Modules
and Abstract Data Types

COS 326
David Walker

Princeton University

The Reality of Development

We rarely know the right algorithms or the right data
structures when we start a design project.
— When implementing a search engine, what data structures and

algorithms should you use to build the index? To build the query
evaluator?

Reality is that we often have to go back and change our code,
once we’ve built a prototype.

— Often, we don’t even know what the user wants (requirements)
until they see a prototype.

— Often, we don’t know where the performance problems are
until we can run the software on realistic test cases.

— Sometimes we just want to change the design -- come up with
simpler algorithms, architecture later in the design process

Engineering for Change

* Given that we know the software will change, how can we
write the code so that doing the changes will be easier?

Engineering for Change

* Given that we know the software will change, how can we
write the code so that doing the changes will be easier?

* The primary trick: use data and algorithm abstraction.

Engineering for Change

* Given that we know the software will change, how can we
write the code so that doing the changes will be easier?

* The primary trick: use data and algorithm abstraction.

— Don’t code in terms of concrete representations that the
language provides.

— Do code with high-level abstractions in mind that fit the
problem domain.

— Implement the abstractions using a well-defined interface.
— Swap in different implementations for the abstractions.
— Parallelize the development process.

Example

Goal: Implement a query engine.

Requirements: Need a scalable dictionary (a.k.a. index)
— maps words to set of URLs for the pages on which words appear.

— want the index so that we can efficiently satisfy queries
e e.g., all links to pages that contain “Dave” and “Jill”.

Wrong way to think about this:
— Aha! A Jist of pairs of a word and a /ist of URLs.

— We can look up “Dave” and “Jill” in the list to get back a list of
URLs.

Example

type query =
Word of string
| And of query * query

| Or of query * query ;;

type 1ndex = (string * (url list)) list ;;

let rec eval(g:query) (h:index) : url list =
match g with
| Word x —->
let (,urls) = List.find (fun (w,urls) -> w = X) 1in
urls
| And (gl,g2) ->
merge lists (eval gl h) (eval g2 h)

| Or (qquz) ->
(eval gl h) @ (eval g2 h)

Example

type query =
Word of string
| And of query * query

| Or of query * query ;;

type 1ndex = (string * (url list)) list ;;

let rec eval (g:query) (h:index)
match g with
| Word x —->
let (,urls) = List.find
urls
| And (gl,g2) ->
merge lists (eval gl h) (eval g2 h)

| Or (qquz) ->
(eval gl h) @ (eval g2 h)

merge expects to
be passed sorted
lists.

Example

type query =
Word of string
| And of query * query

| Or of query * query ;;

type 1ndex = (string * (url list)) list ;;

let rec eval (g:query) (h:index)
match g with
| Word x —->
let (,urls) = List.find
urls
| And (gl,g2) ->
merge lists

| Or (qqu2) -> 7
(eval gl h) @ (eval g2 h)

merge expects to
be passed sorted
lists.

(eval gl h)

Example

| find out there’s

a better hash-

type query =
Word of string

table
implementation

| And of query * query
| Or of query * query

type index = string (url list) hashtable ;;

let rec eval (g:query) (h:index) : url list =
match g with
| Word x —->
let 1 = hash string h in
let 1 = Array.get h [1] in
let urls = assoc list find 11 x in
urls
| And (gl,g2) ->
| Or (gl,qg2) ->

A Better Way

type query =
Word of string
| And of query * query

| Or of query * query ;;

type i1ndex = string url set dictionary ;;

let rec eval (g:query) (d:index) : url set =
match g with
| Word x -> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)
| Or (gl,g2) -> Set.union (eval gl h) (eval g2 h)

11

A Better Way

The problem domain

talked about an

abstract type of
dictionaries and sets of
URLs.

type query =
Word of string

| And of query * query

| Or of query * query ;;

type i1ndex = string url set dictionary ;;

let rec eval (g:query) (d:index) : url set =
match g with
| Word x -> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)
| Or (gl,g2) -> Set.union (eval gl h) (eval g2 h)

A Better Way

The problem domain

talked about an
abstract type of
dictionaries and sets of

type query =
Word of string

| And of query * query

| Or of query * query ;;

Once we’ve written the
client, we know what

operations we need on

these abstract types.

type i1ndex = string url set dictiona

let rec eval (g:query) (d:1index) url
match g with

| Word x -> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)

| Or (gl,g2) -> Set.union (eval gl h) (eval g2 h)

A Better Way

The problem domain

talked about an
abstract type of
dictionaries and sets of

type query =
Word of string

| And of query * query

| Or of query * query ;;

Once we’ve written the
client, we know what

operations we need on

these abstract types.

type i1ndex = string url set dictiona
let rec eval (g:query) (d:1index) url
match g with

| Word x -> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)
| Or (gl,g2) -> Set.union (eval gl h) (eval g2 h)

So we can define an
interface, and send a pal
off to implement the

abstract types dictionary /
and set.

