Hoare Examples & Proof Theory

COS 441 Slides 11

Agenda

- The last several lectures:
 - Denotational semantics of formulae in Haskell
 - Reasoning using Hoare Logic
- This lecture:
 - Exercises
 - A further introduction to the mathematical notation used in programming languages research

EXERCISES

Which Implications are Valid?

- Assume all formulae and states are well-formed.
- An implication P => Q is valid if P describes fewer (or the same) states as Q
- Which implications are valid?
 - false => true
 - true => false
 - true => true
 - false => false
 - false => P (for any formula P)
 - P => false (for any formula P)
 - P => true (for any formula P)
 - true => P (for any formula P)
 - x = x+1 => true
 - x = x+1 => y = y+1
 - -5=5=>6>3
 - x > y => x < y
 - $B \& A \Rightarrow A$ (for any A, B)
 - $-A \Rightarrow A \mid B$ (for any A)
 - true && false => true || false

Which Triples are Valid?

- 1. { false } skip { true }
- 2. { false } skip { false }
- 3. { true } skip { false }
- 4. { true } skip { true }
- 5. $\{x = x+1\}$ skip $\{y = y+1\}$
- 6. { true } skip { 0 = 3 }
- 7. $\{2 = 2\}$ skip $\{5 = 5\}$
- 8. { 8 > 3 } skip { false }

Which Triples are Valid?

1. { false } skip { true }

yes (any triple with false precondition)

2. { false } skip { false }

yes

3. { true } skip { false }

no (postcondition can't be made true)

4. { true } skip { true }

yes

5. $\{x = x+1\}$ skip $\{y = y+1\}$

yes (precondition is equivalent to false)

6. { true } skip { 0 = 3 }

no 0 = 3 is equivalent to false

7. $\{2 = 2\}$ skip $\{5 = 5\}$

yes, equivalent to { true } skip { true }

8. { 8 > 3 } skip { false }

no, equivalent to { true } skip { false }

```
{?}
y = x;
y = x + x + y;
{y = 3*x}
```

```
{ true } \Rightarrow simplify using the rule of consequence 
 { x + x + x = 3*x } \Rightarrow y = x; 
 { x + x + y = 3*x } \Rightarrow y = x + x + y; 
 { y = 3*x }
```

```
{?}
z = x + 2;
y = z + z;
x = z + y
{x > z & y = 3}
```

```
\{2*x = -1\} \leftarrow
\{(x+2) + (x+2) = 3\}
z = x + 2;
\{z+z=3\}
\{ \text{ true } \& z + z = 3 \} 
{z + (z + z) > z \& z + z = 3}
y = z + z;
\{z + y > z \& y = 3\}
x = z + y
\{x > z \& y = 3\}
```

false if we are dealing with integers no integer solution!

simplify using the rule of consequence part-way through

```
{ ? }
if (x - y < 0) then {
          z = x
} else {
          z = y
\{z \le y \& z \le x\}
```

```
{ ? }
if (x - y < 0) then {
           z = x
           \{z \le y \& z \le x\}
} else {
           z = y
           \{z \le y \& z \le x\}
\{z \le y \& z \le x\}
```

```
{ ? }
if (x - y < 0) then {
           \{ x \le y \& x \le x \}
           z = x
           \{z \le y \& z \le x\}
} else {
           \{ y \le y \& y \le x \}
           z = y
           \{z \le y \& z \le x\}
{z \le y \& z \le x}
```

```
{ ? }
if (x - y < 0) then {
          { x <= y }
         \{x \le y \& x \le x\} rule of consequence
          z = x
         \{z \le y \& z \le x\}
} else {
                                  rule of consequence
          z = y
         \{z \le y \& z \le x\}
\{z \le y \& z \le x\}
```

```
{ ; }
if (x - y < 0) then {
           \{ x \le y \}
           \{ x \le y \& x \le x \}
            z = x
           \{z \le y \& z \le x\}
} else {
           \{ y \le x \}
            \{ y \le y \& y \le x \}
            z = y
           \{z \le y \& z \le x\}
\{z \le y \& z \le x\}
```

