
O’Caml Basics: Unit and Options

COS 326

David Walker

Princeton University

Tuples

• Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Tuples

• Here's a tuple with 2 fields:

• Here's a tuple with 3 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

Tuples

• Here's a tuple with 2 fields:

• Here's a tuple with 3 fields:

• Here's a tuple with 4 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

(4.0, 5, "hello", 55) : float * int * string * int

Tuples

• Here's a tuple with 2 fields:

• Here's a tuple with 3 fields:

• Here's a tuple with 4 fields:

• Have you ever thought about what a tuple with 0 fields might
look like?

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

(4.0, 5, "hello", 55) : float * int * string * int

Unit

• Unit is the tuple with zero fields!

() : unit

• the unit value is written with an pair of parens
• there are no other values with this type!

Unit

• Unit is the tuple with zero fields!

• Why is the unit type and value useful?

• Every expression has a type:

() : unit

• the unit value is written with an pair of parens
• there are no other values with this type!

(print_string "hello world\n") : ???

Unit

• Unit is the tuple with zero fields!

• Why is the unit type and value useful?

• Every expression has a type:

• Expressions executed for their effect return the unit value

() : unit

• the unit value is written with an pair of parens
• there are no other values with this type!

(print_string "hello world\n") : unit

Writing Functions Over Typed Data

• Steps to writing functions over typed data:

1. Write down the function and argument names

2. Write down argument and result types

3. Write down some examples (in a comment)

4. Deconstruct input data structures

5. Build new output values

6. Clean up by identifying repeated patterns

• For tuples:

– when the input has type unit

• use let () = … in … to deconstruct

• or better use e1; … to deconstruct if e1 has type unit

• or do nothing … because unit carries no information of value

– when the output has type unit

• use () to construct

OUR THIRD DATA STRUCTURE!
THE OPTION

Options

• A value v has type t option if it is either:

– the value None, or

– a value Some v', and v' has type t

• Options can signal there is no useful result to the computation

• Example: we loop up a value in a hash table using a key.

– If the key is present in the hash table then we return Some v
where v is the associated value

– If the key is not present, we return None

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float =

;;

(x1, y1)

(x2, y2)

a

b
c

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float =

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

;;

(x1, y1)

(x2, y2)

a

b
c

deconstruct tuple

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float =

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 let xd = x2 -. x1 in

 if xd != 0.0 then

 (y2 -. y1) /. xd

 else

 ???

;;

(x1, y1)

(x2, y2)

a

b
c

what can we return?

avoid divide by zero

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 let xd = x2 -. x1 in

 if xd != 0.0 then

 ???

 else

 ???

;;

(x1, y1)

(x2, y2)

a

b
c

we need an option
type as the result type

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 let xd = x2 -. x1 in

 if xd != 0.0 then

 Some ((y2 -. y1) /. xd)

 else

 None

;;

(x1, y1)

(x2, y2)

a

b
c

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 let xd = x2 -. x1 in

 if xd != 0.0 then

 (y2 -. y1) /. xd

 else

 None

;;

(x1, y1)

(x2, y2)

a

b
c

Has type float

Can have type float option

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 let xd = x2 -. x1 in

 if xd != 0.0 then

 (y2 -. y1) /. xd

 else

 None

;;

(x1, y1)

(x2, y2)

a

b
c

Has type float

Can have type float option WRONG: Type mismatch

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 let xd = x2 -. x1 in

 if xd != 0.0 then

 (y2 -. y1) /. xd

 else

 None

;;

(x1, y1)

(x2, y2)

a

b
c

Has type float

doubly WRONG:
result does not
match declared result

Remember the typing rule for if

• Returning an optional value from an if statement:

if e1 : bool
and e2 : t and e3 : t (for some type t)
then if e1 then e2 else e3 : t

if … then

 None : t option

else

 Some (…) : t option

How do we use an option?

slope : point -> point -> float option

returns a float option

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =

;;

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =

 slope p1 p2

;;

returns a float option;
to print we must discover if it is
None or Some

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =

 match slope p1 p2 with

;;

