
Mutation 

COS 326 

David Walker 

Princeton University 

 



Mutation? 

2 



Thus far… 

3 

• We have considered the (almost) purely functional subset of Ocaml. 
– We’ve had a few side effects:  printing & raising exceptions. 

• Two reasons for this emphasis: 
– Reasoning about functional code is easier. 

• Both formal reasoning  
– equationally, using the substitution model 
– and informal reasoning 

• Why? because anything you can prove true stays true. 
– e.g., 3 is a member of set S. 

• Data structures are persistent.   
– They don’t change – we build new ones and let the garbage 

collector reclaim the unused old ones. 

– To convince you that you don’t need side effects for many things where 
you previously thought you did. 
• there’s no need for a loop to have a mutable counter that we update 

each time -- we can use recursion and immutable state 
• You can implement functional data structures like 2-3 trees or red-

black trees or stacks or queues or sets with reasonable space and 
time. 



But alas… 

4 

• Purely functional code is pointless. 
– The whole reason we write code is to have some effect on the world.   
– For example, the Ocaml top-level loop prints out your result. 

• Without that printing (a side effect), how would you know that your 
functions computed the right thing?   

• Some algorithms or data structures need mutable state. 
– Hash-tables have (essentially) constant-time access and update. 

• The best functional dictionaries have either: 
– logarithmic access & update 
– constant access & linear update 
– constant update & linear access 

• Don’t forget that we give up something for this:   
– we can’t go back and look at previous versions of the dictionary.  

We can do that in a functional setting. 

– Robinson’s unification algorithm 
• A critical part of the Ocaml type-inference engine. 
• Also used in other kinds of program analyses. 

– Some persistent functional data structures 
• Queues, functional arrays (see assignment 6) 



Reasoning about Mutable State is Hard 

5 

 

 

 

 

Is member i s1 == true? … 

– When s1 is mutable, one must look at f to determine if it 
modifies s1. 

– Worse, one must often solve the  aliasing problem. 

– Worse, in a concurrent setting, one must look at every other 
function that any other thread may be executing to see if it 
modifies s1. 

Moral:  use mutable data structures only where necessary. 

– This will also be true when you use Java or C/C++ or Python or … 

– It’s harder to be disciplined in non-functional languages. 

– Functional languages help you out by setting a good default 

 

insert i s1; 

f x; 

member i s1 

let s1 = insert i s0 in 

f x; 

member i s1 

mutable set immutable set 



OCAML MUTABLE REFERENCES 



References 

7 

• New type:  t ref 

– Think of it as a pointer to a box that holds a t value. 

– The contents of the box can be read or written. 

 

 



References 

8 

• New type:  t ref 

– Think of it as a pointer to a box that holds a t value. 

– The contents of the box can be read or written. 

• To create a fresh box:   ref 42  

– allocates a new box, initializes its contents to 42, and returns a pointer: 

 

 

 

 

– ref 42 : int ref 

 

 

42 



References 

9 

• New type:  t ref 

– Think of it as a pointer to a box that holds a t value. 

– The contents of the box can be read or written. 

• To create a fresh box:   ref 42  

– allocates a new box, initializes its contents to 42, and returns a pointer: 

 

 

 

 

– ref 42 : int ref 

• To read the contents:  !r 

– if r points to a box containing 42, then return 42. 

– if r : t ref then !r : t 

• To write the contents:  r := 42 

– updates the box that r points to so that it contains 42. 

– if r : t ref then r := 42 : unit 

 

 

42 



Example 

10 

let c = ref 0 ;; 

 

let x = !c ;;   (* x will be 0 *) 

 

c := 42 ;; 

 

let y = !c ;;   (* y will be 42. 

     x will still be 0! *) 



Another Example 

11 

let c = ref 0 ;; 

 

let next() =  

  let v = !c in 

  (c := v+1 ; v) 

 

 



Another Example 

12 

let c = ref 0 ;; 

 

let next() =  

  let v = !c in 

  (c := v+1 ; v) 

 

 

Recall: semi-
colons conjoin 

two 
expressions 

If  e1 : unit  
and e2 : t then 
(e1 ; e2) : t 



You can also write it like this: 

13 

let c = ref 0 ;; 

 

let next() : int =  

  let (v : int)  = !c in 

  let (_ : unit) = c := v+1 in 

  v 

 

 

