Lambda Calculus:
Implementation Techniques
and a Proof



Last Time: The Lambda Calculus

A language of pure functions:

/ values

e:=x| \xe|ee v:i= \x.e

With a call-by-value operational semantics:

single step: multi-step:

4 N N

(beta)
(\x.e) v --> e [v/X]

oot o (reflexivity)

el -->el’ ( 1)
el e2-->el’ e app

el -->e2 e2 -->* e3
el ->*e3

(transitivity)

e2 -->e2’

\ vez->vez (app2) Y \_ Y




Examples

We used the formal rules to build proofs that lambda terms
could take steps:

(beta)

(WA xy) (\ww)) (\z.z) > (\y.(\w.w) y) (\z.2)

We showed it was possible to encode several simple kinds of
data structures or computations

— booleans
— pairs

— numbers
— looping

— and | claimed you could code up anything else since the untyped
lambda calculus is Turing-complete



IMPLEMENTING THE
LAMBDA CALCULUS



Two Options

First-order Abstract Syntax: build a data structureto
represent a program

data Lam =
Var String
| Abs String Lam
| App Lam Lam

Higher-order Abstract Syntax: use functions in Haskell to
represent lambda calculus functions directly

data Lam =
Abs (Lam -> Lam)
| App Lam Lam



FIRST-ORDER SYNTAX



Examples

* Datastructure:

data Lam =
Var String
| Abs String Lam
| App Lam Lam

 Examples:

i =Abs "x" (Var "x") - \X.X
tru = Abs "t" (Abs "f" (Var "t")) - \t.\f.t

fls = Abs "t" (Abs "f" (Var "f")) - \t.\ff

e |, tru, fls all have type Lam



Substitution

e Substitution:

--substexv==e[v/x] --vmustbe closed (no free variables)



Substitution

e Substitution:

--substexv==e[v/x] --vmustbe closed (no free variables)

subst (Vary) xv = if x==y thenvelse Vary



Substitution

e Substitution:

--substexv==e[v/x] --vmustbe closed (no free variables)

subst (Vary) xv = if x==y thenvelse Vary
subst (Absye)xv =ifx ==y then (Absy e) else (Absy (subste x v))



Substitution

e Substitution:

--substexv==e[v/x] --vmustbe closed (no free variables)

subst (Vary) xv = if x==y thenvelse Vary
subst (Absye)xv =ifx==ythen (Absye)else (Absy (subste xVv))
subst (App el e2) x v=App (subst el x v) (subste2 x v)



Substitution

e Substitution:

--substexv==e[v/x] --vmustbe closed (no free variables)

subst (Vary) xv = if x==y thenvelse Vary
subst (Absye)xv =ifx==ythen (Absye)else (Absy (subste xVv))
subst (App el e2) x v=App (subst el x v) (subste2 x v)

Example: y = Var'y"
x =Var"x"
id =Abs "x" x

foo = App (Abs "y" y) y

subst foo "y" id == App (Abs"y"vy)id



Values

 Code todetermine if an expressionis a value:

--is a value? --
value (Var s) = False
value (Absxe) =True

value (App el e2) = False



Evaluation ] - (beta)\

(\x.e) v --> e [v/X]

el -->el’ ( 1)
ele2->el’ e2 app

eval :: Lam -> Lam

- beta rule e2->e2" __ (app2)
eval (App (Abs x e) v) | value v=subste x v vez —>vey PP /




Evaluation ] - (beta)\

(\x.e) v --> e [v/X]

el -->el’ ( 1)
ele2->el’ e2 app

eval :: Lam -> Lam

-- beta rule e2 --> e2’ ( )

eval (App (Abs x e) v) | value v =subste x v Vez > ve2 PP /
--app2 rule

eval (App v e2) | valuev = lete2'=eval e2 in

App v e2'




Evaluation ] - (beta)\

(\x.e) v --> e [v/X]

el -->el’ ( 1)
ele2->el’ e2 app

eval :: Lam -> Lam

-- beta rule e2 > e2’ (app2)
eval (App (Abs x e) v) | value v =subste x v Vez > ve2 PP /
--app2 rule
eval (App v e2) | valuev = lete2'=eval e2 in
App v e2'
--appl rule
eval (App el e2) =letel'=evalelin

Appel'e2




Evaluation ]

eval :: Lam -> Lam

-- beta rule
eval (App (Abs x e) v) | value v =subste x v

--app2 rule

eval (App v e2) | valuev = lete2'=eval e2 in
App v e2'

--appl rule

eval (App el e2) =letel'=evalelin
Appel'e2

-- forms that don't match LHS; no rule exists
eval (Abs x e) = error "Value!"
eval (Var x) = error "Stuck!"

