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Last Time:  The Lambda Calculus 

A language of pure functions: 

 

e ::= x | \x.e | e e                               v ::=  \x.e 

 

With a call-by-value operational semantics: 

 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(app1) 

(app2) 

(\x.e) v --> e [v/x] 
(beta) 

e1 --> e2       e2 -->* e3 
           e1 -->* e3 

(transitivity) 

e -->* e 
(reflexivity) 

single step: multi-step: 

values 



Examples 

• We used the formal rules to build proofs that lambda terms 
could take steps: 

 

 

 

• We showed it was possible to encode several simple kinds of 
data structures or computations 

– booleans 

– pairs 

– numbers 

– looping 

– and I claimed you could code up anything else since the untyped 
lambda calculus is Turing-complete 

 

 

 

          (\x.\y. x y)  (\w.w)   -->   \y.(\w.w) y 
((\x.\y. x y)  (\w.w))  (\z.z)  --> (\y.(\w.w) y) (\z.z) 

(beta) 

(app1) 



IMPLEMENTING THE  
LAMBDA CALCULUS 



Two Options 

• First-order Abstract Syntax:  build a data structure to 
represent a program 

 

 

 

 

 

• Higher-order Abstract Syntax:  use functions in Haskell to 
represent lambda calculus functions directly 

 
data  Lam =             
     Abs (Lam -> Lam)  
  | App Lam Lam        
  | FreeVar String 

data  Lam =             
    Var String          
  | Abs String Lam   
  | App Lam Lam 



FIRST-ORDER SYNTAX 



Examples 

• Data structure: 

 

 

 

 

• Examples: 

 

 

 

 

 

 

• i, tru, fls all have type Lam 

data  Lam =             
    Var String          
  | Abs String Lam   
  | App Lam Lam 

i     = Abs "x" (Var "x")  -- \x.x 
 
tru = Abs "t" (Abs "f" (Var "t")) -- \t.\f.t 
 
fls  = Abs "t" (Abs "f" (Var "f")) -- \t.\f.f 



Substitution 

• Substitution: 

 

 

 

 

 

 

-- subst e x v == e[v/x]       -- v must be closed (no free variables) 
 



Substitution 

• Substitution: 

 

 

 

 

 

 

-- subst e x v == e[v/x]       -- v must be closed (no free variables) 
 
subst (Var y) x v          = if x == y then v else Var y 



Substitution 

• Substitution: 

 

 

 

 

 

 

-- subst e x v == e[v/x]       -- v must be closed (no free variables) 
 
subst (Var y) x v          = if x == y then v else Var y 
subst (Abs y e) x v      = if x == y then (Abs y e) else (Abs y (subst e x v)) 



Substitution 

• Substitution: 

 

 

 

 

 

 

-- subst e x v == e[v/x]       -- v must be closed (no free variables) 
 
subst (Var y) x v          = if x == y then v else Var y 
subst (Abs y e) x v      = if x == y then (Abs y e) else (Abs y (subst e x v)) 
subst (App e1 e2) x v = App (subst e1 x v) (subst e2 x v)  



Substitution 

• Substitution: 

 

 

 

 

 

 

• Example: 

-- subst e x v == e[v/x]       -- v must be closed (no free variables) 
 
subst (Var y) x v          = if x == y then v else Var y 
subst (Abs y e) x v      = if x == y then (Abs y e) else (Abs y (subst e x v)) 
subst (App e1 e2) x v = App (subst e1 x v) (subst e2 x v)  

y    = Var "y" 
x    = Var "x" 
 
id   = Abs "x" x 
foo = App (Abs "y" y) y 
 
subst foo "y" id   ==  App (Abs "y" y) id 



Values 

• Code to determine if an expression is a value: 

-- is a value? -- 
 
value (Var s)          = False 
value (Abs x e)      = True 
value (App e1 e2) = False 



Evaluation 

 
 
eval :: Lam -> Lam 
 
-- beta rule 
eval (App (Abs x e) v) | value v = subst e x v                
  
 
 
 
 
 
 
 
 
 
 
 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(app1) 

(app2) 

(\x.e) v --> e [v/x] 
(beta) 



Evaluation 

 
 
eval :: Lam -> Lam 
 
-- beta rule 
eval (App (Abs x e) v) | value v = subst e x v 
  
-- app2 rule 
eval (App v e2)            | value v =  let e2' = eval e2 in 
                                                            App v e2' 
 
 
 
 
 
 
 
