
O'Caml Datatypes

COS 326

David Walker

Princeton University

O'Caml So Far

• We have seen a number of basic types:

– int

– float

– char

– string

– bool

• We have seen a few structured types:

– pairs

– tuples

– options

– lists

• In this lecture, we will see some more general ways to define
our own new types and data structures

Type Abbreviations

• We have already seen some type abbreviations:

type point = float * float

Type Abbreviations

• We have already seen some type abbreviations:

• These abbreviations can be helpful documentation:

• But they add nothing of substance to the language

– they are equal in every way to an existing type

type point = float * float

let distance (p1:point) (p2:point) : float =

 let square x = x *. x in

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 sqrt (square (x2 -. x1) +. square (y2 -. y1))

Type Abbreviations

• We have already seen some type abbreviations:

• As far as O'Caml is concerned, you could have written:

• Since the types are equal, you can substitute the definition for
the name wherever you want

– we have not added any new data structures

type point = float * float

let distance (p1:float*float)

 (p2:float*float) : float =

 let square x = x *. x in

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 sqrt (square (x2 -. x1) +. square (y2 -. y1))

DATA TYPES

Data types

• O'Caml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

a value with type my_bool
is one of two things:
• Tru, or
• Fal

read the "|" as "or"

Data types

• O'Caml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

a value with type my_bool
is one of two things:
• Tru, or
• Fal

read the "|" as "or"

Tru and Fal are called
"constructors"

Data types

• O'Caml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

there's no need to stop
at 2 cases; define as many
alternatives as you want

Data types

• O'Caml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

• Creating values:

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

let b1 : my_bool = Tru

let b2 : my_bool = Fal

let c1 : color = Yellow

let c2 : color = Red

use constructors to create values

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow

let c2 : color = Red

let print_color (c:color) : unit =

 match c with

 | Blue ->

 | Yellow ->

 | Green ->

 | Red ->

use pattern matching to
determine which color
you have; act accordingly

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow

let c2 : color = Red

let print_color (c:color) : unit =

 match c with

 | Blue -> print_string "blue"

 | Yellow -> print_string "yellow"

 | Green -> print_string "green"

 | Red -> print_string "red"

Data types

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =

 match c with

 | Blue -> print_string "blue"

 | Yellow -> print_string "yellow"

 | Red -> print_string "red"

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

• oops!:

Data Types Can Carry Additional Values

• Data types are more than just enumerations of constants:

• Read as: a simple_shape is either:

– a Circle, which contains a pair of a point and float, or

– a Square, which contains a pair of a point and float

type point = float * float

type simple_shape =

 Circle of point * float

| Square of point * float

(x,y)

s (x,y)

r

Data Types Can Carry Additional Values

• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =

 Circle of point * float

| Square of point * float

let origin : point = (0.0, 0.0)

let circ1 : simple_shape = Circle (origin, 1.0)

let circ2 : simple_shape = Circle ((1.0, 1.0), 5.0)

let square : simple_shape = Square (origin, 2.3)

Data Types Can Carry Additional Values

• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =

 Circle of point * float

| Square of point * float

let simple_area (s:simple_shape) : float =

 match s with

 | Circle (_, radius) -> 3.14 *. radius *. radius

 | Square (_, side) -> side *. side

Compare

• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =

 Circle of point * float

| Square of point * float

let simple_area (s:simple_shape) : float =

 match s with

 | Circle (_, radius) -> 3.14 *. radius *. radius

 | Square (_, side) -> side *. side

type my_shape = point * float

let simple_area (s:my_shape) : float =

 (3.14 *. radius *. radius) ???? (side *. side)

