O’Caml Intro

COS 326
David Walker
Princeton University

Thinking Functionally

In Java or C, you get (most) work done by changing something

temp = pair.x;
pair.x = pair.y;
pairy = temp;

T~

commands modify or change an
existing data structure (like pair)

In OCaml, you get (most) work done by producing something

let

(x,y) = pair
in

(y,x)

T~

you analyze existing data (like pair)
and you produce new data (y,x)

[Thinking Functionally

pure, functional code: imperative code:

= : temp = pair.x;

irEX’y) - palr pair.x = pair.y;

(v,X) pairy = temp;

e outputs are everything! e outputs are irrelevant!
e outputis function of input e outputis not function of input
e persistent * volatile
* repeatable * unrepeatable
* parallelism apparent * parallelism hidden
e easier to test * harder to test

e easier to compose * harder to compose

What else makes OCaml different?

Small, orthogonal core based on the lambda calculus.
— Control is based on (recursive) functions.

— Instead of for-loops, while-loops, do-loops, iterators, etc.
* can be defined as library functions.
— Makes it easy to define semantics

Supports first-class, lexically-scoped, higher-order procedures
— a.k.a. first-class functions or closures or lambdas.
— first-class: functions are data values like any other data value
* like numbers, they can be stored, defined anonymously, ...
— lexically-scoped: meaning of variables determined statically.

— higher-order: functions as arguments and results
* programs passed to programs; generated from programs

These aspects are in common with other functional languages
such as Scheme, Haskell, SML, Clojure, CoffeeScript.

What else makes OCaml different?

Statically typed:
— compiler catches many silly errors before you can run the code.
— e.g., calling a function with the wrong number of arguments
— Java is also strongly, statically typed.

— Scheme, Bash, Python, Javascript, Basic, etc. are all strongly,
dynamically typed — type errors are discovered while the code is
running.

Strongly typed: compiler enforces type abstraction.

— cannot cast an integer to a record, function, string, etc.
* so we can utilize types as capabilities.
 crucial for local reasoning
— C/C++ are weakly-typed languages. The compiler W|II happlly let
you do something smart (more often stupid). e ’f“ ;

Type inference: compiler fills in types for you

Installing, running Ocaml

Ocaml comes with an interactive, top-level loop.
— useful for testing and debugging code.

III

— “ocaml” at the prompt.

It also comes with compilers
— “ocamlc” — fast bytecode compiler
— “ocamlopt” — optimizing, native code compiler
— command line interface similar to GCC

And many other tools

— e.g., debugger, dependency generator, profiler, etc.

See the course web pages for instructions on installing and
using O’'Caml

Editing Ocaml| Programs

* Many options: pick your own poison

— Emacs
* what I'll be using in class.
* good but not great support for Ocaml.
* onthe other hand, it’s still the best code editor I've encountered.
* (extensions written in elisp — a functional language!)

— Ocaml IDE
* integrated development environment written in Ocaml.
* haven’t used it much, so can’t comment.

— Eclipse
* |’ve put up a link to an Ocaml plugin
* | haven't tried it but others recommend it

XKCD on Editors

EXCUSE ME, BUT
REAL PROGRAMMERS
USE BUTTERFLIES.

tR 2

nonp? REAL HEY. REAL WELL, REAL NO, REAL REAL FROGRAMMERS
PROGRAMMERS PRCGRAMMERS | | PROGRAMMERS | | PROGRAMMERS | | USE A MPGNETIZED
USE emocs USE wvim. VSE ed. USE cat. NEEDLE AND A
\) [] STEADY HAND.
f
THE DISTURBANCE RIPPLES ~ WHICH ACT AS LENSES THAT
THEYOPEN THEIR OUTWARD, CHANGING THE FLOV DEFLECT INCOMING COSMIC
HANDS AND LET THE | OF THE EDDY CURRENTS RAYS, FOCUSING THEM TO
DELICATE WINGS FLAD ONCE. STRIKE THE DRIVE PLATTER

ngy

IN THE UPPER ATMOSPHERE.

THESE CAUSE H#J’I"IEM.HR‘:' F'CG{ETS

OF HIGHER-PRESSURE AR TO FORM,

AND FLIP THE DESIRED BIT.

MICE.
COURSE, THERES AN EMACS
{IJHHHND TO DO THAT,

OH YEAH! GOOD (L
Cx Tt c M-butterfly.

EEW

DAMAIT, EMACS.