 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(app1) 

(app2) 

(\x.e) v --> e [v/x] 
(beta) 



Evaluation 

 
 
eval :: Lam -> Lam 
 
-- beta rule 
eval (App (Abs x e) v) | value v = subst e x v 
  
-- app2 rule 
eval (App v e2)            | value v =  let e2' = eval e2 in 
                                                            App v e2' 
 
-- app1 rule 
eval (App e1 e2)                          = let e1' = eval e1 in 
                                                           App e1' e2 
 
 
 
 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(app1) 

(app2) 

(\x.e) v --> e [v/x] 
(beta) 



Evaluation 

 
 
eval :: Lam -> Lam 
 
-- beta rule 
eval (App (Abs x e) v) | value v = subst e x v 
  
-- app2 rule 
eval (App v e2)            | value v =  let e2' = eval e2 in 
                                                            App v e2' 
 
-- app1 rule 
eval (App e1 e2)                          = let e1' = eval e1 in 
                                                           App e1' e2 
 
-- forms that don't match LHS; no rule exists 
eval (Abs x e)                                = error "Value!" 
eval (Var x)                                    = error "Stuck!" 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(app1) 

(app2) 

(\x.e) v --> e [v/x] 
(beta) 



HIGHER-ORDER SYNTAX 



Higher-Order Abstract Syntax 

• Key idea: use functions in Haskell to represent lambda 
calculus functions directly 

 
data  Lam =             
     Abs (Lam -> Lam)  
  | App Lam Lam        
  | FreeVar String needed for printing, 

and analysis of expressions 
 
not needed for evaluation 
 
expressions should not have 
free variables if you want 
to execute them 



Higher-Order Abstract Syntax 

• Key idea: use functions in Haskell to represent lambda 
calculus functions directly 

 
data  Lam =             
     Abs (Lam -> Lam)  
  | App Lam Lam        
   

remember, Abs is a converter: 
 
it takes a Lam -> Lam 
function and puts it 
in an "object" with 1 field 
that has  type Lam 
 
Abs :: (Lam -> Lam) -> Lam 
 
App :: Lam -> Lam -> Lam 



Higher-Order Abstract Syntax 

• Key idea: use functions in Haskell to represent lambda 
calculus functions directly 

 

 

 

 

 

data  Lam =             
     Abs (Lam -> Lam)  
  | App Lam Lam        
   

f :: Lam -> Lam 
f = \x -> App x x 
 
e :: Lam 
e = Abs f 

a Haskell variable with type 
Lam appears in the places 
a lambda calculus variable 
would 

think of the body of f like an 
expression with holes it: 
          App [  ]  [  ] 
during evaluation, we'll plug the holes 
with the argument to the function Abs makes a Haskell function f  

into a Lam 



Higher-Order Abstract Syntax 

• Key idea: use functions in Haskell to represent lambda 
calculus functions directly 

 

 

 

 

 

data  Lam =             
     Abs (Lam -> Lam)  
  | App Lam Lam        
   

f :: Lam -> Lam 
f = \x -> App x x 
 
e :: Lam 
e = Abs f 
 



Higher-Order Abstract Syntax 

• Key idea: use functions in Haskell to represent lambda 
calculus functions directly 

 

 

 

 

 

data  Lam =             
     Abs (Lam -> Lam)  
  | App Lam Lam        
   

f :: Lam -> Lam 
f = \x -> App x x 
 
e :: Lam 
e = Abs f 
 
id :: Lam -> Lam 
id = \x -> x 
 
ide :: Lam 
ide = Abs id 
 



Higher-Order Abstract Syntax 

• Key idea: use functions in Haskell to represent lambda 
calculus functions directly 

 

 

 

 

 

data  Lam =             
     Abs (Lam -> Lam)  
  | App Lam Lam        
   

f :: Lam -> Lam 
f = \x -> App x x 
 
e :: Lam 
e = Abs f 
 
id :: Lam -> Lam 
id = \x -> x 
 
ide :: Lam 
ide = Abs id 
 
e' :: Lam 
e' = App e ide 

evaluating (App e ide): 
 
inside e, we have f = \x -> App x x 
 
applying f to ide, we get: 
App ide ide   



Higher-Order Abstract Syntax 

• Key idea: use functions in Haskell to represent lambda 
calculus functions directly 

 

 

 

 