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =

 match slope p1 p2 with

 Some s ->

 | None ->

;;

There are two possibilities

Vertical bar separates possibilities

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =

 match slope p1 p2 with

 Some s ->

 | None ->

;;

The object between | and -> is called a pattern

The "Some s" pattern includes the variable s

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =

 match slope p1 p2 with

 Some s ->

 print_string ("Slope: " ^ string_of_float s)

 | None ->

 print_string "Vertical line.\n"

;;

Writing Functions Over Typed Data

• Steps to writing functions over typed data:

1. Write down the function and argument names

2. Write down argument and result types

3. Write down some examples (in a comment)

4. Deconstruct input data structures

5. Build new output values

6. Clean up by identifying repeated patterns

• For tuples:

match … with

 | None -> …

 | Some s -> …

when the input has type t option,
deconstruct with:

when the output has type t option,
construct with:

Some (…) None

MORE PATTERN MATCHING

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =

 let square x = x *. x in

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 sqrt (square (x2 -. x1) +. square (y2 -. y1))

;;

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =

 let square x = x *. x in

 match p1 with

 | (x1,y1) ->

 let (x2,y2) = p2 in

 sqrt (square (x2 -. x1) +. square (y2 -. y1))

;;

There is only 1 possibility when matching a pair

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =

 let square x = x *. x in

 match p1 with

 | (x1,y1) ->

 match p2 with

 | (x2,y2) ->

 sqrt (square (x2 -. x1) +. square (y2 -. y1))

;;

We can nest one match expression inside another.
(We can nest any expression inside any other, if the expressions have the
right types)

Better Style: Complex Patterns

type point = float * float

let distance (p1:point) (p2:point) : float =

 let square x = x *. x in

 match (p1, p2) with

 | ((x1,y1), (x2, y2)) ->

 sqrt (square (x2 -. x1) +. square (y2 -. y1))

;;

Pattern for a pair of pairs: ((variable, variable), (variable, variable))
All the variable names in the pattern must be different.

we built a pair of pairs

Better Style: Complex Patterns

type point = float * float

let distance (p1:point) (p2:point) : float =

 let square x = x *. x in

 match (p1, p2) with

 | (p3, p4) ->

 let (x1, y1) = p3 in

 let (x2, y2) = p4 in

 sqrt (square (x2 -. x1) +. square (y2 -. y1))

;;

A pattern must be consistent with the type of the expression
in between match … with
We use (p3, p4) here instead of ((x1, y1), (x2, y2))

we built a pair of pairs

I like the original the best

type point = float * float

let distance (p1:point) (p2:point) : float =

 let square x = x *. x in

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 sqrt (square (x2 -. x1) +. square (y2 -. y1))

;;

It is the clearest and most compact.
Code with unnecessary nested patterns matching is particularly ugly to read.
You'll be judged on code style in this class.

Combining patterns

type point = float * float

(* returns a nearby point in the graph if one exists *)

nearby : graph -> point -> point option

let printer (g:graph) (p:point) : unit =

 match nearby g p with

 | None -> print_string "could not find one\n"

 | Some (x,y) ->

 print_float x;

 print_string ", ";

 print_float y;

 print_newline();

;;

Other Patterns

• Constant values can be used as patterns

let small_prime (n:int) : bool =

 match n with

 | 2 -> true

 | 3 -> true

 | 5 -> true

 | _ -> false

;;

 let iffy (b:bool) : int =

 match b with

 | true -> 0

 | false -> 1

;;

 the underscore pattern
matches anything
it is the "don't care" pattern

A QUICK COMMENT ON JAVA

Definition and Use of Java Pairs

What could go wrong?

public class Pair {

 public int x;

 public int y;

 public Pair (int a, int b) {

 x = a;

 y = b;

 }

}

public class User {

 public Pair swap (Pair p1) {

 Pair p2 =

 new Pair(p1.y, p1.x);

 return p2;

 }

}

A Paucity of Types

• The input p1 to swap may be null and we forgot to check.

• Java has no way to define a pair data structure that is just a pair.