~

(\x.e) v --> e [v/X]

™\

(beta)

el -->el’ ( 1)
ele2->el’ e2 app

e2 -->e2’

vez -->ve? (app2) /




HIGHER-ORDER SYNTAX



Higher-Order Abstract Syntax

* Key idea: use functions in Haskell to represent lambda

calculus functions directly

data Lam =
Abs (Lam -> Lam)
| App Lam Lam

| FreeVar String

needed for printing,
and analysis of expressions

not needed for evaluation
expressions should not have

free variables if you want
to execute them



Higher-Order Abstract Syntax

* Key idea: use functions in Haskell to represent lambda

calculus functions directly

data Lam =
Abs (Lam -> Lam)
| App Lam Lam

remember, Abs is a converter:
it takes a Lam -> Lam

function and puts it

in an "object" with 1 field
that has type Lam

Abs :: (Lam ->Lam) -> Lam

App :: Lam -> Lam -> Lam



Higher-Order Abstract Syntax

* Key idea: use functions in Haskell to represent lambda
calculus functions directly

data Lam =
Abs (Lam -> Lam
| App(Lam Lam ) a Haskell variable with type
Lam appears in the places

a lambda calculus variable
f::Lam ->Lam / would
f=\x->Appx x

e:: Lam
e = Abs f think of the body of f like an
expression with holes it:
/ App[ ][]
during evaluation, we'll plug the holes
Abs makes a Haskell function f with the argument to the function

into a Lam



Higher-Order Abstract Syntax

* Key idea: use functions in Haskell to represent lambda
calculus functions directly

f::Lam ->Lam data Lam =

f=\x->Appx x Abs (Lam -> Lam)
| App Lam Lam

e:: Lam

e =Absf



Higher-Order Abstract Syntax

* Key idea: use functions in Haskell to represent lambda
calculus functions directly

f::Lam ->Lam data Lam =

f=\x->Appx x Abs (Lam -> Lam)
| App Lam Lam

e:: Lam

e = Abs f

id :: Lam -> Lam
id =\x -> x

ide :: Lam
ide = Abs id



Higher-Order Abstract Syntax

* Key idea: use functions in Haskell to represent lambda
calculus functions directly

f::Lam ->Lam data Lam =

f=\x->Appx x Abs (Lam -> Lam)
| App Lam Lam

e:: Lam

e = Abs f

id :: Lam -> Lam

id =\x ->x
evaluating (App e ide):
ide :: Lam
ide = Abs id inside e, we have f = \x -> App x x
e':: Lam applying f to ide, we get:

e' = App eide App ide ide



Higher-Order Abstract Syntax

* Key idea: use functions in Haskell to represent lambda

calculus functions directly

id :: Lam -> Lam
id =\x ->x

ide :: Lam
ide = Abs ide

fls == Abs (\t ->
Abs (\f -> f))

tru = Abs (\t ->
Abs (\f ->t))

An Alternative:

id=\f >f
ide = Abs id

flsf =\t -> Abs id
fls = Abs flsf

An Alternative:
truf =\t -> Abs (\f -> t)

tru = Abs truf




Evaluation

|

eval :: Lam -> Lam

eval (App (Abs f) v) | valuev=fv -- betarule

eval (App v e2) | valuev = --app?2 rule
let e2' = eval e2 in
App v e2'

eval (Appel e2) = --applrule
let el' = eval el in

Appel' e2

eval (Abs f) = error "Value!"

-- note: we never had to implement
-- substitution ourselves; Haskell did it for us

~

(beta)

-~

(\x.e) v --> e [v/X]

el -->el’
ele2-->el’ e

(appl)

e2 --> e’

Qez -->ve2 (app2) /

data Lam =
Abs (Lam -> Lam)
| App Lam Lam




GETTING STUCK



Can Evaluation Ever Get Stuck?

Values are lambda expressions that have “properly finished”
being evaluated — there is nothing more to do.

— In the pure lambda calculus, the only values are functions
— “\x.x” is avalue. It can’t be evaluated any further.

— “\.\y.x y” is also a value

Are there lambda terms that aren’t values but can’t be
evaluated any further using the rules?

If there were, we’d call those things stuck expressions



Can Evaluation Ever Get Stuck?

Values are lambda expressions that have “properly finished”
being evaluated — there is nothing more to do.

— In the pure lambda calculus, the only values are functions
— “\x.x” is avalue. It can’t be evaluated any further.

— “\.\y.x y” is also a value
Are there lambda terms that aren’t values but can’t be
evaluated any further using the rules?

If there were, we’d call those things stuck expressions
Expressions with free variables can be stuck! Eg:

— X

= x(\yy)

— (\v. xy) (\w.w) isn’t stuck right away, but will be after an
evaluation step



Stuckness testing

* Given alambda term, is it possible to create an automatic
analyzer that decides, yes or no, whether or not a lambda
term will ever get stuck?



