
Lambda Calculus:
Implementation Techniques

and a Proof

COS 441 Slides 15

Last Time: The Lambda Calculus

A language of pure functions:

e ::= x | \x.e | e e v ::= \x.e

With a call-by-value operational semantics:

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(app1)

(app2)

(\x.e) v --> e [v/x]
(beta)

e1 --> e2 e2 -->* e3
 e1 -->* e3

(transitivity)

e -->* e
(reflexivity)

single step: multi-step:

values

Examples

• We used the formal rules to build proofs that lambda terms
could take steps:

• We showed it was possible to encode several simple kinds of
data structures or computations

– booleans

– pairs

– numbers

– looping

– and I claimed you could code up anything else since the untyped
lambda calculus is Turing-complete

 (\x.\y. x y) (\w.w) --> \y.(\w.w) y
((\x.\y. x y) (\w.w)) (\z.z) --> (\y.(\w.w) y) (\z.z)

(beta)

(app1)

IMPLEMENTING THE
LAMBDA CALCULUS

Two Options

• First-order Abstract Syntax: build a data structure to
represent a program

• Higher-order Abstract Syntax: use functions in Haskell to
represent lambda calculus functions directly

data Lam =
 Abs (Lam -> Lam)
 | App Lam Lam
 | FreeVar String

data Lam =
 Var String
 | Abs String Lam
 | App Lam Lam

FIRST-ORDER SYNTAX

Examples

• Data structure:

• Examples:

• i, tru, fls all have type Lam

data Lam =
 Var String
 | Abs String Lam
 | App Lam Lam

i = Abs "x" (Var "x") -- \x.x

tru = Abs "t" (Abs "f" (Var "t")) -- \t.\f.t

fls = Abs "t" (Abs "f" (Var "f")) -- \t.\f.f

Substitution

• Substitution:

-- subst e x v == e[v/x] -- v must be closed (no free variables)

Substitution

• Substitution:

-- subst e x v == e[v/x] -- v must be closed (no free variables)

subst (Var y) x v = if x == y then v else Var y

Substitution

• Substitution:

-- subst e x v == e[v/x] -- v must be closed (no free variables)

subst (Var y) x v = if x == y then v else Var y
subst (Abs y e) x v = if x == y then (Abs y e) else (Abs y (subst e x v))

Substitution

• Substitution:

-- subst e x v == e[v/x] -- v must be closed (no free variables)

subst (Var y) x v = if x == y then v else Var y
subst (Abs y e) x v = if x == y then (Abs y e) else (Abs y (subst e x v))
subst (App e1 e2) x v = App (subst e1 x v) (subst e2 x v)

Substitution

• Substitution:

• Example:

-- subst e x v == e[v/x] -- v must be closed (no free variables)

subst (Var y) x v = if x == y then v else Var y
subst (Abs y e) x v = if x == y then (Abs y e) else (Abs y (subst e x v))
subst (App e1 e2) x v = App (subst e1 x v) (subst e2 x v)

y = Var "y"
x = Var "x"

id = Abs "x" x
foo = App (Abs "y" y) y

subst foo "y" id == App (Abs "y" y) id

Values

• Code to determine if an expression is a value:

-- is a value? --

value (Var s) = False
value (Abs x e) = True
value (App e1 e2) = False

Evaluation

eval :: Lam -> Lam

-- beta rule
eval (App (Abs x e) v) | value v = subst e x v

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(app1)

(app2)

(\x.e) v --> e [v/x]
(beta)

Evaluation

eval :: Lam -> Lam

-- beta rule
eval (App (Abs x e) v) | value v = subst e x v

-- app2 rule
eval (App v e2) | value v = let e2' = eval e2 in
 App v e2'

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(app1)

(app2)

(\x.e) v --> e [v/x]
(beta)

Evaluation

eval :: Lam -> Lam

-- beta rule
eval (App (Abs x e) v) | value v = subst e x v

-- app2 rule
eval (App v e2) | value v = let e2' = eval e2 in
 App v e2'