More General Shapes

r1

r2

Square s =

Ellipse (r1, r2) =

s2
s1 RtTriangle (s1, s2) =

v2

v1 v3

v4 v5

RtTriangle [p1; ...;p5] =

type point = float * float

type shape =

 Square of float

 | Ellipse of float * float

 | RtTriangle of float * float

 | Polygon of point list

s

More General Shapes

type point = float * float

type radius = float

type side = float

type shape =

 Square of side

 | Ellipse of radius * radius

 | RtTriangle of side * side

 | Polygon of point list

Type abbreviations can
aid readability

r1

r2

Square s =

Ellipse (r1, r2) =

s2
s1 RtTriangle (s1, s2) =

v2

v1 v3

v4 v5

RtTriangle [p1; ...;p5] =

s

More General Shapes

type point = float * float

type radius = float

type side = float

type shape =

 Square of side

 | Ellipse of radius * radius

 | RtTriangle of side * side

 | Polygon of point list

let sq : shape = Square 17.0

let ell : shape = Ellipse (1.0, 2.0)

let rt : shape = RtTriangle (1.0, 1.0)

let poly : shape = Polygon [(0., 0.); (1., 0.); (0.; 1.)]

they are all shapes;
they are constructed in
 different ways

Polygon builds a shape
from a list of points
(where each point is itself a pair)

Square builds a shape
from a single side

RtTriangle builds a shape
from a pair of sides

More General Shapes

type point = float * float

type radius = float

type side = float

type shape =

 Square of side

 | Ellipse of radius * radius

 | RtTriangle of side * side

 | Polygon of point list

let area (s : shape) : float =

 match s with

 | Square s ->

 | Ellipse (r1, r2)->

 | RtTriangle (s1, s2) ->

 | Polygon ps ->

a data type also defines
a pattern for matching

More General Shapes

type point = float * float

type radius = float

type side = float

type shape =

 Square of side

 | Ellipse of radius * radius

 | RtTriangle of side * side

 | Polygon of point list

let area (s : shape) : float =

 match s with

 | Square s ->

 | Ellipse (r1, r2)->

 | RtTriangle (s1, s2) ->

 | Polygon ps ->

Square carries a value
with type float so s is
a pattern for float values

RtTriangle carries a value
with type float * float
so (s1, s2) is a pattern
for that type

a data type also defines
a pattern for matching

More General Shapes

type point = float * float

type radius = float

type side = float

type shape =

 Square of side

 | Ellipse of radius * radius

 | RtTriangle of side * side

 | Polygon of point list

let area (s : shape) : float =

 match s with

 | Square s -> s *. s

 | Ellipse (r1, r2)-> r1 *. r2

 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> ???

a data type also defines
a pattern for matching

Computing Area

• How do we compute polygon area?

• For convex polygons:

– Case: the polygon has fewer than 3 points:

• it has 0 area! (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:

• Compute the area of the triangle formed by the first 3 vertices

• Delete the second vertex to form a new polygon

• Sum the area of the triangle and the new polygon

v2

v1 v3

v4 v5

= +

Computing Area

• How do we compute polygon area?

• For convex polygons:

– Case: the polygon has fewer than 3 points:

• it has 0 area! (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:

• Compute the area of the triangle formed by the first 3 vertices

• Delete the second vertex to form a new polygon

• Sum the area of the triangle and the new polygon

• Note: This is a beautiful inductive algorithm:

– the area of a polygon with n points is computed in terms of a
smaller polygon with only n-1 points!

 v2

v1 v3

v4 v5

= +

Computing Area

v2

v1 v3

v4 v5

=

let area (s : shape) : float =

 match s with

 | Square s -> s *. s

 | Ellipse (r1, r2)-> r1 *. r2

 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> poly_area ps

let poly_area (ps : point list) : float =

 match ps with

 | p1 :: p2 :: p3 :: tail ->

 tri_area p1 p2 p3 +. poly_area (p1::p3::ps)

 | _ -> 0.

 = +

This pattern says the
list has at least 3 items

Computing Area

let area (s : shape) : float =

 match s with

 | Square s -> s *. s

 | Ellipse (r1, r2)-> r1 *. r2

 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> poly_area ps

let tri_area (p1:point) (p2:point) (p3:point) : float =

 let a = distance p1 p2 in

 let b = distance p2 p3 in

 let c = distance p3 p1 in

 let s = 0.5 *. (a +. b +. c) in

 sqrt (s *. (s -. a) *. (s -. b) *. (s -. c))

let rec poly_area (ps : point list) : float =

 match ps with

 | p1 :: p2 :: p3 :: tail ->

 tri_area p1 p2 p3 +. poly_area (p1::p3::ps)

 | _ -> 0.