if rule:

```
If \{ e < 0 \& ? \} C1 \{ Q \} and \{ \sim (e < 0) \& ? \} C2 \{ Q \} then \{ ? \} if e < 0 then C1 else C2 \{ Q \}
```

we need to find? such that:

$$(x-y < 0) \& ? => x <= y$$

and

$$\sim$$
(x-y < 0) & ? => y <= x

```
{ ? }
if (x - y < 0) then {
            \{ x \leq y \}
            \{ x \le y \& x \le x \}
            z = x
            \{z \le y \& z \le x\}
} else {
            \{ \lor <= x \}
            \{ y \le y \& y \le x \}
            z = y
            \{z \le y \& z \le x\}
\{z \le y \& z \le x\}
```

if rule:

```
If { e < 0 & ? } C1 { Q } and { ~(e < 0) & ? } C2 { Q } then { ? } if e < 0 then C1 else C2 { Q }
```

we need to find? such that:

$$(x-y < 0) \& ? => x <= y$$

and

$$^{\sim}(x-y<0)$$
 & ? => $y <= x$

x - y < 0 already implies $x \le y$ $\sim(x - y < 0)$ already implies $y \le x$ Anything for ? works, including true.

```
{?}
if (x > 0) then {
         x = x+1
} else {
         x = z
{ even (x) }
```

```
{?}
if (x > 0) then {
         x = x+1
         { even(x) }
} else {
         x = z
         { even(x) }
{ even (x) }
```

```
{ ? }
if (x > 0) then {
         { even(x+1) }
         x = x+1
         { even(x) }
} else {
         { even(z) }
         x = z
         { even(x) }
{ even (x) }
```

```
{ ? }
                                                  if rule:
if (x > 0) then {
          { even(x+1) }
                                                 If \{e > 0 \& ?\} C1 \{Q\} and \{\sim (e > 0) \& ?\} C2 \{Q\} 
                                                 then {?} if e < 0 then C1 else C2 { Q }
          x = x+1
          { even(x) }
} else {
                                                  we need to find? such that:
          { even(z) }
                                                 x > 0 \& ? => even(x+1)
          x = z
          { even(x) }
                                                  and
{ even (x) }
                                                 ^{\sim}(x > 0) \& ? => even(z)
```

```
{ ? }
if (x > 0) then {
                                                 if rule:
          { even(x+1) }
                                                 If \{e > 0 \& ?\} C1 \{Q\} and \{\sim (e > 0) \& ?\} C2 \{Q\} 
                                                 then {?} if e < 0 then C1 else C2 { Q }
          x = x+1
          { even(x) }
} else {
                                                 we need to find? such that:
          { even(z) }
                                                x > 0 \& ? => even(x+1)
          x = z
          { even(x) }
                                                 and
{ even (x) }
                                                 ^{\sim}(x > 0) \& ? => even(z)
                                                 ? could be odd(x) & even(z)
```

```
{ ? }
                                                 if rule:
if (x > 0) then {
          { even(x+1) }
                                                 If \{e > 0 \& ?\} C1 \{Q\} and \{\sim (e > 0) \& ?\} C2 \{Q\} 
                                                 then {?} if e < 0 then C1 else C2 { Q }
          x = x+1
          { even(x) }
} else {
                                                 we need to find? such that:
          { even(z) }
                                                 x > 0 \& odd(x) \& even(z)
          x = z
                                                   => even(x+1)
          { even(x) }
                                                 and
{ even (x) }
                                                 ^{\sim}(x > 0) \& odd(x) \& even(z)
                                                   => even(z)
                                                 ? could be odd(x) & even(z)
```