-- app1 rule
eval (App e1 e2) = let e1' = eval e1 in
 App e1' e2

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(app1)

(app2)

(\x.e) v --> e [v/x]
(beta)

Evaluation

eval :: Lam -> Lam

-- beta rule
eval (App (Abs x e) v) | value v = subst e x v

-- app2 rule
eval (App v e2) | value v = let e2' = eval e2 in
 App v e2'

-- app1 rule
eval (App e1 e2) = let e1' = eval e1 in
 App e1' e2

-- forms that don't match LHS; no rule exists
eval (Abs x e) = error "Value!"
eval (Var x) = error "Stuck!"

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(app1)

(app2)

(\x.e) v --> e [v/x]
(beta)

HIGHER-ORDER SYNTAX

Higher-Order Abstract Syntax

• Key idea: use functions in Haskell to represent lambda
calculus functions directly

data Lam =
 Abs (Lam -> Lam)
 | App Lam Lam
 | FreeVar String needed for printing,

and analysis of expressions

not needed for evaluation

expressions should not have
free variables if you want
to execute them

Higher-Order Abstract Syntax

• Key idea: use functions in Haskell to represent lambda
calculus functions directly

data Lam =
 Abs (Lam -> Lam)
 | App Lam Lam

remember, Abs is a converter:

it takes a Lam -> Lam
function and puts it
in an "object" with 1 field
that has type Lam

Abs :: (Lam -> Lam) -> Lam

App :: Lam -> Lam -> Lam

Higher-Order Abstract Syntax

• Key idea: use functions in Haskell to represent lambda
calculus functions directly

data Lam =
 Abs (Lam -> Lam)
 | App Lam Lam

f :: Lam -> Lam
f = \x -> App x x

e :: Lam
e = Abs f

a Haskell variable with type
Lam appears in the places
a lambda calculus variable
would

think of the body of f like an
expression with holes it:
 App [] []
during evaluation, we'll plug the holes
with the argument to the function Abs makes a Haskell function f

into a Lam

Higher-Order Abstract Syntax

• Key idea: use functions in Haskell to represent lambda
calculus functions directly

data Lam =
 Abs (Lam -> Lam)
 | App Lam Lam

f :: Lam -> Lam
f = \x -> App x x

e :: Lam
e = Abs f

Higher-Order Abstract Syntax

• Key idea: use functions in Haskell to represent lambda
calculus functions directly

data Lam =
 Abs (Lam -> Lam)
 | App Lam Lam

f :: Lam -> Lam
f = \x -> App x x

e :: Lam
e = Abs f

id :: Lam -> Lam
id = \x -> x

ide :: Lam
ide = Abs id

Higher-Order Abstract Syntax

• Key idea: use functions in Haskell to represent lambda
calculus functions directly

data Lam =
 Abs (Lam -> Lam)
 | App Lam Lam

f :: Lam -> Lam
f = \x -> App x x

e :: Lam
e = Abs f

id :: Lam -> Lam
id = \x -> x

ide :: Lam
ide = Abs id

e' :: Lam
e' = App e ide

evaluating (App e ide):

inside e, we have f = \x -> App x x

applying f to ide, we get:
App ide ide

Higher-Order Abstract Syntax

• Key idea: use functions in Haskell to represent lambda
calculus functions directly

id :: Lam -> Lam
id = \x -> x

ide :: Lam
ide = Abs ide

fls = = Abs (\t ->
 Abs (\f -> f))

tru = Abs (\t ->
 Abs (\f -> t))

An Alternative:

id = \f -> f
ide = Abs id

flsf = \t -> Abs id
fls = Abs flsf

An Alternative:

truf = \t -> Abs (\f -> t)

tru = Abs truf

Evaluation

eval :: Lam -> Lam

eval (App (Abs f) v) | value v = f v -- beta rule

eval (App v e2) | value v = -- app2 rule
 let e2' = eval e2 in
 App v e2'

eval (App e1 e2) = -- app1 rule
 let e1' = eval e1 in
 App e1' e2

eval (Abs f) = error "Value!"