AN INTRODUCTORY EXAMPLE
(OR TWO)

Ocaml| Compiler and Interpreter

* Demo:
— emacs
— ml files
— writing simple programs: hello.ml, sum.ml
— simple debugging and unit tests
— ocamlc compiler

— ocaml top-level loop

* ftuse
e #load
* Hquit

A First O'Caml Program

hello.ml:

print string "hello cos326!!\n";;

A First O'Caml Program

hello.ml:

print string "hello cos326!!\n";;
VAl N N

/. \

a function

it’s string argument
enclosedin"..."

\ top-level

expressions
terminated by ;;

A First O'Caml Program

hello.ml:

print string "hello cos326!!\n";;

complling and running hello.ml:

$ ocamlc hello.ml -o hello
S ./hello

hello cos326!!

S

A First O'Caml Program

hello.ml:

print string "hello cos326!!\n";;

interpreting and playing with hello.ml:

S ocaml
Objective Caml Version 3.12.0
#

A First O'Caml Program

hello.ml:

print string "hello cos326!!\n";;

interpreting and playing with hello.ml:

S ocaml

Objective Caml Version 3.12.0
3+ 1;;
- : 1nt = 4

A First O'Caml Program

hello.ml:

print string "hello cos326!!\n";;

interpreting and playing with hello.ml:

S ocaml
Objective Caml Version 3.12.0
3 4+ 1;;
- : 1nt = 4
#use "hello.ml";;
hello cos326!!
- : unit = ()

id

A First O'Caml Program

hello.ml:

print string "hello cos326!!\n";;

interpreting and playing with hello.ml:

S ocaml
Objective Caml Version 3.12.0
3 4+ 1;;
- : 1nt = 4
#use "hello.ml";;
hello cos326!!
- : unit = ()
#quit;;
S

A Second O’Caml Program

a comment
sumTo8.ml: (*...™)

e////

(* sum the numbers from 0O to n
precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with
0 -> 0
| n -> n + sumTo (n-1)

print int (sumTo 8);;
print newline();;

[A Second O’Caml Program

the name of the function being defined

sumTo8.ml: ////

(* sum the numbers from 0 to n
precondition: n must be a natural number

<)

let rec sumTo (n:int) : int =
/f match n with
0O -—> 0
| n -=> n + sumTo (n-1) topJeveI
TS declaration
print int (sumTo 8);; ends with

“w,.n

print newline();; ’)

the keyword “let” begins a definition
the keyword “rec” indicates the definition is recursive

A Second O’Caml Program

sumTo8.ml:

(* sum the numbers from 0O to n
precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with
0 -> 0
| n -> n + sumTo (n-1)

print int (sumTo 8);;
print newline();;

" result type int

argument
~ named n
with type int

A Second O’Caml Program

deconstruct the value n
using pattern matching

sumTo8.ml: ///

from 0 to n
n must be a natural number

(* sum the number

preconditio
*)

let rec sumTo (n:int) : int =
match nfwith é———*”””——”’ﬂ—”ﬂﬂa———’”ﬂ—g—
0 —> 0
| n -> n + sumTo (n-1)

o o
r 7

print int (sumTo 8);;
print newline();;

— data to be
deconstructed
appears
between

key words
“match” and
“with”

[A Second O’Caml Program

vertical bar "|" separates the alternative patterns

sumTo8.ml:

(* sum the numbers from 0 to n

precondition: n must be a natural number
*)

let rec sumTo (n:int) : int =

match n with
0O -—> 0

n -> n + sumTo (n-1)

rint int (sumTo 8);;
print newline();;

deconstructed data matches one of 2 cases:
(i) the data matches the pattern O, or (ii) the data matches the variable pattern n

A Second O’Caml Program

Each branch of the match statement constructs a result

sumTo8.ml:

(* sum the numbers from 0 to n

precondition: n must be a natural number
*)

let rec sumTo (n:int) : int
match n with

0 -> 0

| n -> n + sumTo (n-1)

"’ \

print int (sumTo 8);;
print newline();;

construct
the result O

construct

a result
_using a
recursive

call to sumTo

A Second O’Caml Program

sumTo8.ml:

(* sum the numbers from 0 to n
precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with
0 -> 0
| n -> n + sumTo (n-1)

print int (sumTo 8);;
print newline();;

\

print the
result of
calling
sumTo on 8

print a
new line

O’CAML BASICS:
EXPRESSIONS, VALUES, SIMPLE TYPES

Expressions, Values, Types

Expressions are computations
— 2+ 3 is a computation

Values are the results of computations

— 5is avalue

Types describe collections of values and the computations
that generate those values

— intis a type

— values of type int include
* 0,1,2,3,.., max_int
e -1,-2, ..., min_int

More simple types, values, operations

int
float
char
string
bool

unit

Values:

-2, 0, 42

3.14, -1., 2el?2
‘a’, 'b’, ’&’

“mOO”, “cow

true, false

()

