (k+1) 

        | false, false -> () 

    in  

      loop 0 0 0 ; a 

  in 

    msort 0 (Array.length arr) 



Divide-and-Conquer 
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This is an instance of a basic divide-and-conquer pattern in 
parallel programming 

– take the problem to be solved and divide it in half 

– fork a thread to solve the first half 

– simultaneously solve the second half 

– synchronize with the thread we forked to get its results 

– combine the two solution halves into a solution for the whole 
problem. 

 

Warning:  the fact that we only had to rewrite 2 lines of code for 
mergesort made the parallelization transformation look 
deceptively easy 

– we also had to verify that any two threads did not touch 
overlapping portions of the array -- if they did we would have to 
again worry about scheduling non-determinism 



Caveats 
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There is some overhead for creating a thread. 
– On a uni-processor, parallel code will run slower than the sequential code. 

 

Even on a multi-processor, we probably do not always want to fork a thread 
– when the sub-array is small, faster to sort it than to fork a thread to sort it. 

• similar to using insertion sort when arrays are small vs. quicksort 

– this is known as a granularity problem 
• more parallelism than we can effectively take advantage of. 

 

In a good implementation of futures, a compiler and run-time system might 
look to see whether the cost of doing the fork is justified by the amount of 
work that will be done.  Today, it’s up to you to figure this out…   

– typically, use parallel divide-and-conquer until 
• (a) we have generated at least as many threads as there are processors 

– often more threads than processors because different jobs take different 
amounts of time to complete and we would like to keep all processors  busy 

• (b) the sub-arrays have gotten small enough that it’s not worth forking. 

 
We’re not going to worry about these performance-tuning details but rather 
focus on the distinctions between parallel and sequential algorithms. 



Another Example 

56 

type 'a tree = Leaf | Node of 'a node 

and 'a node = {left  : 'a tree ;  

               value : 'a      ; 

               right : 'a tree } 

 

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b)  

             (t:'a tree) : 'b =  

  match t with  

  | Leaf -> u 

  | Node n ->  

     f n.value (fold f u n.left) (fold f u n.right) 

 

let sum (t:int tree) = fold (+) 0 t 

 



Another Example 
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type 'a tree = Leaf | Node of 'a node 

and 'a node = {left  : 'a tree ; 

               value : 'a      ;  

               right : 'a tree } 

 

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)  

              (t:'a tree) : 'b =  

  match t with  

  | Leaf -> u 

  | Node n ->  

     let l_f = Future.future (pfold f u) n.left in 

     let r = pfold f u n.right in 

     f n.value (Future.force l_f) r 

 

let sum (t:int tree) = pfold (+) 0 t 

 



Note 
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• If the tree is imbalanced, then we’re not going to get the 
same speedup as if it’s balanced. 

• Consider the degenerate case of a list. 

– The forked child will terminate without doing any useful work. 

– So the parent is going to have to do all that work. 

– Pure overhead…   

• In general, lists are a horrible data structure for parallelism. 

– we can’t cut the list in half in constant time 

– for arrays and trees, we can do that (assuming the tree is 
balanced.) 



Side Effects? 
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type 'a tree = Leaf | Node of 'a node 

and 'a node = { left  : 'a tree ;  

                value : 'a      ;  

                right : 'a tree } 

 

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)  

              (t:'a tree) : 'b =  

  match t with  

  | Leaf -> u 

  | Node n ->  

     let l_f = Future.future (pfold f u) n.left in 

     let r = pfold f u n.right in 

     f n.value (Future.force l_f) r 

 

let print (t:int tree) =  

  pfold (fun n _ _ -> Printf.print “%d\n” n) () 



Huge Point 
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If code is purely functional, then it never matters in what order it is run. 
If f () and g () are pure then all of the following are equivalent: 

 

 

 

 

 

 

 

As soon as we introduce side-effects, the order starts to matter.   
– This is why, IMHO, imperative languages where even the simplest of 

program phrases involves a side effect, are doomed. 

– Of course, we’ve been saying this for 30 years! 