-- note: we never had to implement
-- substitution ourselves; Haskell did it for us

 e1 --> e1’
e1 e2 --> e1’ e2

 e2 --> e2’
v e2 --> v e2’

(app1)

(app2)

(\x.e) v --> e [v/x]
(beta)

data Lam =
 Abs (Lam -> Lam)
 | App Lam Lam

GETTING STUCK

Can Evaluation Ever Get Stuck?

• Values are lambda expressions that have “properly finished”
being evaluated – there is nothing more to do.

– In the pure lambda calculus, the only values are functions

– “\x.x” is a value. It can’t be evaluated any further.

– “\x.\y.x y” is also a value

• Are there lambda terms that aren’t values but can’t be
evaluated any further using the rules?

• If there were, we’d call those things stuck expressions

Can Evaluation Ever Get Stuck?

• Values are lambda expressions that have “properly finished”
being evaluated – there is nothing more to do.

– In the pure lambda calculus, the only values are functions

– “\x.x” is a value. It can’t be evaluated any further.

– “\x.\y.x y” is also a value

• Are there lambda terms that aren’t values but can’t be
evaluated any further using the rules?

• If there were, we’d call those things stuck expressions

• Expressions with free variables can be stuck! Eg:

– x

– x (\y.y)

– (\y. x y) (\w.w) isn’t stuck right away, but will be after an
evaluation step

Stuckness testing

• Given a lambda term, is it possible to create an automatic
analyzer that decides, yes or no, whether or not a lambda
term will ever get stuck?

Stuckness testing

• Given a lambda term, is it possible to create an automatic
analyzer that decides, yes or no, whether or not a lambda
term will ever get stuck?

– No! The lambda calculus is Turing-Complete. It can encode any
Turing Machine.

– Suppose TM is a lambda term that simulates a Turing Machine

– Consider: (\x.y x) TM

– The above expression gets stuck by running in to free variable y
if the TM halts; does not get stuck if the TM does not halt. We
can’t decide if TMs halt, so we can’t decide if the lambda term
ever gets stuck.

Stuckness testing

• Given a lambda term, is it possible to create an automatic
analyzer that soundly but conservatively decides whether or
not a lambda term will ever get stuck?

– ie: can we design an algorithm that given a lambda term,

• says “no the lambda term is not stuck” if it can guarantee the
lambda term is not stuck?

• says “yes, maybe” if it isn’t sure?

– of course! the algorithm could always cop out and say “yes,
maybe”

• But it turns out we can also define a principled, non-trivial
analyzer that is sound and conservative, but for all practical
purposes does a “good enough” job

– such an analyzer is called a scope checker

– and it is the simplest kind of type system

guarantee == sound

A SIMPLE SCOPE CHECKER

A Scope Checker for FOAS Expressions

data Lam =
 Var String -- variables
 | Abs String Lam -- \"x". e
 | App Lam Lam -- e1 e2

closed :: Lam -> Bool
closed e = clos [] e
 where
 clos env (Abs x e) = clos (x:env) e
 clos env (App e1 e2) = clos env e1 && clos env e2
 clos env (Var x) = lookup env x

 lookup [] x = False
 lookup (y:env) x = x == y || lookup env x

Scope Checking Examples

• A closed lambda expression:

– \y.\x.y is closed:

– closed (Abs "y" (Abs "x" (Var "y"))) == True

– y (\y.y) is not closed:

– closed (App (Var "y") (Abs "y" (Var y)) == False

• Can you come up with a lambda term that is not closed
according to our Haskell definition but that evaluates safely
without encountering a free variable?