• How many students in the class have seen an accidental null
pointer exception thrown in their Java code?

public class Pair {

 public int x;

 public int y;

 public Pair (int a, int b) {

 x = a;

 y = b;

 }

}

public class User {

 public Pair swap (Pair p1) {

 Pair p2 =

 new Pair(p1.y, p1.x);

 return p2;

 }

}

From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

type java_pair = (int * int) option

From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

If you write code like this:

The input p1 to swap may be null and we forgot to check.

Java has no way to define a pair data structure that is just a pair.

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =

 let (x,y) = p in

 (y,x)

From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

If you write code like this:

The type checker gives you an error immediately:

The input p1 to swap may be null and we forgot to check.

Java has no way to define a pair data structure that is just a pair.

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =

 let (x,y) = p in

 (y,x)

… Characters 91-92:

 let (x,y) = p in (y,x);;

 ^

Error: This expression has type java_pair = (int * int) option

 but an expression was expected of type 'a * 'b

From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

What if you did the following stupid thing?

The input p1 to swap may be null and we forgot to check.

Java has no way to define a pair data structure that is just a pair.

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =

 match p with

 | Some (x,y) -> Some (y,x)

From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

What if you did the following stupid thing?

The type checker to the rescue again:

The input p1 to swap may be null and we forgot to check.

Java has no way to define a pair data structure that is just a pair.

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =

 match p with

 | Some (x,y) -> Some (y,x)

 ..match p with

 | Some (x,y) -> Some (y,x)

Warning 8: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

None

From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

You can fix either error in 2 seconds:

The input p1 to swap may be null and we forgot to check.

Java has no way to define a pair data structure that is just a pair.

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =

 match p with

 | None -> None

 | Some (x,y) -> Some (y,x)

let swap_java_pair (p:java_pair) : java_pair =

 let (x,y) = p in

 (y,x)

From Java Pairs to O'Caml Pairs
• Moreover, your pairs are probably almost never null

• Defensive programming in which you are always checking for null
is annoying and time consuming

• Worst of all, there just isn't always some "good thing" for a
function to do when it receives a bad input, like a null pointer

• In O'Caml, all these issues disappear when you use the proper
type for a pair and that type contains no "extra junk"

• Once you know O'Caml, it is hard to write swap incorrectly

The input p1 to swap may be null and we forgot to check.

Java has no way to define a pair data structure that is just a pair.

type pair = int * int

let swap (p:pair) : pair =

 let (x,y) = p in (y,x)

Summary of Java Pair Rant

• Java has a paucity of types

– There is no type to describe just the pairs

– There is no type to describe just the triples

– There is no type to describe the pairs of pairs

– There is no type …

– Later: there is no type to describe just the acyclic lists or binary
trees …

• O'Caml has many more types

– use option when things may be null

– do not use option when things are not null

– ocaml types describe data structures more precisely

– type checking and pattern analysis help prevent programmers
from ever forgetting about a case

OVERALL SUMMARY:
A SHORT INTRODUCTION TO
FUNCTIONAL PROGRAMMING

Functional Programming

Steps to writing functions over typed data:

1. Write down the function and argument names

2. Write down argument and result types

3. Write down some examples

4. Deconstruct input data structures

• the argument types suggest how you do it

• the types tell you which cases you must cover

5. Build new output values

• the result type suggests how you do it

6. Clean up by identifying repeated patterns

• define and reuse helper functions

• refactor code to use your helpers

• your code should be elegant and easy to read

Summary: Constructing/Deconstructing Values

Type Construct Values Number of Cases Deconstruct Values

int 0, -1, 2, … 2^31-1 match i with
 | 0 -> …
 | -1 -> …
 …
 | x -> …

bool true, false 2 match b with
| true -> …
| false -> ….

t1 * t2 (2, "hi") (# of t1) * (# of t2) let (x,y) = … in …

match p with (x,y) -> …

unit () 1 e1; …

t option None, Some 3 1 + (# of t1) match opt with
| None -> …
| Some x -> …

END