– See J. Backus’s Turing Award paper, “Can Programming be Liberated from 
the von Neumann Style?  A Functional Style and Its Algebra of Programs.” 

     http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf 

 

let x = f() in 

let y = g() in 

e  

let y = g () in 

let x = f () in 

e  

let y_g = future g () in 

let x   = f ()        in 

let y   = force y_g   in 

e  

let x_f = future f () in 

let y   = g ()        in 

let x   = force x_f   in 

e  



MANAGING MUTABLE DATA 



Consider a Bank Acount ADT 
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type account = { name : string; mutable bal : int } 

 

let create (n:string) (b:int) : account =  

  { name = n; bal = b } 

 

let deposit (a:account) (amount:int) : unit =  

  if a.bal + amount < max_balance then 

    a.bal <- a.bal + amount 
 

let withdraw (a:account) (amount:int) : int =  

 if a.bal >= amount then ( 

    a.bal <- a.bal – amount;  

    amount 

  ) else 0 

 

 

 

 



What happens here? 
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val bank : account array 

 

let rec atm (loc:string) =  

  let id = getAccountNumber() in 

  let w = getWithdrawAmount() in 

  let d = withdraw (bank.(id)) w in 

  dispenseDollars d ;  

  atm loc 

 

let world () =  

  Thread.create atm “Princeton, Nassau” ;  

  Thread.create atm “NYC, Penn Station” ;  

  Thread.create atm “Boston, Lexington Square” 

     



Bad Situation 
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• Suppose two ATMs, running in separate threads, try to 
perform a withdrawal from the same bank account around 
the same time. 

 

• For example, suppose bank.(0) is an account that starts with 
$100 in its balance.  

 

• And suppose we have two threads, each executing the service 
loop, trying to withdraw $50 and $75 respectively. 



Simplifying the situation… 
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let w = 50 in 

if b > w then 

  (b <- b - w ; 

   w) 

else 

  0 

b = 100 

let w = 75 in 

if b > w then 

  (b <- b - w ; 

   w) 

else 

  0 



Simplifying the situation… 
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let w = 50 in 

if b > w then 

  (b <- b - w ; 

   w) 

else 

  0 

b = 100 

let w = 75 in 

if b > w then 

  (b <- b - w ; 

   w) 

else 

  0 

b = 50 



Simplifying the situation… 
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let w = 50 in 

if b > w then 

  (b <- b - w ; 

   w) 

else 

  0 

b = 100 

let w = 75 in 

if b > w then 

  (b <- b - w ; 

   w) 

else 

  0 

b = 25 



Another schedule ... 
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let w = 50 in 

if b > w then 

 

 

   

 

 

   

  (b <- b - w ; 

   w) 

else 

  0 

b = 100 

let w = 75 in 

if b > w then 

  (b <- b - w ; 

   w) 

else 0 

b = -25 



Good for you ... (less so for the bank) 
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let w = 50 in 

 

if b > w then 

        b - w 

 

 

 

   

  (b <- b - w ; 

   w) 

else 0 

b = 100 

let w = 75 in 

if b > w then 

   

 

  (b <- b - w ; 

   w) 

else 0 

b = 50 



Good for you ... (less so for the bank) 
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let w = 50 in 

 

if b > w then 

        b - w 

 

 

 

   

  (b <- b - w ; 

   w) 

else 0 

b = 100 

let w = 75 in 

if b > w then 

   

 

  (b <- b - w ; 

   w) 

else 0 

b = 50 

Yet we 
paid out 
$125!!! 



More Synchronization:  Locks 
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This is not a problem we can fix with fork/join. 

– The ATMs shouldn’t ever terminate! 

– Yet join only allows us to wait until one thread terminates. 

 

Instead, we’re going to us a mutex lock to synchronize threads. 

– mutex is short for “mutual exclusion” 

– locks will give us a way to introduce some controlled access to 
resources – in this case, the bank accounts. 

– controlled access to a shared resource is a concurrency problem, 
not a parallelization problem 



END 