– there must be one because I told you that it is undecidable
whether execution encounters a free variable

Scope Checking Examples

• A closed lambda expression:

– \y.\x.y is closed:

– closed (Abs "y" (Abs "x" (Var "y"))) == True

– y (\y.y) is not closed:

– closed (App (Var "y") (Abs "y" (Var y)) == False

• Can you come up with a lambda term that is not closed
according to our Haskell definition but that evaluates safely
without encountering a free variable?

– there must be one because I told you that it is undecidable
whether execution encounters a free variable

– (\x.\y.y) (\y.z) (\w.w) --> (\y.y) (\w.w) --> \w.w

A Scope Checker for HOAS Expressions

module Lambda (Lam (Abs,App), -- only Abs App constructors useable by clients
 freevar, -- freevar function useable
 …) where

data Lam = Abs (Lam -> Lam) | App Lam Lam| FreeVar String

freevar :: String -> Lam
freevar s = FreeVar ("!" ++ s)

A Scope Checker for HOAS Expressions

module Lambda (Lam (Abs,App), -- only Abs App constructors useable by clients
 freevar, -- freevar function useable
 …) where

data Lam = Abs (Lam -> Lam) | App Lam Lam| FreeVar String

freevar :: String -> Lam
freevar s = FreeVar ("!" ++ s)

boundname = "bound"

closed :: Lam -> Bool
closed (Abs f) = …

A Scope Checker for HOAS Expressions

module Lambda (Lam (Abs,App), -- only Abs App constructors useable by clients
 freevar, -- freevar function useable
 …) where

data Lam = Abs (Lam -> Lam) | App Lam Lam| FreeVar String

freevar :: String -> Lam
freevar s = FreeVar ("!" ++ s)

boundname = "bound"

closed :: Lam -> Bool
closed (Abs f) =
 let body = f (FreeVar boundname) in
 closed body

A Scope Checker for HOAS Expressions

module Lambda (Lam (Abs,App), -- only Abs App constructors useable by clients
 freevar, -- freevar function useable
 …) where

data Lam = Abs (Lam -> Lam) | App Lam Lam| FreeVar String

freevar :: String -> Lam
freevar s = FreeVar ("!" ++ s)

boundname = "bound"

closed :: Lam -> Bool
closed (Abs f) =
 let body = f (FreeVar boundname) in
 closed body
closed (App e1 e2) = closed e1 && closed e2
closed (FreeVar s) = s == boundname

ONE MORE WAY TO
DESCRIBE CLOSED EXPRESSIONS

Closed Expressions

env ::= x1 : x2 : …. : []

judgement form: clos env e -- "e has no free variables except those in env"

Closed Expressions

clos (x:env) e
clos env \x.e

env ::= x1 : x2 : …. : []

judgement form: clos env e -- "e has no free variables except those in env"

-- if e is closed in (x:env) then
 \x.e is closed in env

Closed Expressions

clos (x:env) e
clos env \x.e

env ::= x1 : x2 : …. : []

judgement form: clos env e -- "e has no free variables except those in env"

clos env e1 clos env e2
clos env (e1 e2)

-- if e is closed in (x:env) then
 \x.e is closed in env

-- if e1 and e2 are closed in env then
 e1 e2 is closed in env

Closed Expressions

clos (x:env) e
clos env \x.e

env ::= x1 : x2 : …. : []

judgement form: clos env e -- "e has no free variables except those in env"

lookup env x == true
clos env x

clos env e1 clos env e2
clos env (e1 e2)

-- if e is closed in (x:env) then
 \x.e is closed in env

-- if e1 and e2 are closed in env then
 e1 e2 is closed in env

-- if x is in env then
 x is closed in env

A PROOF

Evaluation Preserves Closedness

• Theorem: If clos [] e and e --> e' then clos [] e'.

Evaluation Preserves Closedness

• Theorem: If clos [] e and e --> e' then clos [] e'.

