O'Caml Datatypes

COS 326
David Walker

Princeton University

O'Caml So Far

We have seen a number of basic types:
— int

— float

— char

— string

— bool

We have seen a few structured types:
— pairs

— tuples

— options

— lists

In this lecture, we will see some more general ways to define
our own new types and data structures

Type Abbreviations

* We have already seen some type abbreviations:

type point = float * float

Type Abbreviations

* We have already seen some type abbreviations:

type point = float * float

* These abbreviations can be helpful documentation:

let distance (pl:point) (p2:point) : float
let square x = x *. X 1n
let (x1,yl) = pl in
let (x2,y2) = p2 1in
sgrt (square (x2 -. x1) +. square (y2 -.

v1))

* But they add nothing of substance to the language

— they are equal in every way to an existing type

Type Abbreviations

* We have already seen some type abbreviations:

type point = float * float

e Asfar as O'Camlis concerned, you could have written:

let distance (pl:float*float)
(p2:float*float) : float =
let square x = x *. X 1n
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
sgrt (square (x2 -. x1) +. square (y2 -. vyl))

* Since the types are equal, you can substitute the definition for
the name wherever you want
— we have not added any new data structures

DATA TYPES

Data types

* O'Caml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

a value with type my_bool
is one of two things:

* Tru, or

* Fal

read the "|" as "or"

Data types

* O'Caml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

Tru and Fal are called a value with type my_bool
"constructors" is one of two things:

* Tru, or

 Fal

read the "|" as "or"

Data types

O'Caml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

type color = Blue Yellow Green Red

A\

there's no need to stop
at 2 cases; define as many
alternatives as you want

Data types

O'Caml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

type color = Blue | Yellow | Green | Red
Creating values:

let bl my bool = Tru

let b2 my bool = Fal

let cl color = Yellow

let c2 color = Red “i\\

~ use constructors to create values

Data types

type color = Blue | Yellow | Green | Red

let ¢l : color = Yellow
let ¢c2 : color = Red

Using data type values:

let print color (c:color) : unit =
match ¢ with
| Blue —->
| Yellow ->
| Green ->
| Red ->
LN

\ use pattern matching to

determine which color
you have; act accordingly

Data types

type color = Blue | Yellow | Green | Red

let ¢l : color = Yellow
let ¢c2 : color = Red

Using data type values:

let print color (c:color) : unit =
match ¢ with
| Blue -> print string "blue"
| Yellow -> print string "yellow"
| Green -> print string "green"
| Red -> print string "red"

Data types

type color = Blue | Yellow | Green | Red

e oops!:

let print color (c:color) : unit =
match ¢ with
| Blue -> print string "blue"
| Yellow -> print string "yellow"
| Red -> print string "red"
LN

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

Data Types Can Carry Additional Values

* Data types are more than just enumerations of constants:

type point = float * float

type simple shape =
Circle of point * float
| Square of point *

float

 Read as: asimple_shape is either:

— a Circle, which contains a pair of a point and float, or

— a Square, which contains a pair of a point and float

(x,y)

s

Data Types Can Carry Additional Values

* Data types are more than just enumerations of constants:

type point = float * float

type simple shape =
Circle of point * float
*

| Square of point float

let origin : point = (0.0, 0.0)
let circl : simple shape = Circle
let circ2 : simple shape = Circle
let square : simple shape = Square

(origin,

1.0)

((1.0, 1.0),

(origin,

2.3)

5.

0)

Data Types Can Carry Additional Values

* Data types are more than just enumerations of constants:

type point = float * float

type simple shape =
Circle of point * float
*

| Square of point float
let simple area (s:simple shape) : float =
match s with
| Circle (, radius) -> 3.14 *. radius *. radius

| Square (, side) -> side *. side

Compare

* Data types are more than just enumerations of constants:

type point = float * float

type simple shape =
Circle of point * float
| Square of point * float

let simple area (s:simple shape) : float =
match s with
| Circle (, radius) -> 3.14 *. radius *. radius
| Square (, side) -> side *. side

type my shape = point * float

let simple area (s:my shape) : float =
(3.14 *. radius *. radius) 2277 (side *. side)

