Lambda Calculus

C0OS 441 Slides 12

read: 3.4, 5.1, 5.2, 3.5 Pierce

the lambda calculus

Originally, the lambda calculus was developed as a logic by
Alonzo Church in 1932 at Princeton

— Church says: “There may, indeed, be other applications of the
system than its use as a logic.”

— Dave says: “There sure arel”
The lambda calculus is a language of pure functions

It serves as the semantic basis for languages like Haskell that
are based around functions, but also pretty much every other
language that includes some notion of function

It is just as powerful as a Turing Machine (lambda terms can
compute anything a Turing Machine can) and provides an
alternate basis for understanding computation

Pierce Text, Chap 3,5

Operational Semantics

Denotational semantics for a language provides a function
that translates from program syntax into mathematical
objects like sets, functions, lists or even some other
programming language

— a denotational semantics acts like a compiler
Operational semantics works by rewriting or executing
programs step-by-step

— it uses only one program syntax to explain how a program runs
As languages become more complicated, it is often easier to
define operational semantics than denotational semantics

— it requires less math to do so

— but you might not be able to prove particularly strong theorems
using the semantics

Starting with the lambda calculus, we will look at operational
semantics

Operational Rules

Operational rules typically look like this:

conditionl conditionk subprogram --> subprogram’

prog --> prog'

Read prog --> prog' as prog "steps to" prog'

prog --> prog' is a new kind of judgement (aka
property/assertion/claim)

Operational Rules

e Operational rules typically look like this:

conditionl conditionk subprogram --> subprogram’
prog --> prog'

 Read prog --> prog' as prog "steps to" prog'

* prog-->prog'is a new kind of judgement (aka
property/assertion/claim)

 An example, defining evaluation of if statements:

e-->e'
if ethen cl else c2 -->if e'thencl else c2

if True then cl else c2 -->cl if False then cl else c2-->c2

LAMBDA CALCULUS

syntax

e =X (a variable)
| \x.e (a function; in Haskell: \x -> e)
| ee (function application)

[“\” will be written “A” in a nice font and pronounced "lambda"]

syntax

* the identity function:

e \X.x

* 2 notational conventions:
» applications associate to the left (like in Haskell):
e “vzx” is “(yz)x”
* the body of a lambda extends as far as possible to the right:
o “\xx\z.xzx” is “Nx.(x\z.(x z x))”

terminology

\X.X X

the scope of x is the entire body of the function
(ie: the x’s that appear in the body of the function refer to that particular argument)

\X.X Yy
X y is free in the term \x.x y

X is bound
in the term \x.x y

scope again, shadowed names

the scope of the /\
right-most x includes /

the body of the function; /\ if you wanted to
the scope of the left-most X AX. X x refer to the first x,
x does not N above, well you can’t.

\
/ You should have chosen
/\ a different variable name

\v.\x. X y in your programs

Important note: The names of bound variables don’t matter to
the semantics of lambda calculus programs, so you can rename
bound variables (provided you do so consistently) whenever you want.

\X.X == \v.y == \z.z

\x\y.xy == \WVv.\xyx == \z\w. zw

Call-by-value operational semantics

* single-step, call-by-value operational semantics:

* In English, we say “e steps to e’”

e This is a new kind of “judgement”, just like a Hoare triple was a
judgement and there were rules that allowed us to conclude

when it was a valid judgement

Call-by-value operational semantics

* single-step, call-by-value operational semantics: e --> €’
— valuesare v:=\x.e
— primary rule (beta reduction):
call-by-value
since argument is a

(\x.e) v->e [v/x] value rather than
general expression

— e [v/x] is the expression in which all free occurrences of x in e are
replaced with v

— this replacement operation is called substitution

— implementing substitution for the lambda calculus properly is
actually tougher than it would seem at first

operational semantics

beta rule:
(beta)
(\x.e) v --> e [v/X]
is used together with search rules:
el-->el’ e2 -->e2’
ele2-->el’ e2 (appl) ve2-->ve?2 (appz)

notice, because of the rules, evaluation is left to right

and that's it -- 3 rules -- that is all you need to know about
evaluating expressions in the lambda calculus!