 

id :: Lam -> Lam 
id = \x -> x  
 
ide :: Lam 
ide = Abs ide 
 
fls  = = Abs (\t ->  
              Abs (\f -> f)) 
 
tru = Abs (\t ->  
              Abs (\f -> t)) 

An Alternative: 
 
id = \f -> f 
ide = Abs id 
 
flsf = \t -> Abs id 
fls = Abs flsf 

An Alternative: 
 
truf = \t -> Abs (\f -> t) 
 
tru = Abs truf 



Evaluation 

eval :: Lam -> Lam 
 
eval (App (Abs f) v) | value v = f v      -- beta rule 
 
eval (App v e2)        | value v =            -- app2 rule 
  let e2' = eval e2 in 
  App v e2' 
 
eval (App e1 e2) =                                 -- app1 rule 
  let e1' = eval e1 in 
  App e1' e2 
 
eval (Abs f) = error "Value!" 
 
 
 
-- note: we never had to implement  
-- substitution ourselves; Haskell did it for us 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

   e2 --> e2’ 
v e2 --> v e2’ 

(app1) 

(app2) 

(\x.e) v --> e [v/x] 
(beta) 

data  Lam =             
     Abs (Lam -> Lam)  
  | App Lam Lam        
   



GETTING STUCK 



Can Evaluation Ever Get Stuck? 

• Values are lambda expressions that have “properly finished” 
being evaluated – there is nothing more to do. 

– In the pure lambda calculus, the only values are functions 

– “\x.x”  is a value.  It can’t be evaluated any further. 

– “\x.\y.x y” is also a value 

• Are there lambda terms that aren’t values but can’t be 
evaluated any further using the rules?   

• If there were, we’d call those things stuck expressions 

 



Can Evaluation Ever Get Stuck? 

• Values are lambda expressions that have “properly finished” 
being evaluated – there is nothing more to do. 

– In the pure lambda calculus, the only values are functions 

– “\x.x”  is a value.  It can’t be evaluated any further. 

– “\x.\y.x y” is also a value 

• Are there lambda terms that aren’t values but can’t be 
evaluated any further using the rules?   

• If there were, we’d call those things stuck expressions 

• Expressions with free variables can be stuck!  Eg: 

– x 

– x (\y.y) 

– (\y. x y) (\w.w) isn’t stuck right away, but will be after an 
evaluation step 

 



Stuckness testing 

• Given a lambda term, is it possible to create an automatic 
analyzer that decides, yes or no, whether or not a lambda 
term will ever get stuck? 



Stuckness testing 

• Given a lambda term, is it possible to create an automatic 
analyzer that decides, yes or no, whether or not a lambda 
term will ever get stuck? 

– No!  The lambda calculus is Turing-Complete.  It can encode any 
Turing Machine. 

– Suppose TM is a lambda term that simulates a Turing Machine 

– Consider:   (\x.y x) TM 

– The above expression gets stuck by running in to free variable y 
if the TM halts; does not get stuck if the TM does not halt.  We 
can’t decide if TMs halt, so we can’t decide if the lambda term 
ever gets stuck. 



Stuckness testing 

• Given a lambda term, is it possible to create an automatic 
analyzer that soundly but conservatively decides whether or 
not a lambda term will ever get stuck? 

– ie: can we design an algorithm that given a lambda term,  

• says “no the lambda term is not stuck” if it can guarantee the 
lambda term is not stuck? 

• says “yes, maybe” if it isn’t sure? 

– of course!  the algorithm could always cop out and say “yes, 
maybe” 

 

• But it turns out we can also define a principled, non-trivial 
analyzer that is sound and conservative, but for all practical 
purposes does a “good enough” job 

– such an analyzer is called a scope checker 

– and it is the simplest kind of type system 

guarantee == sound 



A SIMPLE SCOPE CHECKER 



A Scope Checker for FOAS Expressions 

data Lam = 
    Var String               -- variables 
  | Abs String Lam     -- \"x". e 
  | App Lam Lam        -- e1 e2  
 
closed :: Lam -> Bool 
closed e = clos [] e  
           where 
             clos env (Abs x e)       = clos (x:env) e  
             clos env (App e1 e2)  = clos env e1 && clos env e2 
             clos env (Var x)            = lookup env x  
              
             lookup [] x      = False 
             lookup (y:env) x = x == y || lookup env x  



Scope Checking Examples 

• A closed lambda expression: 

– \y.\x.y   is closed: 

– closed (Abs "y" (Abs "x" (Var "y"))) == True 

 

– y (\y.y) is not closed: 

– closed (App (Var "y")  (Abs "y" (Var y)) == False 

 

• Can you come up with a lambda term that is not closed 
according to our Haskell definition but that evaluates safely 
without encountering a free variable? 