Stuckness testing

Given a lambda term, is it possible to create an automatic
analyzer that decides, yes or no, whether or not a lambda

term will ever get stuck?

— No! The lambda calculus is Turing-Complete. It can encode any
Turing Machine.

— Suppose TM is a lambda term that simulates a Turing Machine
— Consider: (\x.y x) TM

— The above expression gets stuck by running in to free variabley
if the TM halts; does not get stuck if the TM does not halt. We
can’t decide if TMs halt, so we can’t decide if the lambda term
ever gets stuck.



Stuckness testing

* Given alambda term, is it possible to create an automatic
analyzer that soundly but conservatively decides whether or
not a lambda term will ever get stuck?

— ie: can we design an algorithm that given a lambda term,

* says “no the lambda term is not stuck” if it can guarantee the

lambda term is not stuck?
* says “yes, maybe” if it isn’t sure? guarantee == sound

— of course! the algorithm could always cop out and say “yes,
maybe”

e But it turns out we can also define a principled, non-trivial
analyzer that is sound and conservative, but for all practical
purposes does a “good enough” job

— such an analyzer is called a scope checker

— and it is the simplest kind of type system



A SIMPLE SCOPE CHECKER



A Scope Checker for FOAS Expressions

data Lam =
Var String -- variables
| Abs String Lam - \"x". e
| App Lam Lam -ele2

closed :: Lam -> Bool
closed e =clos [] e

where
closenv (Absxe) =clos (x:env)e
clos env (App el e2) =clos env el && clos env e2
clos env (Var x) = lookup env x
lookup [] x = False

lookup (y:env) x =x==vy || lookup env x



Scope Checking Examples

* A closed lambda expression:
— \v.\x.y is closed:
— closed (Abs "y" (Abs "x" (Var "y"))) == True

— v (\v.y) is not closed:
— closed (App (Var "y") (Abs"y" (Vary)) == False

* Can you come up with a lambda term that is not closed
according to our Haskell definition but that evaluates safely
without encountering a free variable?

— there must be one because | told you that it is undecidable
whether execution encounters a free variable



Scope Checking Examples

* A closed lambda expression:
— \v.\x.y is closed:
— closed (Abs "y" (Abs "x" (Var "y"))) == True

— v (\v.y) is not closed:
— closed (App (Var "y") (Abs"y" (Vary)) == False

* Can you come up with a lambda term that is not closed
according to our Haskell definition but that evaluates safely
without encountering a free variable?

— there must be one because | told you that it is undecidable
whether execution encounters a free variable

— (\WA\vy) (\y-2) (\w.w) --> (\y.y) (\w.w) --> \w.w



A Scope Checker for HOAS Expressions

module Lambda (Lam (Abs,App), -- only Abs App constructors useable by clients
freevar, -- freevar function useable

... ) Where

data Lam = Abs (Lam -> Lam) | App Lam Lam| FreeVar String

freevar :: String -> Lam
freevar s = FreeVar ("!" ++ s)



A Scope Checker for HOAS Expressions

module Lambda (Lam (Abs,App), -- only Abs App constructors useable by clients
freevar, -- freevar function useable
... ) Where

data Lam = Abs (Lam -> Lam) | App Lam Lam| FreeVar String

freevar :: String -> Lam
freevar s = FreeVar ("!" ++ s)
boundname = "bound"

closed :: Lam -> Bool
closed (Abs f) = ...



A Scope Checker for HOAS Expressions

module Lambda (Lam (Abs,App), -- only Abs App constructors useable by clients
freevar, -- freevar function useable
... ) Where

data Lam = Abs (Lam -> Lam) | App Lam Lam| FreeVar String

freevar :: String -> Lam
freevar s = FreeVar ("!" ++ s)
boundname = "bound"

closed :: Lam -> Bool

closed (Abs f) =
let body = f (FreeVar boundname) in
closed body



A Scope Checker for HOAS Expressions

module Lambda (Lam (Abs,App), -- only Abs App constructors useable by clients
freevar, -- freevar function useable
... ) Where

data Lam = Abs (Lam -> Lam) | App Lam Lam| FreeVar String

freevar :: String -> Lam
freevar s = FreeVar ("!" ++ s)

boundname = "bound"

closed :: Lam -> Bool
closed (Abs f) =
let body = f (FreeVar boundname) in
closed body
closed (App el e2) = closed el && closed e2
closed (FreeVar s) =s == boundname



ONE MORE WAY TO
DESCRIBE CLOSED EXPRESSIONS



Closed Expressions

env:=x1:x2:...:]]

judgement form: closenve --"ehas no free variables except thosein env"