Example

|

Program:

((\W\y. xy) (\w.w)) (\z.2)

Proof that it can take a step:

-

(\x.e) v --> e [v/X]

N

(beta)

el -->el’ (appi)
ele2->el’ e2 PP

e2 -->e2’

Qez -->ve? (app2) /

Example]

* Program: / \

(beta)
(\x.e) v --> e [v/x]

((\W\y. xy) (\w.w)) (\z.2)

el -->el’ (a 1)
ele2-->el’ e2 PP

* Proof that it can take a step:

e2 -->e2’

(beta) ’)
(. xy) (Awaw) -->\y. (\w.w) y t Qez -->ve2 (app2) /

((\x\y. xy) (\ww)) (\z.z) --> (\y. (\w.w) y) (\z.2) (appl)

I Y Y '

el e2 el 62

Example]

* Program: / \

(beta)
(\x.e) v --> e [v/X]

((W.\y. xy) (\w.w)) (\z.2)

el -->el’ (app1)
ele2->el’ e2 PP

* Proof that it can take a step:

e2 -->e2’

(beta) ’)
(. xy) (Awaw) -->\y. (\w.w) y t Qez -->ve2 (app2) j

((\x\y. xy) (\ww)) (\z.z) --> (\y. (\w.w) y) (\z.2) (appl)

* Proof it can take a second step:

(beta)

(\y. A\w.w)y) (\z.z) --> (\w.w) (\z.2)
e So we typically write (without explicit proofs):

(WAy. xy) (Aww)) (\z.z) -->(\y. \ww)y) (\z.z) -->(\w.w) (\z.2)

Example

(\x.x x) (\y.y)

Example

(\x.x x) (\y.y)
> x X [\y.y / X]

Example

(\x.x x) (\y.y)
> x X [\y.y / X]
== (\y.y) (\y.y)

Example

(\x.x x) (\y.y)
> X X [\y.y / X]
== (\y.y) (\y.y)
>y [\yy /vyl

Example

(\x.x x) (\y.y)
> X X [\y.y / X]
== (\y.y) (\y.y)
>y [\yy /vyl

A Non-Example]

* Given: / \

(beta)
(\x.e) v --> e [v/X]

((W.x) (\y.y)) (Aw.w) (\z.2))

el -->el’ (app1)
ele2->el’ e2 PP

* One might think that:

e2 -->e2’

— (app2)
((Wex) (\yy)) ((Wwew) (\2.2)) > ((Wex) (\yy)) (\2.2) Qez Ve /

e Since: (\ww)(\z.z)-->(\z.2)

e But that would require the presence of this rule:

e2 -->e2’
ele2-->ele2

(app3)

Another example

(\x.x x) (\x.x x)

Another example

(\x.x x) (\x.x x)

--> X X [\X.x x/X]

Another example

(\x.x x) (\x.x x)

--> X X [\X.x x/X]

== (\x.x X) (\X.X x)

* In other words, it is simple to write non-terminating
computations in the lambda calculus

 So, what else can we do with the lambda calculus?

We can do everything

The lambda calculus can be used as an “assembly language”
We can show how to compile useful, high-level operations
and language features into the lambda calculus

— Result = adding high-level operations is convenient for
programmers, but not a computational necessity

— Result = make your compiler intermediate language simpler

Translations that show how to implement various useful
programming features in the lambda calculus are typically
called "Church encodings" after Alonzo Church

Aside

* Single-step reduction, one by one, gets pretty tedious, so we
can make up a new notation for multi-step evaluation (and
give the new notation a formal definition!)

