
Functional Decomposition

COS 326

David Walker

Princeton University

Functional Decomposition

==

Break down complex problems in to a set of simple functions;
Recombine (compose) functions to form solution

Last Time

We saw several list combinators.

A combinator is just a (higher-order) function that can be
composed effectively with other functions

Last Time

We saw several list combinators.

A combinator is just a (higher-order) function that can be
composed effectively with other functions

map : ('a -> 'b) -> 'a -> 'b

map f [x1; x2; x3] == [f x1; f x2; f x3]

reduce : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b

reduce g u [x1; x2; x3] == g x1 (g x2 (g x3 u))

List.map

List.fold_right (approximately)

What does this do?

5

let rec reduce f u xs =

 match xs with

 | [] -> u

 | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

What does this do?

6

let rec reduce f u xs =

 match xs with

 | [] -> u

 | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =

 match xs with

 | [] -> 0

 | hd::tl ->

 (fun x y -> 1+y) hd (reduce (fun ...) 0 tl)

What does this do?

7

let rec reduce f u xs =

 match xs with

 | [] -> u

 | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =

 match xs with

 | [] -> 0

 | hd::tl -> 1 + reduce (fun ...) 0 tl

What does this do?

8

let rec reduce f u xs =

 match xs with

 | [] -> u

 | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =

 match xs with

 | [] -> 0

 | hd::tl -> 1 + mystery0 tl

What does this do?

9

let rec reduce f u xs =

 match xs with

 | [] -> u

 | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =

 match xs with

 | [] -> 0

 | hd::tl -> 1 + mystery0 tl List Length!

What does this do?

10

let rec reduce f u xs =

 match xs with

 | [] -> u

 | hd::tl -> f hd (reduce f u tl);;

let mystery1 = reduce (fun x y -> x::y) [];;

What does this do?

11

let rec reduce f u xs =

 match xs with

 | [] -> u

 | hd::tl -> f hd (reduce f u tl);;

let mystery1 = reduce (fun x y -> x::y) [];;

let rec mystery1 xs =

 match xs with

 | [] -> []

 | hd::tl -> hd::(mystery1 tl) Copy!

And this one?

12

let rec reduce f u xs =

 match xs with

 | [] -> u

 | hd::tl -> f hd (reduce f u tl);;

let mystery2 g =

 reduce (fun a b -> (g a)::b) [];;

And this one?

13

let rec reduce f u xs =

 match xs with

 | [] -> u

 | hd::tl -> f hd (reduce f u tl);;

let mystery2 g =

 reduce (fun a b -> (g a)::b) [];;

let mystery2 g xs =

 match xs with

 | [] -> []

 | hd::tl -> (g hd)::(mystery2 g tl) map!

Map and Reduce

we coded map in terms of reduce

can we code reduce in terms of map?

val map : ('a -> 'b) -> 'a list -> 'b list

val reduce : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b

Some Other Combinators: List Module

val iter : ('a -> unit) -> 'a list -> unit

List.iter f [a0; ...; an] == f a0; … ; f an

val mapi : (int -> 'a -> unit) -> 'a list -> unit

List.mapi f [a0; ...; an] == f 0 a0; … ; f n an

val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a0; ...; an] [b0; ...; bn] == f a0 b0 ; … ; f an bn

val sort : ('a -> 'a -> int) -> 'a list -> 'a list

val stable_sort : ('a -> 'a -> int) -> 'a list -> 'a list

http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

PIPELINES

Pipe

let (|>) x f = f x ;;

Type?

Pipe

let (|>) x f = f x ;;

Type?