Expressions:
42 * (13 + 1)
(3.14 +. 12.0) *. 10eo0

int_of_char ‘a’

\\ 144

moo” ~ Y“cow
1f true then 3 else 4
print int 3

For more primitive types and functions over them,
see the Ocaml Reference Manual here:

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html

Language Definition

There are a number of ways to define a programming language
In this class, we will briefly investigate:

— Syntax

— Evaluation

— Type checking

Standard ML, a very close relative of O'Caml, has a full definition
of each of these parts and a number of proofs of correctness

— For more on this theme, see COS 441

The O'Caml Manual fleshes out the syntax and some of the
evaluation constraints and type checking rules

O’CAML BASICS:
CORE EXPRESSION SYNTAX

Core Expression Syntax

The simplest O'Caml expressions e are:

* values numbers, strings, bools, ...
e id variables (x, foo, ...)

* e, 0pe, operators (x+3, ...)

* ideje,..e, function call (foo 3 42)

* letid=e,ine, local variable decl.

* ife, thene,else e, a conditional

* (e) a parenthesized expression

e (e:t) an expression with its type

30

A note on parentheses

In most languages, arguments are parenthesized & separated by commas:
£(x,y,z) sum(3,4,5)

In Ocaml, we don’t write the parentheses or the commas:

f xy z sum 3 4 5

But we do have to worry about grouping. For example,

f xy z
f x (y z)

The first one passes three arguments to f (x, y, and z)

The second passes two arguments to f (x, and the result of applying the
functiony to z.)

31

O’CAML BASICS:
TYPE CHECKING

Type Checking

Every value has a type and so does every expression

This is a concept that is familiar from Java but it becomes
more important when programming in a functional language

The type of an expression is determined by the type of its
subexpressions
We write (e : t) to say that expression e has type t. eg:

2 :int "hello" : string

2+2:int "I'say " A "hello" : string

Type Checking Rules

* There are a set of simple rules that govern type checking

— programs that do not follow the rules will not type check and
O’Caml will refuse to compile them for you (the nerve!)

— at first you may find this to be a pain ...

* But types are a great thing:
— they help us think about how to construct our programs
— they helps us find stupid programming errors

— they help us track down compatibility errors quickly when we
edit and maintain our code

— they allow us to enforce powerful invariants about our data
structures

Type Checking Rules

 Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

Type Checking Rules

 Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int

thenel +e2:int thenel *e2:int

Type Checking Rules

Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
then el +e2:int thenel *e2:int
(5) ifel:string and e2 : string (6) ife:int

then el " e2 : string then string_of int e : string

Type Checking Rules

 Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2 :int

(5) ifel:string and e2 : string (6) ife:int
then el " e2 : string then string_of int e : string

* Using the rules:

2 :intand 3 :int. (By rule 1)

Type Checking Rules

 Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2 :int

(5) ifel:string and e2 : string (6) ife:int
then el " e2 : string then string_of int e : string

* Using the rules:

2 :intand 3 :int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)

Type Checking Rules

 Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2 :int

(5) ifel:string and e2 : string (6) ife:int
then el " e2 : string then string_of int e : string

* Using the rules:

2 :intand 3 :int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5:int (By rule 1)

Type Checking Rules

 Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2 :int
(5) ifel:string and e2 : string (6) ife:int
then el " e2 : string then string_of int e : string

* Using the rules:

2 :intand 3 :int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5:int (By rule 1)

Therefore, (2 +3) *5:int (By rule 4 and our previous work)

Type Checking Rules

 Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2 :int

(5) ifel:string and e2 : string (6) ife:int
then el " e2 : string then string_of int e : string

* Another perspective:
F S S o dr s :int

rule (4) for typing expressions //
says | can put any expression

with type int in place of the ??7??

Type Checking Rules

 Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2 :int

(5) ifel:string and e2 : string (6) ife:int
then el " e2 : string then string_of int e : string

* Another perspective:
7 kPP . int

rule (4) for typing expressions //
says | can put any expression

with type int in place of the ??7??

Type Checking Rules

 Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2 :int

(5) ifel:string and e2 : string (6) ife:int
then el " e2 : string then string_of int e : string

* Another perspective:
7 * (add_one17) : int

rule (4) for typing expressions //
says | can put any expression

with type int in place of the ??7??