More General Shapes

type shape =
Square of float

type point = float * float

| Ellipse of float * float
| RtTriangle of float * float
| Polygon of point list

Square s = } S

Ellipse (r1, r2) = /_

rl

r2

RtTriangle (s1, s2) =

RtTriangle [p1; ...;p5] =

sl
s2

v2
vl v3

v5 v4

More Gen

eral Shapes

type point = float * float

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

type radius = float<\\\\\\\\\\\\\\\
type side = float e~_______~_~§--

type shape = é//////,/////////
Square of side Z//////

aid readability

Type abbreviations can

Square s = } S

/_rz
Ellipse (r1, r2) =

rl

RtTriangle (s1, s2) =

RtTriangle [p1; ...;p5] =

sl

s2

v2
vl v3

v5 v4

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =

Square of side
Ellipse of radius * radius
RtTriangle of side * side

e from a single side

Square builds a shape

7

| Polygon of point list ///// _ _
= c ~ RtTriangle builds a shape
from a pair of sides
let sg : shape = Square 17.0 = P
let ell : shape = Ellipse (1.0, 2.0)
let rt : shape = RtTriangle (1.0, 1.0)
let poly : shape = Polygon [(0., 0.); (1., O0.); (O0.; 1.)]

.

they are all shapes;
they are constructed in
different ways

~

Polygon builds a shape
from a list of points
(where each point is itself a pair)

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side
| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

a data type also defines
a pattern for matching

let area (s : shape) : float
match s with
| Square s ->
| Ellipse (rl, r2)->
| RtTriangle (sl, s2) ->
| Polygon ps ->

More General Shapes

type point = float * float
type radius = float

type side = float

type shape =

Square of side
| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

a data type also defines
a pattern for matching

shape) float =

R

let area (s
match s with
| Square s ->

Square carries a value
with type float so s is
a pattern for float values

r2)->
sz2) ->

\

| Ellipse (rl,
| RtTriangle (sl1,
| Polygon ps ->

RtTriangle carries a value

with type float * float
so (s1, s2) is a pattern
for that type

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side
| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

a data type also defines
a pattern for matching

let area (s : shape) : float
match s with
| Square s -> s *. s

| Ellipse (rl, r2)-> rl *. r2
| RtTriangle (sl, s2) -> sl*.s2/.2.
|

Polygon ps —-> 27?27

Computing Area

« How do we compute polygon area?

* For convex polygons:
— Case: the polygon has fewer than 3 points:
* it has 0 area! (itis aline or a point or nothing at all)
— Case: the polygon has 3 or more points:
 Compute the area of the triangle formed by the first 3 vertices

* Delete the second vertex to form a new polygon
* Sum the area of the triangle and the new polygon

v2
vl v3

- A+D

v5 v4

Computing Area

« How do we compute polygon area?
* For convex polygons:
— Case: the polygon has fewer than 3 points:
e it hasOarea! (itis aline or a point or nothing at all)

— Case: the polygon has 3 or more points:

 Compute the area of the triangle formed by the first 3 vertices
* Delete the second vertex to form a new polygon
 Sum the area of the triangle and the new polygon

 Note: Thisis a beautiful inductive algorithm:

— the area of a polygon with n points is computed in terms of a
smaller polygon with only n-1 points!

v2
vl v3

o - o g

Computing Area

let area (s : shape) : float =
match s with

Square s —-> s *. s

Ellipse (rl, r2)-> rl *. r2

RtTriangle (sl, s2) -> sl1*.s2/.2.

Polygon ps —-> poly area ps

This pattern says the
list has at least 3 items

let poly area (ps : point list) : oat =

match ps with

P

1 :: p2 :: p3 :: tail ->
tri area pl p2 p3 +. poly area
-> 0.

(pl::p3::ps)

v2
vl v3

- A+D

v5 v4

Computing Area

let tri area (pl:point) (p2:point) (p3:point) : float =
let a = distance pl p2 1in
let b = distance p2 p3 1in
let ¢ = distance p3 pl 1in
let s = 0.5 *. (a +. b +. ¢c) 1in

sgrt (s *. (s —-. a) *. (s -. b) *. (s -. C))
let rec poly area (ps : point list) : float =
match ps with
| pl :: p2 :: p3 :: tail ->
tri area pl p2 p3 +. poly area (pl::p3::ps)
| -> 0.
let area (s : shape) : float =

match s with

| Square s -> s *. s

| Ellipse (rl, r2)-> rl *. r2

| RtTriangle (sl, s2) -> sl*.s2/.2.
| Polygon ps -> poly area ps

INDUCTIVE DATA TYPES

Inductive data types

* We can use data types to define inductive data

 Abinary treeis:
— a Leaf containing no data
— a Node containing a key, a value, a left subtree and a right subtree