INDUCTIVE DATA TYPES

Inductive data types

• We can use data types to define inductive data

• A binary tree is:

– a Leaf containing no data

– a Node containing a key, a value, a left subtree and a right subtree

type key = string

type value = int

type tree =

 Leaf

| Node of key * value * tree * tree

Inductive data types

• We can use data types to define inductive data

• A binary tree is:

– a Leaf containing no data

– a Node containing a key, a value, a left subtree and a right subtree

type key = int

type value = string

type tree =

 Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =

type key = int

type value = string

type tree =

 Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =

 match t with

 | Leaf ->

 | Node (k', v', left, right) ->

Again, the type definition
specifies the cases you must
consider

type key = int

type value = string

type tree =

 Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =

 match t with

 | Leaf -> Node (k, v, Leaf, Leaf)

 | Node (k', v', left, right) ->

type key = int

type value = string

type tree =

 Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =

 match t with

 | Leaf -> Node (k, v, Leaf, Leaf)

 | Node (k', v', left, right) ->

 if k < k' then

 Node (k', v', insert left k v, right)

 else if k > k' then

 Node (k', v', left, insert right k v)

 else

 Node (k, v, left, right)

type key = int

type value = string

type tree =

 Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =

 match t with

 | Leaf -> Node (k, v, Leaf, Leaf)

 | Node (k', v', left, right) ->

 if k < k' then

 Node (k', v', insert left k v, right)

 else if k > k' then

 Node (k', v', left, insert right k v)

 else

 Node (k, v, left, right)

type key = int

type value = string

type tree =

 Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =

 match t with

 | Leaf -> Node (k, v, Leaf, Leaf)

 | Node (k', v', left, right) ->

 if k < k' then

 Node (k', v', insert left k v, right)

 else if k > k' then

 Node (k', v', left, insert right k v)

 else

 Node (k, v, left, right)

Inductive data types: Another Example

• Recall, we used the type "int" to represent natural numbers

– but that was kind of broken: it also contained negative numbers

– we had to use a dynamic test to guard entry to a function:

– it would be nice if there was a to define the natural numbers
exactly, and use OCaml's type system to guarantee no client
ever attempts to double a negative number

let double (n : int) : int =

 if n < 0 then

 raise (Failure "negative input!")

 else

 double_nat n

Inductive data types

• Recall, a natural number n is either:

– zero, or

– m + 1

• We use a data type to represent this definition exactly:

Inductive data types

• Recall, a natural number n is either:

– zero, or

– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Next of nat

Inductive data types

• Recall, a natural number n is either:

– zero, or

– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Next of nat

let rec nat_to_int (n : nat) : int =

 match n with

 Zero -> 0

 | Next n -> 1 + nat_to_int n

Inductive data types

• Recall, a natural number n is either:

– zero, or

– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Next of nat

let rec nat_to_int (n : nat) : int =

 match n with

 Zero -> 0

 | Next n -> 1 + nat_to_int n

let rec double_nat (n : nat) : nat =

 match n with

 | Zero -> Zero

 | Next m -> Next (Next (double_nat m))

AN EXERCISE IN TYPE DESIGN

Example Type Design

43

• A GML document consists of:

– a list of elements

• An element is either:

– a word or markup applied to an element

• Markup is either:

– italicize, bold, or a font name

Example Type Design

44

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

• A GML document consists of:

– a list of elements

• An element is either:

– a word or markup applied to an element

• Markup is either:

– italicize, bold, or a font name

Example Data

45

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

let d = [Markup (Bold,

 Markup (Font “Arial”,

 Words [“Chapter”;“One”]));

 Words [“It”; ”was”; ”a”; ”dark”;

 ”&”; ”stormy; ”night.”; "A"];

 Markup (Ital, Words[“shot”]);

 Words [“rang”; ”out.”]];;

Challenge

46

• Change all of the “Arial” fonts in a document to “Courier”.

• Of course, when we program functionally, we implement
change via a function that

– receives one data structure as input

– builds a new (different) data structure as an output

Challenge

47

• Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

Challenge

48

• Change all of the “Arial” fonts in a document to “Courier”.

• Technique: approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc =

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

Challenge

49

• Change all of the “Arial” fonts in a document to “Courier”.