(e1 ; e2) == (let _ = e1 in e2)       (syntactic sugar) 



Another Idiom 

14 

let c = ref 0 ;; 

 

let next () : int =  

  let v = !c in 

  (c := v+1 ; v) 

;; 

 

   

 

 

 

let counter () = 

 let c = ref 0 in 

  fun () ->  

    let v = !c in 

    (c := v+1 ; v) 

;; 

 

let countA = counter() in 

let countB = counter() in 

countA() ;; (* 1 *) 

countA() ;; (* 2 *) 

countB() ;; (* 1 *) 

countB() ;; (* 2 *)  

countA() ;; (* 3 *)        

 

 

 

c 

3 

code 

countA 

Global Mutable Reference Mutable Reference Captured in Closure 



Imperative loops 

(* sum of 0 .. n *) 

 

let sum (n:int) =  

  let       s = ref 0 in 

  let current = ref n in 

  while !current > 0 do 

    s := !s + !current; 

    current := !current - 1 

  done; 

  !s 

;; 

 

(* print n .. 0 *) 

let count_down (n:int) =  

  for i = n downto 0 do 

    print_int i; 

    print_newline() 

  done; 

;; 

 

(* print 0 .. n *) 

let count_up (n:int) =  

  for i = 0 to n do 

    print_int i; 

    print_newline() 

  done; 

;; 

 



Imperative loops? 

 

(* print n .. 0 *) 

 

let count_down (n:int) =  

  for i = n downto 0 do 

    print_int i; 

    print_newline() 

  done 

;; 

 

 

(* for i=n downto 0 do f i *) 

 

let rec for_down 

         (n : int)  

         (f : int -> unit) 

            : unit =  

  if n >= 0 then 

   (f n; for_down (n-1) f) 

  else 

   () 

;; 

 

let count_down (n:int) = 

  for_down n (fun i -> 

    print_int i; 

    print_newline() 

  ) 

;; 



Aliasing 

17 

let c = ref 0 ;; 

 

let x = c ;; 

 

x := 42 ;; 

 

!c ;; 

0 

c 



Aliasing 

18 

let c = ref 0 ;; 

 

let x = c ;; 

 

x := 42 ;; 

 

!c ;; 

0 

c 

x 



Aliasing 

19 

let c = ref 0 ;; 

 

let x = c ;; 

 

x := 42 ;; 

 

!c ;; 

42 

c 

x 



Aliasing 

20 

let c = ref 0 ;; 

 

let x = c ;; 

 

x := 42 ;; 

 

!c ;; 

42 

c 

x 

result:  42 



MANAGING IMPERATIVE TYPES 
AND INTERFACES 



Imperative Stacks 

22 

module type IMP_STACK =  

  sig 

    type ‘a stack 

    val empty : unit -> ‘a stack 

    val push : ‘a -> ‘a stack -> unit 

    val pop : ‘a stack -> ‘a option 

  end 



Imperative Stacks 

23 

module type IMP_STACK =  

  sig 

    type ‘a stack 

    val empty : unit -> ‘a stack 

    val push : ‘a -> ‘a stack -> unit 

    val pop : ‘a stack -> ‘a option 

  end 

When you see “unit” as the 
return type, you know the 
function is being executed 

for its side effects.  (Like void 
in C/C++/Java.) 



Imperative Stacks 

24 

module type IMP_STACK =  

  sig 

    type ‘a stack 

    val empty : unit -> ‘a stack 

    val push : ‘a -> ‘a stack -> unit 

    val pop : ‘a stack -> ‘a option 

  end 

Unfortunately, we can’t always tell 
from the type that there are side-
effects going on.  It’s a good idea 

to document them explicitly. If the 
user can perceive them 



Imperative Stacks 

25 

module type IMP_STACK =  

  sig 

    type ‘a stack 

    val empty : unit -> ‘a stack 

    val push : ‘a -> ‘a stack -> unit 

    val pop : ‘a stack -> ‘a option 

  end 

Unfortunately, we can’t always tell 
from the type that there are side-
effects going on.  It’s a good idea 

to document them explicitly. If the 
user can perceive them 

Sometimes, one uses 
references inside a 

module but the data 
structures have 

functional (persistent) 
semantics 



Imperative Stacks 

26 

module ImpStack : IMP_STACK =  

  struct 

    type ‘a stack = (‘a list) ref 

 

    let empty() : ‘a stack = ref [] 