Inductive data types

* We can use data types to define inductive data

 Abinary treeis:
— a Leaf containing no data
— a Node containing a key, a value, a left subtree and a right subtree

type key = string
type value = 1int

type tree =
Leaf
| Node of key * value * tree * tree

Inductive data types

type key = int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec 1nsert (t:tree) (k:key) (v:value) : tree =

Inductive data types

type key = int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec 1nsert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf ->
| Node (k', v', left, right) ->

Again, the type definition
specifies the cases you must
consider

Inductive data types

type key = int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec 1nsert (t:tree) (k:key) (v:value)
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->

Lree

Inductive data types

type key = int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec 1nsert (t:tree) (k:key) (v:value) : tree
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->
1f k < k' then
Node (k', v', insert left k v, right)
else 1f k > k' then
Node (k', v', left, insert right k v)
else
Node (k, v, left, right)

Inductive data types

type key = int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec 1nsert (t:tree) (k:key) (v:value) : tree
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->
1f k < k' then
Node (k', v', insert left k v, right)
else 1f k > k' then
Node (k', v', left, insert right k wv)
else
Node (k, v, left, right)

Inductive data types

type key = int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec 1nsert (t:tree) (k:key) (v:value) : tree
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->
1f k < k' then
Node (k', v', insert left k v, right)
else 1f k > k' then
Node (k', v', left, insert right k v)
else
Node (k, v, left, right)

Inductive data types: Another Example

* Recall, we used the type "int" to represent natural numbers
— but that was kind of broken: it also contained negative numbers
— we had to use a dynamic test to guard entry to a function:

let double (n : int) : int =
if n < 0 then
ralse (Fallure "negative input!")
else
double nat n

— it would be nice if there was a to define the natural numbers
exactly, and use OCaml's type system to guarantee no client
ever attempts to double a negative number

Inductive data types

* Recall, a natural number n is either:
— zero, or

— m+1

* We use a data type to represent this definition exactly:

Inductive data types

* Recall, a natural number n is either:
— zero, or

— m+1

* We use a data type to represent this definition exactly:

type nat = Zero | Next of nat

Inductive data types

* Recall, a natural number n is either:
— zero, or

— m+1

* We use a data type to represent this definition exactly:

type nat = Zero | Next of nat

let rec nat to int (n : nat) : Int =
match n with
Zzero —-> 0
| Next n -> 1 + nat to int n

Inductive data types

* Recall, a natural number n is either:
— zero, or

— m+1

* We use a data type to represent this definition exactly:

type nat = Zero | Next of nat

let rec nat to int (n : nat) : 1nt =
match n with
Zero -> 0
| Next n -> 1 + nat to int n

let rec double nat (n : nat) : nat =
match n with
| Zero -> Zero
| Next m -> Next (Next (double nat m))

AN EXERCISE IN TYPE DESIGN

Example Type Design

A GML document consists of:

— a list of elements
An element is either:

— a word or markup applied to an element
Markup is either:

— italicize, bold, or a font name

43

Example Type Design

A GML document consists of:

— a list of elements
An element is either:

— a word or markup applied to an element
Markup is either:

— italicize, bold, or a font name

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

44

Example Data

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

let d = [Markup (Bold,
Markup (Font “Arial”,
Words [“Chapter”;%“One”]));

Words [\\It//; llwaS//; //a//; //dark//;

//&//; //Stormy; Ilnight.//; "A"] ;

Markup (Ital, Words[“shot”]);

Words [Y“rang”; ”“out.”] 1;;

45

Challenge

Change all of the “Arial” fonts in a document to “Courier”.