• Technique: approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc =

 match elts with

 | [] ->

 | hd::tl ->

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

Challenge

50

• Change all of the “Arial” fonts in a document to “Courier”.

• Technique: approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc =

 match elts with

 | [] -> []

 | hd::tl -> (chfont hd)::(chfonts tl)

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

Changing fonts in an element

51

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt =

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

Changing fonts in an element

52

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt =

 match e with

 | Words ws ->

 | Markup(m,e) ->

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

Changing fonts in an element

53

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt =

 match e with

 | Words ws -> Words ws

 | Markup(m,e) ->

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

Changing fonts in an element

54

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt =

 match e with

 | Words ws -> Words ws

 | Markup(m,e) -> Markup(chmarkup m, chfont e)

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

Changing fonts in an element

55

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing a markup:

let chmarkup (m:markup) : markup =

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

Changing fonts in an element

56

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing a markup:

let chmarkup (m:markup) : markup =

 match m with

 | Font “Arial” -> Font “Courier”

 | _ -> m

type markup = Ital | Bold | Font of string

type elt =

 Words of string list

| Markup of markup * elt

type doc = elt list

Summary: Changing fonts in an element

57

• Change all of the “Arial” fonts in a document to “Courier”

• Lesson: function structure follows type structure

let chmarkup (m:markup) : markup =

 match m with

 | Font “Arial” -> Font “Courier”

 | _ -> m

let rec chfont (e:elt) : elt =

 match e with

 | Words ws -> Words ws

 | Markup(m,e) -> Markup(chmarkup m, chfont e)

let rec chfonts (elts:doc) : doc =

 match elts with

 | [] -> []

 | hd::tl -> (chfont hd)::(chfonts tl)

Poor Style

58

• Consider again our definition of markup and markup change:

type markup =

 Ital | Bold | Font of string

let chmarkup (m:markup) : markup =

 match m with

 | Font “Arial” -> Font “Courier”

 | _ -> m

Poor Style

59

• What if we make a change:

type markup =

 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =

 match m with

 | Font “Arial” -> Font “Courier”

 | _ -> m

the underscore silently catches all possible alternatives

this may not be what we want -- perhaps there is an
Arial TT font

it is better if we are alerted of all functions
whose implementation may need to change

Better Style

60

• Original code:

type markup =

 Ital | Bold | Font of string

let chmarkup (m:markup) : markup =

 match m with

 | Font “Arial” -> Font “Courier”

 | Ital | Bold -> m

Better Style

61

• Updated code:

type markup =

 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =

 match m with

 | Font “Arial” -> Font “Courier”

 | Ital | Bold -> m

..match m with

 | Font "Arial" -> Font "Courier"

 | Ital | Bold -> m..

Warning 8: this pattern-matching is not

exhaustive.

Here is an example of a value that is not

matched:

TTFont _

Better Style

62

• Updated code, fixed:

• Lesson: use the type checker where possible to help you
maintain your code

type markup =

 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =

 match m with

 | Font "Arial" -> Font "Courier"

 | TTFont "Arial" -> TTFont "Courier"

 | TTFont s -> TTFont s

 | Ital | Bold -> m

To Summarize

63

• Design recipe for writing Ocaml code:

– write down English specifications

• try to break problem into obvious sub-problems

– write down some sample test cases

– write down the signature (types) for the code

– use the signature to guide construction of the code:

• tear apart inputs using pattern matching

– make sure to cover all of the cases! (Ocaml will tell you)

• handle each case, building results using data constructor

– this is where human intelligence comes into play

– the “skeleton” given by types can almost be done
automatically!

• clean up your code

– use your sample tests (and ideally others) to ensure correctness

A couple of practice problems

64

• Write a function that gets rid of immediately redundant
markup in a document. That is, Markup(Ital, Markup(Ital,e))
can be simplified to Markup(Ital,e)

– write maps and folds over markups

• Design a datatype to describe bibliography entries for
publications. Some publications are journal articles, others
are books, and others are conference papers. Journals have a
name, number and issue; books have an ISBN number; All of
these entries should have a title and author.

– design a sorting function

– design maps and folds over your bibliography entries

END