– there must be one because I told you that it is undecidable 
whether execution encounters a free variable 



Scope Checking Examples 

• A closed lambda expression: 

– \y.\x.y   is closed: 

– closed (Abs "y" (Abs "x" (Var "y"))) == True 

 

– y (\y.y) is not closed: 

– closed (App (Var "y")  (Abs "y" (Var y)) == False 

 

• Can you come up with a lambda term that is not closed 
according to our Haskell definition but that evaluates safely 
without encountering a free variable? 

– there must be one because I told you that it is undecidable 
whether execution encounters a free variable 

– (\x.\y.y) (\y.z) (\w.w) --> (\y.y) (\w.w) --> \w.w 



A Scope Checker for HOAS Expressions 

module Lambda (Lam (Abs,App),    -- only Abs App constructors useable by clients 
                               freevar,                  -- freevar function useable 
                                … ) where 
 
data Lam =  Abs (Lam -> Lam) | App Lam Lam| FreeVar String           
     
freevar :: String -> Lam               
freevar s = FreeVar ("!" ++ s) 



A Scope Checker for HOAS Expressions 

module Lambda (Lam (Abs,App),    -- only Abs App constructors useable by clients 
                               freevar,                  -- freevar function useable 
                                … ) where 
 
data Lam =  Abs (Lam -> Lam) | App Lam Lam| FreeVar String           
     
freevar :: String -> Lam               
freevar s = FreeVar ("!" ++ s) 
 
boundname = "bound" 
 
closed :: Lam -> Bool 
closed (Abs f) = … 



A Scope Checker for HOAS Expressions 

module Lambda (Lam (Abs,App),    -- only Abs App constructors useable by clients 
                               freevar,                  -- freevar function useable 
                                … ) where 
 
data Lam =  Abs (Lam -> Lam) | App Lam Lam| FreeVar String           
     
freevar :: String -> Lam               
freevar s = FreeVar ("!" ++ s) 
 
boundname = "bound" 
 
closed :: Lam -> Bool 
closed (Abs f) =  
    let body = f (FreeVar boundname) in  
    closed body 



A Scope Checker for HOAS Expressions 

module Lambda (Lam (Abs,App),    -- only Abs App constructors useable by clients 
                               freevar,                  -- freevar function useable 
                                … ) where 
 
data Lam =  Abs (Lam -> Lam) | App Lam Lam| FreeVar String           
     
freevar :: String -> Lam               
freevar s = FreeVar ("!" ++ s) 
 
boundname = "bound" 
 
closed :: Lam -> Bool 
closed (Abs f) =  
    let body = f (FreeVar boundname) in  
    closed body 
closed (App e1 e2) = closed e1 && closed e2 
closed (FreeVar s)  = s == boundname              



ONE MORE WAY TO 
DESCRIBE CLOSED EXPRESSIONS 



Closed Expressions 

env ::= x1 : x2 : …. : [] 
 
judgement form:          clos env e     -- "e has no free variables except those in env" 



Closed Expressions 

clos (x:env) e  
clos env  \x.e 

env ::= x1 : x2 : …. : [] 
 
judgement form:          clos env e     -- "e has no free variables except those in env" 

-- if e is closed in (x:env) then 
    \x.e is closed in env  



Closed Expressions 

clos (x:env) e  
clos env  \x.e 

env ::= x1 : x2 : …. : [] 
 
judgement form:          clos env e     -- "e has no free variables except those in env" 

clos env e1      clos env e2 
clos env (e1 e2) 

-- if e is closed in (x:env) then 
    \x.e is closed in env  

--  if e1 and e2 are closed in env then  
    e1 e2 is closed in env 



Closed Expressions 

clos (x:env) e  
clos env  \x.e 

env ::= x1 : x2 : …. : [] 
 
judgement form:          clos env e     -- "e has no free variables except those in env" 

lookup env x == true 
clos env x 

clos env e1      clos env e2 
clos env (e1 e2) 

-- if e is closed in (x:env) then 
    \x.e is closed in env  

--  if e1 and e2 are closed in env then  
    e1 e2 is closed in env 

--  if x is in env then  
    x is closed in env 



A PROOF 



Evaluation Preserves Closedness 

• Theorem:  If clos [] e and e --> e' then clos [] e'. 