Of course, when we program functionally, we implement
change via a function that

— receives one data structure as input

— builds a new (different) data structure as an output

46

Challenge

Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

47

Challenge

* Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

 Technique: approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc =

48

Challenge

* Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

 Technique: approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc =
match elts with

| [] —->
| hd::tl1 ->

49

Challenge

* Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

 Technique: approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc =
match elts with

| [] => []
| hd::tl -> (chfont hd) :: (chfonts t1l)

50

Changing fonts in an element

* Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

* Next work on changing the font of an element:

let rec chfont (e:elt) : elt =

Changing fonts in an element

* Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

* Next work on changing the font of an element:

let rec chfont (e:elt) : elt =
match e with
| Words ws —>
| Markup (m,e) ->

Changing fonts in an element

* Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

* Next work on changing the font of an element:

let rec chfont (e:elt) : elt =
match e with
| Words ws —-> Words ws
| Markup (m,e) ->

Changing fonts in an element

* Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

* Next work on changing the font of an element:

let rec chfont (e:elt) : elt =
match e with
| Words ws —-> Words ws
| Markup(m,e) -> Markup (chmarkup m, chfont e)

Changing fonts in an element

* Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

* Next work on changing a markup:

let chmarkup (m:markup) : markup =

Changing fonts in an element

Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string
type elt =

Words of string list
| Markup of markup * elt

type doc = elt list

Next work on changing a markup:

let chmarkup (m:markup) : markup =
match m with
| Font “Arial” -> Font “Courier”
| -> m

56

Summary: Changing fonts in an element

e Change all of the “Arial” fonts in a document to “Courier”
* Lesson: function structure follows type structure

let chmarkup (m:markup) : markup =
match m with
| Font “Arial” -> Font “Courier”
| —=>m

let rec chfont (e:elt) : elt =
match e with
| Words ws —> Words ws

| Markup(m,e) -> Markup (chmarkup m, chfont e)
let rec chfonts (elts:doc) : doc =

match elts with

] => []

| hd::tl -> (chfont hd) :: (chfonts tl)

Poor Style

Consider again our definition of markup and markup change:

type markup =
ITtal | Bold | Font of string

let chmarkup (m:markup) : markup =
match m with
| Font “Arial” -> Font “Courier”
| -> m

58

Poor Style

 What if we make a change:

type markup
ITtal | Bold

let chmarkup
match m with
| Font
| -> m

=

(m:markup)

“Arial”

Font of string | TTFont of string

markup

-> Font “Courier”

the underscore silently catches all possible alternatives

this may not be what we want -- perhaps there is an
Arial TT font

it is better if we are alerted of all functions

whose implementation may need to change >

Better Style

Original code:

type markup =
ITtal | Bold |

Font of string

let chmarkup (m:markup) : markup =

match m with
| Font “Arial”
| Ital | Bold

-> Font “Courier”
-> m

60

Better Style

Updated code:

type markup =
Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =
match m with
| Font “Arial” -> Font “Courier”

| Ital | Bold -> m

..match m with

| Font "Arial" -> Font "Courier"

| Ital | Bold -> m..
Warning 8: this pattern-matching 1s not
exhaustive.
Here 1s an example of a value that is not
matched:
TTEFont

Better Style

 Updated code, fixed:

type markup =

let chmarkup (m:markup) : markup =
match m with
| Font "Arial" -> Font "Courier"

| TTFont "Arial" -> TTFont "Courier"
| TTFont s —-> TTFont s
| Ital | Bold -> m

Ital | Bold | Font of string | TTFont of string

* Lesson: use the type checker where possible to help you

maintain your code

62

To Summarize

* Design recipe for writing Ocaml code:

— write down English specifications
* try to break problem into obvious sub-problems

— write down some sample test cases
— write down the signature (types) for the code

— use the signature to guide construction of the code:
* tear apart inputs using pattern matching
— make sure to cover all of the cases! (Ocaml will tell you)
* handle each case, building results using data constructor
— this is where human intelligence comes into play

— the “skeleton” given by types can almost be done
automatically!

e clean up your code

— use your sample tests (and ideally others) to ensure correctness

A couple of practice problems

* Write a function that gets rid of immediately redundant
markup in a document. Thatis, Markup(ltal, Markup(lItal,e))
can be simplified to Markup(ltal,e)

— write maps and folds over markups
* Design a datatype to describe bibliography entries for
publications. Some publications are journal articles, others
are books, and others are conference papers. Journals have a

name, number and issue; books have an ISBN number; All of
these entries should have a title and author.

— design a sorting function

— design maps and folds over your bibliography entries

END