Type Checking Rules

* You can always start up the O’Caml interpreter to find out a
type of a simple expression:

S ocaml
Objective Caml Version 3.12.0
#

Type Checking Rules

* You can always start up the O’Caml interpreter to find out a
type of a simple expression:

S ocaml
Objective Caml Version 3.12.0
3+ 1;;

Type Checking Rules

* You can always start up the O’Caml interpreter to find out a
type of a simple expression:

S ocaml
Objective Caml Version 3.12.0

3 + 1;;
- : 1nt = 4
#
////Z

press

return e

and you

find out

the type

and the

value

Type Checking Rules

* You can always start up the O’Caml interpreter to find out a
type of a simple expression:

S ocaml
Objective Caml Version 3.12.0
3 + 1;;
— int = 4
“hello ” ~ “world”;;
press - : string = “hello world”
#
return /
and you
find out]
the type
and the

value

Type Checking Rules

* You can always start up the O’Caml interpreter to find out a
type of a simple expression:

S ocaml
Objective Caml Version 3.12.0
3+ 1;;
int = 4
“hello ” ©~ “world”;;
string = “hello world”
#quit; ;

Ur = | H= | FHF

Type Checking Rules

 Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2 :int

(5) ifel:string and e2 : string (6) ife:int
then el " e2 : string then string_of int e : string

* Violating the rules:

"hello" : string (By rule 2)
1:int (By rule 1)
1+ "hello" : ?? (NO TYPE! Rule 3 does not apply!)

Type Checking Rules

Violating the rules:

"hello"™ + 1;;
Error: This expression has type string but an
expression was expected of type 1int

The type error message tells you the type that was expected
and the type that it inferred for your subexpression

By the way, this was one of the nonsensical expressions that
did not evaluate to a value

| consider it a good thing that this expression does not type
check

Type Checking Rules

* Violating the rules:

"hello"™ + 1;;
Error: This expression has type string but an
expression was expected of type 1int

* A possible fix:

"hello"™ ~ (String_Of_int 1)
— . atrirg — "hellel”

* One of the keys to becoming a good ML programmer is to
understand type error messages.

Type Checking Rules

e More rules:

(7) true :bool

(8) false : bool

(9) ifel: bool
and e2 :tand e3 : t (for some type t)

then if el thene2 elsee3:t

Using the rules:

if ??27? then ?7?? else ??7?? :int

Type Checking Rules

e More rules:

(7) true :bool

(8) false : bool

(9) ifel: bool
and e2 :tand e3 : t (for some type t)

then if el thene2 elsee3:t

Using the rules:

if true then ???7? else ???? :int

Type Checking Rules

e More rules:

(7) true :bool

(8) false : bool

(9) ifel: bool
and e2 :tand e3 : t (for some type t)

then if el thene2 elsee3:t

Using the rules:

if truethen 7 else ??7?7? :int

Type Checking Rules

e More rules:

(7) true :bool

(8) false : bool

(9) ifel: bool
and e2 :tand e3 : t (for some type t)

then if el thene2 elsee3:t

Using the rules:

iftruethen 7 else 8 :int

Type Checking Rules

e More rules:

(7) true :bool

(8) false : bool

(9) ifel: bool
and e2 :tand e3 : t (for some type t)

then if el thene2 elsee3:t

Violating the rules

if false then "1" else 2 : 7?7?77

7

types don't agree -- one is a string and one is an int

Type Checking Rules

* Violating the rules:

if true then "1" else 2;;
Error: This expression has type int but an
expression was expected of type string

i

[Type Checking Rules

* What about this expression:

3/ 0 ;;

Exception: Division by zero.

 Why doesn't the ML type checker do us the favor of telling us the
expression will raise an exception?

[Type Checking Rules]

* What about this expression:

3/ 0 ;;
Exception: Division by zero.

 Why doesn't the ML type checker do us the favor of telling us the
expression will raise an exception?
— In general, detecting a divide-by-zero error requires we know that
the divisor evaluates to 0.
— In general, deciding whether the divisor evaluates to 0 requires
solving the halting problem:

3 / (if turing machine halts m then 0 else 1);;

* There are type systems that will rule out divide-by-zero errors, but
they require programmers supply proofs to the type checker

OVERALL SUMMARY.:
A SHORT INTRODUCTION TO
FUNCTIONAL PROGRAMMING

OCaml

OCaml is a call-by-value, strong, statically typed, functional programming language

e functional: OCaml functions analyze their inputs and generate new outputs
— as opposed to C or Java functions which typically modify/change state
— in OCaml, outputs of a function are typically completely determined by their inputs

* call-by-value: OCaml expressions compute values eagerly
— as opposed to Haskell or Unix pipes that compute values on demand, lazily

* | like the strong, static type: all OCaml expressions are assigned a type before
execution of the expression

— the type of an expression correctly predicts the kind of value the expression will
generate when it is executed

— types help us understand and write our programs
— type inference makes our programs compact

— the type system is strong (ie: sound): there’s no funny business like in C where you
think you have a pointer, but you actually have some non-pointer

END