• Requires a lemma that substitution preserved Closedness

– Lemma: If clos [] (\x.e) and clos [] v then clos [] (e[v/x])

Evaluation Preserves Closedness

• Theorem: If clos [] e and e --> e' then clos [] e'.

• Proof: By induction on the derivation that e --> e'

– proofs by induction on the derivation of e --> e' have 1 case for
each rule

– use the induction hypothesis on when subprog --> subprog in
the premise of the rule.

– use lemma: If clos [] (\x.e) and clos [] v then clos [] (e[v/x])

Evaluation Preserves Closedness

• Theorem: If clos [] e and e --> e' then clos [] e'.

• Proof: By induction on the derivation that e --> e'

– Lemma: If clos [] (\x.e) and clos [] v then clos [] (e[v/x])

• case:

(1) clos [] ((\x.e) v) (given)

(2) clos [] (\x.e) (by 1, def of clos)

(3) clos [] v (by 1, def of clos)

(4) clos [] (e[v/x]) (by 2, 3)

(\x.e) v --> e [v/x]
(beta)

clos env e1 clos env e2
clos env (e1 e2)

clos (x:env) e
clos env \x.e

lookup env x == true
clos env x

Evaluation Preserves Closedness

• Theorem: If clos [] e and e --> e' then clos [] e'.

• Proof: By induction on the derivation that e --> e'

– Lemma: If clos [] (\x.e) and clos [] v then clos [] (e[v/x])

• case:

(1) clos [] (e1 e2) (given)

(2) clos [] e1 (by 1, def of clos)

(3) clos [] e2 (by 1, def of clos)

(4) clos [] e1' (by IH, 2)

(5) clos [] (e1' e2) (by 4, 3, def of clos)

 e1 --> e1’
e1 e2 --> e1’ e2

(app1)

clos env e1 clos env e2
clos env (e1 e2)

clos (x:env) e
clos env \x.e

lookup env x == true
clos env x

Evaluation Preserves Closedness

• Theorem: If clos [] e and e --> e' then clos [] e'.

• Proof: By induction on the derivation that e --> e'

– Lemma: If clos [] (\x.e) and clos [] v then clos [] (e[v/x])

• case:

(1) clos [] (v e2) (given)

(2) clos [] v (by 1, def of clos)

(3) clos [] e2 (by 1, def of clos)

(4) clos [] e2' (by IH, 3)

(5) clos [] (v e2') (by 2, 4, def of clos)

 e2 --> e2’
v e2 --> v e2’

(app2)

clos env e1 clos env e2
clos env (e1 e2)

clos (x:env) e
clos env \x.e

lookup env x == true
clos env x

Why do we care?

• Why do we care if closure is preserved by execution?

Why do we care?

• Why do we care if closure is preserved by execution?

• The initial motivation was that programs could get "stuck"
when executing by running in to a free variable. We wanted
to prevent that.

• In a real language implementations, getting "stuck" often
means all hell breaks loose and random bad stuff ensues:

– derefencing a dangling pointer in C is another way to "get stuck"

• If we checked a program was closed, but then after 3 steps of
evaluation a free variable appeared, then closure checking
wouldn't be helpful -- it wouldn't prevent programs from
getting stuck

• Moral: closure checking is a useful kind of static program
analysis because if you check a program once before it
executes, you never, ever have to worry about it getting stuck
on a free variable, no matter how long it runs

SUMMARY

Summary

• There are at least two ways to implement the lambda calculus

– higher-order abstract syntax uses Haskell functions to implement
lambdas and Haskell variables to implement lambda variables

– first-order abstract syntax uses strings to represent variables and
does not use functions

• Unfortunate Fact: Almost every non-trivial property of how a
lambda expression evaluates is undecidable

• Optimistic Perspective: We can approximate many properties

• Example:

– do we encounter a free var during execution: undecideable

– we can still design a useful scope checker

– the closure property is robust and highly useful because it is
preserved by execution