Later on, when we find
out linked lists aren’t so
good for sets, we can
replace them with

balanced trees.

A Better Way

The problem domain

talked about an
abstract type of
dictionaries and sets of

type query =
Word of string

| And of query * query

| Or of query * query ;;

Once we’ve written the
client, we know what

operations we need on

these abstract types.

type i1ndex = string url set dictiona
let rec eval (g:query) (d:1index) url
match g with

| Word x -> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)
| Or (gl,g2) -> Set.union (eval gl h) (eval g2 h)

So we can define an
interface, and send a pal
off to implement the

abstract types dictionary /
and set.

Later on, when we find
out linked lists aren’t so
good for sets, we can
replace them with

balanced trees.

Building Abstract Types in Ocaml

* We can use the module system of Ocaml to build new abstract
data types.

— signature: an interface.

» specifies the abstract type(s) without specifying their
implementation

» specifies the set of operations on the abstract types
— structure: an implementation.
* a collection of type and value definitions
* notion of an implementation matching or satisfying an interface
— gives rise to a notion of sub-typing
— functor: a parameterized module
* really, a function from modules to modules
* allows us to factor out and re-use modules

16

functor kitten

Example Signature

module type INT STACK =

sig

type stack

val
val
val
val
val
end

empty
push

unit -> stack
int -> stack -> stack

1s empty : stack -> bool

pop
top

stack -> stack option

stack -> int option

Example Signature

empty and push

are abstract
constructors:
functions that build
our abstract type.

module type INT STACK =
sig

type stack

val empty : unit -> stack

val push : int -> stack -> stack
val 1is empty : stack -> bool

val pop : stack -> stack option
val top : stack —-> int option

end

Example Signature

module type INT STACK =
sig
type stack
val empty : unit -> stack
val push : int -> stack -> stack
val 1is empty : stack -> bool

val pop : st -> stack option

val top : stack

is_empty is an
observer — useful
for determining
properties of the
ADT.

end

Example Signature

module type INT STACK =
sig

type stack

val empty : unit -> stack

val push : int -> stack -> stack

val 1is empty : stack -> bool

val pop : stack -> stack option
tack

val top -> 1nt option

end

pop is sometimes
called a mutator
(though it doesn’t
really change the
input)

Example Signature

module type INT STACK =
sig
type stack
val empty : unit -> stack
val push : int -> stack -> stack
val 1is empty : stack -> bool
val pop : stack -> stack option

val top : stack -> 1nt option

end

top is also an
observer, in this
functional setting
since it doesn’t
change the stack.

A Better Signature

module type INT STACK =
sig
type stack
(* create an empty stack *)
val empty : unit -> stack
(* push an element on the top of the stack *)
val push : int -> stack -> stack
(* returns true 1ff the stack 1is empty *)
val 1s empty : stack -> bool

(* pops top element off the stack, returns None
1f the stack 1s empty *)

val pop : stack -> stack

(* returns the top element of the stack,; returns
None 1if the stack is empty *)

val top : stack -> 1int
end

22

Example Structure

module ListIntStack : INT STACK =
struct
type stack = int list
let empty () : stack = []
let push (1:int) (s:stack) = 1::s
let 1s empty (s:stack) =
match s with
| [] —> true
| :: —-> false
let pop (s:stack) =
match s with
| [] —> None
| _::t -> Some t
let top (s:stack) =
match s with
| [] —> None
| h:: -> Some h

end

Example Structure

module ListIntStack
struct

INT STACK

type stack = int list

let empty () stack =
let push (1:1int) (s:stack)
let 1s empty (s:stack) =

match s with
| [] —> true
| :: —-> false
let pop (s:stack)
match s with
| [] —> None
| ::t -> Some
let top (s:stack)
match s with
| [] —> None

| h:: -> Some

h
end

Inside the module,
we know the
concrete type used
to implement the
abstract type.