     

    let push(x:’a)(s:’a stack) : unit =  

       s := x::(!s) 

 

    let pop(s:’a stack) : ‘a option =  

      match !s with  

      | [] -> None 

      | h::t -> (s := t ; Some h) 

  end 



Imperative Stacks 

27 

module ImpStack : IMP_STACK =  

  struct 

    type ‘a stack = (‘a list) ref 

 

    let empty() : ‘a stack = ref [] 

     

    let push(x:’a)(s:’a stack) : unit =  

       s := x::(!s) 

 

    let pop(s:’a stack) : ‘a option =  

      match !s with  

      | [] -> None 

      | h::t -> (s := t ; Some h) 

  end 

Note:  We don't have to 
make everything mutable.  

The list is an immutable 
data structure stored in a 

single mutable cell. 



Fully Mutable Lists 

28 

type ‘a mlist =  

  Nil | Cons of ‘a * (‘a mlist ref) 

 

let rec length(m:’a mlist) : int = 

  match m with 

  | Nil -> 0  

  | Cons(h,t) -> 1 + length(!t)  

 

 

ml 

1 2 

ref ref cons cons ref cons 

3 



Fully Mutable Lists 

29 

type ‘a mlist =  

  Nil | Cons of ‘a * (‘a mlist ref) 

 

let rec length(m:’a mlist) : int = 

  match m with 

  | Nil -> 0  

  | Cons(h,t) -> 1 + length(!t)  

 

 

ml 

1 2 

ref ref cons cons ref cons 

3 

7 

ml2 



Fully Mutable Lists 

30 

type ‘a mlist =  

  Nil | Cons of ‘a * (‘a mlist ref) 

 

let rec length(m:’a mlist) : int = 

  match m with 

  | Nil -> 0  

  | Cons(h,t) -> 1 + length(!t)  

 

 

ml 

1 2 

ref ref cons cons ref cons 

3 

7 

ml2 



Fully Mutable Lists 

31 

type ‘a mlist =  

  Nil | Cons of ‘a * (‘a mlist ref) 

 

let rec length(m:’a mlist) : int = 

  match m with 

  | Nil -> 0  

  | Cons(h,t) -> 1 + length(!t)  

 

 

ml 

1 2 3 

ml 

1 2 

ref ref cons cons ref cons 

3 

pictorial 
convention: 



Fraught with Peril 

32 

type ‘a mlist =  

  Nil | Cons of ‘a * ((‘a mlist) ref) 

 

let rec mlength(m:’a mlist) : int = 

  match m with 

  | Nil -> 0  

  | Cons(h,t) -> 1 + length(!t) 

 

let r = ref Nil ;; 

let m = Cons(3,r) ;;  

r := m ;; 

mlength m ;;   

 

 



Fraught with Peril 

33 

type ‘a mlist =  

  Nil | Cons of ‘a * ((‘a mlist) ref) 

 

let rec mlength(m:’a mlist) : int = 

  match m with 

  | Nil -> 0  

  | Cons(h,t) -> 1 + length(!t) 

 

let r = ref Nil ;; 

let m = Cons(3,r) ;;  

r := m ;; 

mlength m ;;   

 

 

r 



Fraught with Peril 

34 

type ‘a mlist =  

  Nil | Cons of ‘a * ((‘a mlist) ref) 

 

let rec mlength(m:’a mlist) : int = 

  match m with 

  | Nil -> 0  

  | Cons(h,t) -> 1 + length(!t) 

 

let r = ref Nil ;; 

let m = Cons(3,r) ;;  

r := m ;; 

mlength m ;;   

 

 

3 

m 
r 



Fraught with Peril 

35 

type ‘a mlist =  

  Nil | Cons of ‘a * ((‘a mlist) ref) 

 

let rec mlength(m:’a mlist) : int = 

  match m with 

  | Nil -> 0  

  | Cons(h,t) -> 1 + length(!t) 

 

let r = ref Nil ;; 

let m = Cons(3,r) ;;  

r := m ;; 

mlength m ;;   

 

 

3 

m 
r 



Another Example: 

36 

type ‘a mlist =  

  Nil | Cons of ‘a * (‘a mlist ref) 