(|>) : 'a -> ('a -> 'b) -> 'b

Pipe

let (|>) x f = f x ;;

let twice f x =

 x |> f |> f;;

Pipe

let (|>) x f = f x ;;

let twice f x =

 (x |> f) |> f;;

left associative: x |> f1 |> f2 |> f3 == ((x |> f1) |> f2) |> f3

Pipe

let (|>) x f = f x ;;

let twice f x =

 x |> f |> f;;

let square x = x*x;;

let fourth x = twice square;;

Pipe

let (|>) x f = f x ;;

let twice f x = x |> f |> f;;

let square x = x*x;;

let fourth x = twice square;;

let compute x =

 x |> square

 |> fourth

 |> (*) 3

 |> print_int

 |> print_newline;;

PIPING LIST PROCESSORS

Another Problem

type student = {first: string;

 last: string;

 assign: float list;

 final: float};;

let students : student list =

 [

 {first = "Sarah";

 last = "Jones";

 assign = [7.0;8.0;10.0;9.0];

 final = 8.5};

 {first = "Qian";

 last = "Xi";

 assign = [7.3;8.1;3.1;9.0];

 final = 6.5};

]

;;

Another Problem

• Create a function display that does the following:

– for each student, print the following:

• last_name, first_name: score

• score is computed by averaging the assignments with the final

– each assignment is weighted equally

– the final counts for twice as much

• one student printed per line

• students printed in order of score

type student = {first: string;

 last: string;

 assign: float list;

 final: float};;

Another Problem

Create a function display that

– takes a list of students as an argument

– prints the following for each student:

• last_name, first_name: score

• score is computed by averaging the assignments with the final

– each assignment is weighted equally

– the final counts for twice as much

• one student printed per line

• students printed in order of score

let display (students : student list) : unit =

 students |> compute score

 |> sort by score

 |> convert to list of strings

 |> print each string

Another Problem

let display (students : student list) : unit =

 students |> List.map compute_score

 |> sort by score

 |> convert to list of strings

 |> print each string

let compute_score

 {first=f; last=l; assign=grades; final=exam} =

 let sum x (num,tot) = (num + 1, tot +. x) in

 let score gs exam = List.fold_right sum gs (0,0.0) in

 let (number, total) = score grades exam in

 (f, l, total /. float_of_int number)

;;

Another Problem

let display (students : student list) : unit =

 students |> List.map compute_score

 |> List.sort compare_score

 |> convert to list of strings

 |> print each string

let student_compare (_,_,score1) (_,_,score2) =

 if score1 < score2 then 1

 else if score1 > score2 then -1

 else 0

;;

Another Problem

let display (students : student list) : unit =

 students |> List.map compute_score

 |> List.sort compare_score

 |> List.map stringify

 |> print each string

let stringify (first, last, score) =

 last ^ ", " ^ first ^ ": " ^ string_of_float score;;

Another Problem

let display (students : student list) : unit =

 students |> List.map compute_score

 |> List.sort compare_score

 |> List.map stringify

 |> List.iter print_endline

let stringify (first, last, score) =

 last ^ ", " ^ first ^ ": " ^ string_of_float score;;

COMBINATORS FOR OTHER TYPES:
PAIRS

Simple Pair Combinators

let both f (x,y) = (f x, f y);;

let do_fst f (x,y) = (f x, y);;

let do_snd f (x,y) = (x, f y);;

pair combinators

Example: Piping Pairs

let both f (x,y) = (f x, f y);;

let do_fst f (x,y) = (f x, y);;

let do_snd f (x,y) = (x, f y);;

let even x = (x/2)*2 == x;;

let process (p : float * float) =

 p |> both int_of_float (* convert to float *)

 |> fst ((/) 3) (* divide fst by 3 *)

 |> snd ((/) 2) (* divide snd by 2 *)

 |> both even (* test for even *)

 |> fun (x,y) -> x && y (* both even *)

pair combinators

Summary

• (|>) passes data from one function to the next

– compact, elegant, clear

• UNIX pipes (|) compose file processors

– unix scripting with | is a kind of functional programming

– but it isn't very general since | is not polymorphic

– you have to serialize and unserialize your data at each step

• there can be uncaught type mismatches between steps

• we avoided that in your assignment, which is pretty simple …

• Higher-order combinator libraries arranged around types:

– List combinators (map, fold, reduce, iter, …)

– Pair combinators (both, do_fst, do_snd, …)

End