Closed Expressions

env:=x1:x2:...:[]
judgement form: closenve --"ehas no free variables except thosein env"
clos (x:env) e -- if eis closed in (x:env) then

clos env \x.e \x.e is closed in env



Closed Expressions

env:=x1:x2:...:]]

judgement form: closenve --"ehas no free variables except thosein env"
clos (x:env) e -- if e is closed in (x:env) then

clos env \x.e \x.e is closed in env

closenvel closenve2 -- if el and e2 are closed in env then

clos env (el e2) el e2 is closed in env



Closed Expressions

env:=x1:x2:...:]]

judgement form: closenve --"ehas no free variables except thosein env"
clos (x:env) e -- if e’is closed in (x:env) then

clos env \x.e \x.e is closed in env

closenvel closenve2 -- if el and e2 are closed in env then

clos env (el e2) el e2 is closed in env

lookup env x == true -- if xis in env then

clos env x X is closed in env



A PROOF



Evaluation Preserves Closedness

* Theorem: If clos [] e and e --> e' then clos [] e'.



Evaluation Preserves Closedness

* Theorem: If clos [] e and e --> e' then clos [] e'.

* Requires a lemma that substitution preserved Closedness
— Lemma: If clos [] (\x.e) and clos [] v then clos [] (e[v/x])



Evaluation Preserves Closedness

e Theorem: If clos [] e and e --> e' then clos [] e'.
* Proof: By induction on the derivation that e --> €’

— proofs by induction on the derivation of e --> e' have 1 case for
each rule

— use the induction hypothesis on when subprog --> subprog in
the premise of the rule.

— use lemma: If clos [] (\x.e) and clos [] v then clos [] (e[v/x])



Evaluation Preserves Closedness

e Theorem: If clos [] e and e --> e' then clos [] e'.
* Proof: By induction on the derivation thate --> ¢’

— Lemma: If clos [] (\x.e) and clos [] v then clos [] (e[v/x])

¢* cCase:
(beta)
(\x.e) v --> e [v/X]

(1) clos [] ((\x.e) v) (given)

(2) clos [] (\x.e) (by 1, def of clos)

(3) clos []v (by 1, def of clos)

(4) clos [] (e[v/x]) (by 2, 3)
clos (x:env) e closenvel closenve2 lookup env x == true

clos env \x.e clos env (el e2) clos env x



Evaluation Preserves Closedness

e Theorem: If clos [] e and e --> e' then clos [] e'.
* Proof: By induction on the derivation thate --> ¢’
— Lemma: If clos [] (\x.e) and clos [] v then clos [] (e[v/x])

¢ case:

el -->el’ (a 1)
ele2-->el’ e2 PP

(1) clos [] (el e2) (given)

(2) clos [] el (by 1, def of clos)
(3) clos [] e2 (by 1, def of clos)
(4) clos [] el (by IH, 2)

(5) clos [] (el e2) (by 4, 3, def of clos)

clos (x:env) e closenvel closenve2 lookup env x == true

clos env \x.e clos env (el e2) clos env x



Evaluation Preserves Closedness

e Theorem: If clos [] e and e --> e' then clos [] e'.
* Proof: By induction on the derivation thate --> ¢’

— Lemma: If clos [] (\x.e) and clos [] v then clos [] (e[v/x])

¢* cCase:
e2 -->e2’
ve2 -->ve2 (app2)

(1) clos [] (v e2) (given)

(2) clos []v (by 1, def of clos)

(3) clos [] e2 (by 1, def of clos)

(4) clos [] e2' (by IH, 3)

(5) clos [] (v e2') (by 2, 4, def of clos)
clos (x:env) e closenvel closenve2 lookup env x == true

clos env \x.e clos env (el e2) clos env x



Why do we care?

* Why do we care if closure is preserved by execution?



Why do we care?

Why do we care if closure is preserved by execution?

The initial motivation was that programs could get "stuck"
when executing by running in to a free variable. We wanted
to prevent that.

In a real language implementations, getting "stuck" often
means all hell breaks loose and random bad stuff ensues:

— derefencing a dangling pointer in Cis another way to "get stuck"

If we checked a program was closed, but then after 3 steps of
evaluation a free variable appeared, then closure checking
wouldn't be helpful -- it wouldn't prevent programs from
getting stuck

Moral: closure checking is a useful kind of static program
analysis because if you check a program once before it
executes, you never, ever have to worry about it getting stuck
on a free variable, no matter how long it runs



SUMMARY



Summary

There are at least two ways to implement the lambda calculus

— higher-order abstract syntax uses Haskell functions to implement
lambdas and Haskell variables to implement lambda variables

— first-order abstract syntax uses strings to represent variables and
does not use functions

Unfortunate Fact: Almost every non-trivial property of how a
lambda expression evaluates is undecidable

Optimistic Perspective: We can approximate many properties
Example:
— do we encounter a free var during execution: undecideable

— we can still design a useful scope checker

— the closure property is robust and highly useful because it is
preserved by execution