 

let rec mappend xs ys =  

  match xs with 

  | Nil -> () 

  | Cons(h,t) ->  

     (match !t with 

      | Nil -> t := ys  

      | Cons(_,_) as m -> mappend m ys) 

 



Another Example: 

37 

type ‘a mlist =  

  Nil | Cons of ‘a * ((‘a mlist) ref) 

 

let rec mappend xs ys =  

  match xs with 

  | Nil -> () 

  | Cons(h,t) ->  

     (match !t with 

      | Nil -> t := ys  

      | Cons(_,_) as m -> mappend m ys) 

 



Mutable Append Example: 

38 

let rec mappend xs ys =  

  match xs with 

  | Nil -> () 

  | Cons(h,t) ->  

     (match !t with 

      | Nil -> t := ys  

      | Cons(_,_) as m -> mappend m ys) ;; 

let xs = Cons(1,ref (Cons 2, ref (Cons 3, ref Nil))) ;; 

let ys = Cons(4,ref (Cons 5, ref (Cons 6, ref Nil))) ;; 

mappend xs ys ;; 

 

1 2 3 

4 5 6 



Mutable Append Example: 

39 

1 2 3 

4 5 6 

xs 

ys 

let rec mappend xs ys =  

  match xs with 

  | Nil -> () 

  | Cons(h,t) ->  

     (match !t with 

      | Nil -> t := ys  

      | Cons(_,_) as m -> mappend m ys) ;; 

let xs = Cons(1,ref (Cons 2, ref (Cons 3, ref Nil))) ;; 

let ys = Cons(4,ref (Cons 5, ref (Cons 6, ref Nil))) ;; 

mappend xs ys ;; 

 



Mutable Append Example: 

40 

1 2 3 

4 5 6 

xs 

ys 

let rec mappend xs ys =  

  match xs with 

  | Nil -> () 

  | Cons(h,t) ->  

     (match !t with 

      | Nil -> t := ys  

      | Cons(_,_) as m -> mappend m ys) ;; 

let xs = Cons(1,ref (Cons 2, ref (Cons 3, ref Nil))) ;; 

let ys = Cons(4,ref (Cons 5, ref (Cons 6, ref Nil))) ;; 

mappend xs ys ;; 

 



Mutable Append Example: 

41 

1 2 3 

4 5 6 

xs 

ys 

let rec mappend xs ys =  

  match xs with 

  | Nil -> () 

  | Cons(h,t) ->  

     (match !t with 

      | Nil -> t := ys  

      | Cons(_,_) as m -> mappend m ys) ;; 

let xs = Cons(1,ref (Cons 2, ref (Cons 3, ref Nil))) ;; 

let ys = Cons(4,ref (Cons 5, ref (Cons 6, ref Nil))) ;; 

mappend xs ys ;; 

 



Mutable Append Example: 

42 

1 2 3 

4 5 6 

xs 

ys 

let rec mappend xs ys =  

  match xs with 

  | Nil -> () 

  | Cons(h,t) ->  

     (match !t with 

      | Nil -> t := ys  

      | Cons(_,_) as m -> mappend m ys) ;; 

let xs = Cons(1,ref (Cons 2, ref (Cons 3, ref Nil))) ;; 

let ys = Cons(4,ref (Cons 5, ref (Cons 6, ref Nil))) ;; 

mappend xs ys ;; 

 



Another Example: 

43 

let rec mappend xs ys =  

  match xs with 

  | Nil -> () 

  | Cons(h,t) ->  

     (match !t with 

      | Nil -> t := y  

      | Cons(_,_) as m -> mappend m ys) 

 

let m = Cons(1,ref Nil);; 

mappend m m ;; 

mlength m ;; 

 



Mutable Append Example: 

44 

let rec mappend xs ys =  

  match xs with 

  | Nil -> () 

  | Cons(h,t) ->  

     (match !t with 

      | Nil -> t := ys  

      | Cons(_,_) as m -> mappend m ys) ;; 

let m = Cons(1,ref Nil);; 

mappend m m ;; 

 

1 

xs 
ys 



Mutable Append Example: 

45 

1 

xs 
ys 

let rec mappend xs ys =  

  match xs with 

  | Nil -> () 

  | Cons(h,t) ->  

     (match !t with 

      | Nil -> t := ys  

      | Cons(_,_) as m -> mappend m ys) ;; 

let m = Cons(1,ref Nil);; 

mappend m m ;; 

 



Add mutability judiciously 

Two types: 

 

 

 

 

 

 

 

 

The first makes cyclic lists possible, the second doesn't 

– the second preemptively avoids certain kinds of errors. 