* To say a program takes 0, 1 or many steps, we write:

e-->%e

e Rules:

el -->e2 e2 -->* e3

o] —>* o3 (transitivity)

e > o (reflexivity)

Aside

4 N

o >F (reflexivity)

el -->e2 e2 -->*e3 e
el —>* o3 (transitivity)

- J

* A multi-step proof:

a->b b->*e
a->*e

Aside

4 N

o >F (reflexivity)

el -->e2 e2 -->*e3 e
el —>* o3 (transitivity)

- J

* A multi-step proof:

b-->c c-->*e
a->b b->*e
a->*e

Aside

-

m (reflexivity)

el -->e2 e2 -->* e3

-

el -->*e3

N

(transitivity)

J

* A multi-step proof:

Aside

-

e-->*e

el -->e2 e2 -->* e3

-

el -->*e3

N

(reflexivity)

(transitivity)

J

* A multi-step proof:

proof that
a->b

\/

d-->e

e-->%e

d-->*e

— c-->d
; / b-->c c-->%e

a->b b->%*e

a->%e

CHURCH ENCODINGS

Let Expressions

* Itis useful to bind intermediate results of computations to
variables:

letx =eline2

* Question: can we implement this idea in the lambda calculus?

source = lambda calculus + let

1 translate/compile

target = lambda calculus

Let Expressions

* Itis useful to bind intermediate results of computations to
variables:

letx=eline2
* Question: can we implement this idea in the lambda calculus?
translate (let x =eline2) =

Let Expressions

* Itis useful to bind intermediate results of computations to
variables:

letx=eline2
 Question: can we implement this idea in the lambda calculus?
translate (letx =eline2) =
(\x. translate e2) (translate el)

Let Expressions

* Itis useful to bind intermediate results of computations to
variables:

letx =eline2

 Question: can we implement this idea in the lambda calculus?
translate (let x=eline2) =
(\x. translate e2) (translate el)
translate (x) = x
translate (\x.e) = \x.translate e
translate (el e2) = (translate el) (translate e2)

ENCODING BOOLEANS

booleans

e we can encode booleans

— we will represent “true” and “false” as functions named
“tru” and “fls”

— how do we define these functions?
— think about how “true” and “false” can be used

— they can be used by a testing function:
e “test b then else” returns “then” if b is true and returns “else” if b
is false
* the only thing the implementation of test is going to be able to do
with b is to apply it
* the functions “tru” and “fls” must distinguish themselves when
they are applied

booleans

* the encoding:

tru=\t.\f. t

fls = \t.\f. f

test = \x.\then.\else. x then else

booleans

tru = \t.\f. t fls = \t.\f. f
test = \x.\then.\else. x then else

eg:

testtruab

booleans

tru = \t.\f. t fls = \t.\f. f
test = \x.\then.\else. x then else

eg:

testtruab
== (\x.\then.\else. x then else) (\t.\f.t)a b

booleans

tru = \t.\f. t fls = \t.\f. f
test = \x.\then.\else. x then else

eg:

testtruab
== (\x.\then.\else. x then else) (\t.\f.t)a b
->* (\t\f.t)ab

booleans

tru = \t.\f. t fls = \t.\f. f
test = \x.\then.\else. x then else

eg:

testtruab

== (\x.\then.\else. x then else) (\t.\f.t)a b
->* (\t\f.t)ab

-->* 3

Challenge

tru = \t.\f. t fls = \t.\f. f
test = \x.\then.\else. x then else

create a function "and" in the lambda calculus that mimics
conjunction. It should have the following properties.

and tru tru -->* tru
and fls tru -->* fls
and tru fls -->* fls
and fls fls -->* fls

SUMMARY

Summary

e The Lambda Calculus involves just 3 things:
— variablesx, vy, z
— function definitions \x.e
— function application el e2

* Despite its simplicity, despite the apparent lack of if statements
or loops or any data structures other than functions, it is Turing
complete

* Church encodings are translations that show how to encode
various data types or linguistic features in the lambda calculus