Example Structure

module ListIntStack INT STACK =
struct
type stack = int list
let empty () stack = []
let push (1:1int) (s:stack) =
let 1s empty (s:stack) =

match s with
| [] —> true
| :: —-> false
let pop (s:stack)
match s with
| [] —> None
| ::t -> Some
let top (s:stack)
match s with
| [] —> None

| h:: -> Some

h
end

But by giving the
module the INT_STACK
interface, which does
not reveal how stacks
are being represented,
we prevent code
outside the module
from knowing stacks
are lists.

An Example Client

module ListIntStack : INT STACK =
struct

end

let s0 = ListIntStack.empty () ;-
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl;;
ListIntStack.top s2 ;;

An Example Client

module ListIntStack : INT STACK =
struct

end

let s0 = ListIntStack.empty () ;-
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl;;
ListIntStack.top s2 ;;

sO ListIntStack.stack
sl : ListIntStack.stack
s2 ListIntStack.stack

27

An Example Client

module ListIntStack : INT STACK =
struct

end

let s0 = ListIntStack.empty () ;-
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl;;
ListIntStack.top s2;;

- : option int = Some 4

28

An Example Client

module ListIntStack

struct

end

let sO
let sl
let s2

INT STACK =

ListIntStack.empty ()
ListIntStack.push 3 s0;;
ListIntStack.push 4 sl1;;

ListIntStack.top s2 ;;

- : option int = Some 4

ListIntStack.top

(ListIntStack.pop s2)

- : option int = Some 3

3
14

.
4

29

An Example Client

module ListIntStack : INT STACK =
struct

end

let s0 = ListIntStack.empty () ;-
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl;;
ListIntStack.top s2 ;;

- : option int = Some 4
ListIntStack.top (ListIntStack.pop s2) ;;
- : option int = Some 3

open ListIntStack ;;

An Example Client

module ListIntStack : INT STACK =
struct

end

let s0 = ListIntStack.empty () ;-
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl;;
ListIntStack.top s2 ;;

- : option int = Some 4
ListIntStack.top (ListIntStack.pop s2) ;;
- : option int = Some 3

open ListIntStack ;;

top (pop (pop s2)) ;;
— : option int = None

An Example Client

module type INT STACK =

sig
type stack
val push : int -> stack -> stack

module ListIntStack : INT STACK Notice that the

client is not
allowed to know
that the stack is a
list.

let s2 = ListIntStack.push 4

List.rev s2 ;;

Error: This expression has type stack but an
expression was expected of type ‘a list.

32

Example Structure

module ListIntStack (* : INT STACK *) =
struct
type stack = 1nt list
let empty () : stack = []
let push (1:1int) (s:stack) = 1i::
let is empty (s:stack) =
match s with
| [] —-> true
| :: -> false
exception EmptyStack
let pop (s:stack) =
match s with
| [] -> raise EmptyStack
| ::t > t
let top (s:stack) =
match s with
| [] -> raise EmptyStack
| h:: -> h

end

Note that when you
are debugging, you
may want to comment
out the signature
ascription so that you
can access the
contents of the
module.

The Client without the Signature

module ListIntStack (* : INT STACK *) =
struct

end
let s = ListIntStack.empty ()

let sl ListIntStack.push 3 s;;
let s2 ListIntStack.push 4 sl1;;

If we don’t seal
the module with
a signature, the
client can know
that stacks are
lists.

List.rev s2 ;;

- : int list

I
W

Example Structure

module ListIntStack : INT STACK =
struct

When you put the
signature on here, you are
restricting client access to

the information in the
signature (which does not
reveal that stack = int list.)
So clients can only use the
stack operations on a stack
value (not list operations.)

type stack = int list

let empty () : stack = []
let push (i:int) (s:stack) =
let is empty (s:stack) =
match s with
| [] -> true
| :: —> false

exception EmptyStack
let pop (s:stack) =
match s with
| [] -> raise EmptyStack
| :t >t
let top (s:stack) =
match s with
| [] -> raise EmptyStack
| h:: ->h

end

Summary

* Design in terms of abstract types and algorithms.
— think “sets” not “lists” or “arrays” or “trees”
— think “document” not “strings”
* In OCaml, we have a powerful module system with:
— signatures (interfaces)
— structures (implementations)
— functors (functions from modules to modules)
 We can use the module system
— to support name spaces
— to hide information (concrete types, local value definitions)
— to make it easy to reuse code (via parameterization, functors)

36

END