– often called a correct-by-construction design 

type ‘a very_mutable_list =  

  Nil  

| Cons of ‘a * ((‘a very_mutable_list) ref) 

type ‘a less_mutable_list = ‘a list ref 



Is it possible to avoid all state? 

47 

• Yes! (in single-threaded programs) 

– Pass in old values to functions; return new values from functions 

• Consider the difference between our functional stacks and 
our imperative ones: 

– fnl_push : ‘a -> ‘a stack -> ‘a stack 

– imp_push : ‘a -> ‘a stack -> unit 

• In general, we a dictionary that records the current values of 
references in to and out of every function. 

– But then accessing or updating a reference takes O(lg n) time. 

– Hash tables may be more efficient: 

www.caml.inria.fr/pub/docs/manual-ocaml/libref/Hashtbl.html 



MUTABLE RECORDS AND ARRAYS 



Records with Mutable Fields 

49 

OCaml records with mutable fields: 

 

 

 

 

 

 

 

 

 

 

 

In fact:       type 'a ref = {mutable contents : 'a}  

type 'a queue1 =  

  {front : 'a list ref;  

   back  : 'a list ref } ;; 

 

type 'a queue2 =  

  {mutable front : 'a list;  

   mutable back : 'a list} ;; 

 

let q1 = {front = [1]; back = [2]};; 

let q2 = {front = [1]; back = [2]};; 

 

let x = q2.front @ q2.back;; 

 

q2.front <- [3];; 



Mutable Arrays 

50 

For arrays, we have: 

A.(i)  

• to read the ith element of the array A 

A.(i) <- 42  

• to write the ith element of the array A 

Array.make : int -> ‘a -> ‘a array 

• Array.make 42 ‘x’ creates an array of length 42 with all 
elements initialized to the character ‘x’. 

 

See the reference manual for more operations. 

  

www.caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html 



OCaml Objects 

Xavier Leroy (OCaml inventor):  

• No one ever uses objects in OCaml 

• Adding objects to OCaml was one of the best decisions I ever made 

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html 

class point =  

  object  

    val mutable x = 0  

    method get_x = x  

    method move d = x <- x + d  

  end;; 

let p = new point in 

let x = p#get in 

 

p#move 4; 

 

x + p#get  (* 0 + 4 *) 

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html


SUMMARY 



Summary:  How/when to use state? 

53 

• In general, I try to write the functional version first. 
– e.g., prototype 

– don’t have to worry about sharing and updates 

– don’t have to worry about race conditions 

– reasoning is easy (the substitution model is valid!) 

• Sometimes you find you can’t afford it for efficiency reasons. 
– example:  routing tables need to be fast in a switch 

– constant time lookup, update (hash-table) 

• When I do use state, I try to encapsulate it behind an interface. 
– try to reduce the number of error conditions a client can see 

• correct-by-construction design 

– module implementer must think explicitly about sharing and 
invariants 

– write these down, write assertions to test them 

– if encapsulated in a module, these tests can be localized 

– most of your code should still be functional 

 



Summary 

54 

Mutable data structures can lead to efficiency improvements. 

– e.g., Hash tables, memoization, depth-first search 

 

But they are much harder to get right, so don't jump the gun 

– mostly because we must think about aliasing. 

– updating in one place may have an effect on other places. 

– writing and enforcing invariants becomes more important. 

• e.g., assertions we used in the queue example 

– cycles in data can't happen until we introduce refs. 

• must write operations much more carefully to avoid looping 

– we haven’t even gotten to the multi-threaded part. 

• So use refs when you must, but try hard to avoid it. 



Serial Killer or PL Researcher? 

 



Serial Killer or PL Researcher? 

Luis Alfredo Garavito:  super evil guy.  
In the 1990s killed between 139-400+ 
children in Columbia.  According to 
wikipedia, killed more individuals than 
any other serial killer.  Due to 
Columbian law, only imprisoned for 30 
years; decreased to 22. 

John Reynolds:  super nice guy.  
Discovered the polymorphic lambda 
calculus. (OCaml with just functions) 

Developed Relational Parametricity: A 
technique for proving the equivalence 
of modules. 



END 