Evaluation Preserves Closedness 

• Theorem:  If clos [] e and e --> e' then clos [] e'. 

• Requires a lemma that substitution preserved Closedness 

– Lemma:  If clos [] (\x.e) and clos [] v then clos [] (e[v/x]) 



Evaluation Preserves Closedness 

• Theorem:  If clos [] e and e --> e' then clos [] e'. 

• Proof:  By induction on the derivation that e --> e' 

– proofs by induction on the derivation of e --> e' have 1 case for 
each rule 

– use the induction hypothesis on when subprog --> subprog in 
the premise of the rule. 

– use lemma:  If clos [] (\x.e) and clos [] v then clos [] (e[v/x]) 

 



Evaluation Preserves Closedness 

• Theorem:  If clos [] e and e --> e' then clos [] e'. 

• Proof:  By induction on the derivation that e --> e' 

– Lemma:  If clos [] (\x.e) and clos [] v then clos [] (e[v/x]) 

• case: 

 

 

(1) clos [] ((\x.e) v)  (given) 

(2) clos [] (\x.e)  (by 1, def of clos) 

(3) clos [] v   (by 1, def of clos) 

(4) clos [] (e[v/x])  (by 2, 3) 

(\x.e) v --> e [v/x] 
(beta) 

clos env e1      clos env e2 
clos env (e1 e2) 

clos (x:env) e  
clos env  \x.e 

lookup env x == true 
clos env x 



Evaluation Preserves Closedness 

• Theorem:  If clos [] e and e --> e' then clos [] e'. 

• Proof:  By induction on the derivation that e --> e' 

– Lemma:  If clos [] (\x.e) and clos [] v then clos [] (e[v/x]) 

• case: 

 

 

(1) clos [] (e1 e2)  (given) 

(2) clos [] e1  (by 1, def of clos) 

(3) clos [] e2  (by 1, def of clos) 

(4) clos [] e1'  (by IH, 2) 

(5) clos [] (e1' e2)  (by 4, 3, def of clos) 

     e1 --> e1’ 
e1 e2 --> e1’ e2 

(app1) 

clos env e1      clos env e2 
clos env (e1 e2) 

clos (x:env) e  
clos env  \x.e 

lookup env x == true 
clos env x 



Evaluation Preserves Closedness 

• Theorem:  If clos [] e and e --> e' then clos [] e'. 

• Proof:  By induction on the derivation that e --> e' 

– Lemma:  If clos [] (\x.e) and clos [] v then clos [] (e[v/x]) 

• case: 

 

 

(1) clos [] (v e2)  (given) 

(2) clos [] v   (by 1, def of clos) 

(3) clos [] e2  (by 1, def of clos) 

(4) clos [] e2'  (by IH, 3) 

(5) clos [] (v e2')  (by 2, 4, def of clos) 

   e2 --> e2’ 
v e2 --> v e2’ 

(app2) 

clos env e1      clos env e2 
clos env (e1 e2) 

clos (x:env) e  
clos env  \x.e 

lookup env x == true 
clos env x 



Why do we care? 

• Why do we care if closure is preserved by execution? 



Why do we care? 

• Why do we care if closure is preserved by execution? 

• The initial motivation was that programs could get "stuck" 
when executing by running in to a free variable.  We wanted 
to prevent that. 

• In a real language implementations, getting "stuck" often 
means all hell breaks loose and random bad stuff ensues: 

– derefencing a dangling pointer in C is another way to "get stuck" 

• If we checked a program was closed, but then after 3 steps of 
evaluation a free variable appeared, then closure checking 
wouldn't be helpful -- it wouldn't prevent programs from 
getting stuck 

• Moral: closure checking is a useful kind of static program 
analysis because if you check a program once before it 
executes, you never, ever have to worry about it getting stuck 
on a free variable, no matter how long it runs 



SUMMARY 



Summary 

• There are at least two ways to implement the lambda calculus 

– higher-order abstract syntax uses Haskell functions to implement 
lambdas and Haskell variables to implement lambda variables 

– first-order abstract syntax uses strings to represent variables and 
does not use functions 

• Unfortunate Fact:  Almost every non-trivial property of how a 
lambda expression evaluates is undecidable 

• Optimistic Perspective:  We can approximate many properties 

• Example:   

– do we encounter a free var during execution: undecideable 

– we can still design a useful scope checker 

– the closure property is robust and highly useful because it is 
preserved by execution 

 