AN INTRODUCTION TO PROOF THEORY

Semantics So Far

- Relatively speaking, the semantics of expressions is simple
 - it is given by a simple partial function
 - e1, e2 are any expressions (they are "metavariables")
 - s is any state (s is also a "metavariable")

```
[[e1 + e2]]s = [[e1]]s + [[e2]]s
```

Semantics of formulae is also easy:

```
[[ true ]]s = true
[[ false ]]s = false
[[ f1 & f2 ]]s = [[ f1 ]]s & [[ f2 ]]s
```

Semantics So Far

Semantics of formulae:

```
[[ true ]]s = true
[[ false ]]s = false
[[ f1 & f2 ]]s = [[ f1 ]]s & [[ f2 ]]s
```

In your handout:

"state s satisfies formula f" or "formula f describes state s" or "formula f is true in state s"

the same as: [[f]]s == true

Some examples:

s |= true (for any s)
$$[x=3, y=7] |= (x > 1) & (y = 7)$$

Semantics So Far

- Relatively speaking, the semantics of expressions is simple
 - it is given by a simple partial function:

$$[[e1 + e2]]s = [[e1]]s + [[e2]]s$$

- Hoare proof theory is a little more complicated
 - it was given by a series of "rules":

```
Skip:
{ P } skip { P }
```

Consequence:

```
If P' => P and { P } C { Q } and Q => Q' then { P' } C { Q' }
```

Sequence:

```
if { F1 } C1 { F2 } and { F2 } C2 { F3}
then { F1 } C1; C2 { F3 }
```

Assignment:

```
\{ F [e/x] \} x = e \{ F \}
```

While:

```
If P \Rightarrow I and \{e > 0 \& I\} C \{I\} and I \& \sim (e > 0) \Rightarrow Q
then \{P\} while \{e > 0\} do C \{Q\}
```

If:

```
If \{e > 0 \& P\} C1 \{Q\} and \{\sim(e > 0) \& P\} C2 \{Q\}
then \{P\} if e > 0 then C1 else C2 \{Q\}
```

Looking at the rules, they decompose into base cases (axioms):

```
Skip:
{ P } skip { P }
```

```
Assignment: { F [e/x] } x = e { F }
```

 And inductive cases that appeal to smaller proofs of Hoare triple validity:

```
Consequence:

If P' => P and { P } C { Q } and Q => Q'
then { P' } C { Q' }

Sequence:

if { F1 } C1 { F2 } and { F2 } C2 { F3}
then { F1 } C1; C2 { F3 }
```

```
While:

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q
then { P } while (e > 0) do C { Q }

If:

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q }
then { P } if e > 0 then C1 else C2 { Q }
```

 When I say "smaller proofs of Hoare triple validity", what I mean is a smaller number of uses of the above inference rules

 I've been careful to write all of the inference rules for Hoare logic in a suggestive format:

```
Sequence:

if { F1 } C1 { F2 } and { F2 } C2 { F3}

then { F1 } C1; C2 { F3 }
```

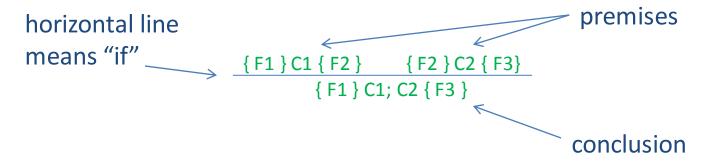
 I've been careful to write all of the inference rules for Hoare logic in a suggestive format:

```
Sequence:

if { F1 } C1 { F2 } and { F2 } C2 { F3}

then { F1 } C1; C2 { F3 }
```

PL researchers use the following notation:



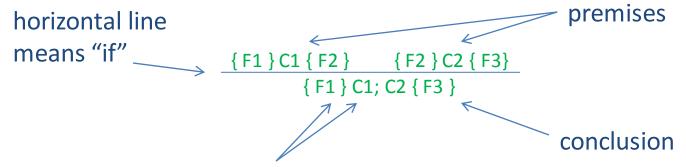
 I've been careful to write all of the inference rules for Hoare logic in a suggestive format:

```
Sequence:

if { F1 } C1 { F2 } and { F2 } C2 { F3}

then { F1 } C1; C2 { F3 }
```

PL researchers use the following notation:



metavariables can be replaced by any (well-formed) element of the right sort

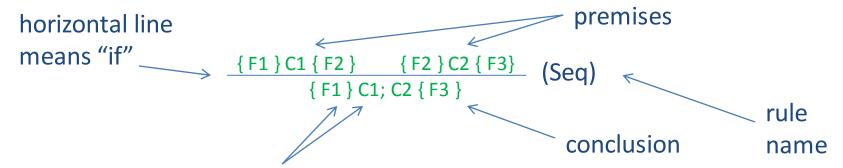
 I've been careful to write all of the inference rules for Hoare logic in a suggestive format:

```
Sequence:

if { F1 } C1 { F2 } and { F2 } C2 { F3}

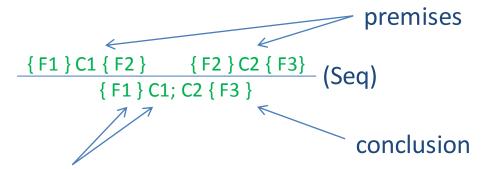
then { F1 } C1; C2 { F3 }
```

PL researchers use the following notation:



metavariables can be replaced by any (well-formed) element of the right sort

PL researchers use the following notation:



metavariables can be replaced by any (well-formed) element of the right sort

Example instance of the rule:

$$\frac{\{x=4\}x=x+2\{x=6\}}{\{x=4\}x=x+2; x=x+1\{x=7\}}$$
 (Seq)

Complete Hoare Rules

$$\frac{P' = P \{P\} C \{Q\} \ Q = Q' \ \{P'\} C \{Q'\} \}}{\{P'\} C \{Q'\}} \ \, (consequence)$$

$$\frac{P = P \{P\} C \{Q\} \ Q = Q' \ \{P'\} C \{Q'\} \}}{\{P'\} C \{Q'\}} \ \, (consequence)$$

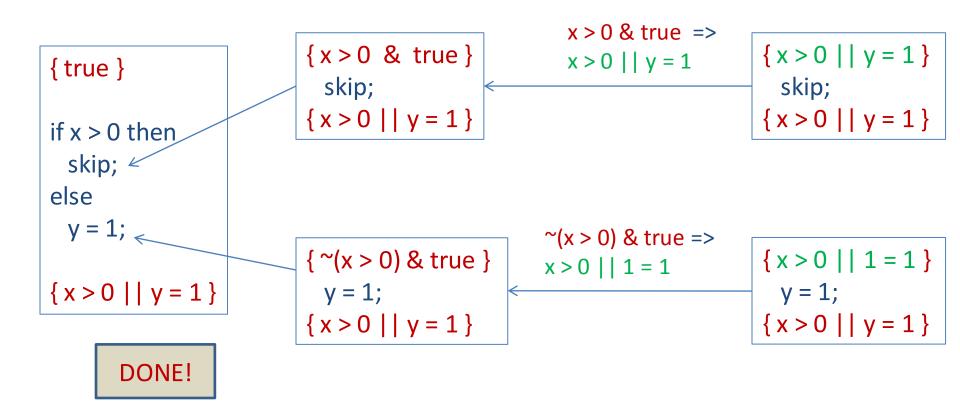
$$\frac{P = P \{P\} C \{Q\} \ Q = Q' \ \{P\} C \{Q'\} \}}{\{P\} \text{ while } (e > 0) \text{ do } C \{Q\} } \ \, (while)$$

$$\frac{\{P\} \text{ while } (e > 0) \text{ do } C \{Q\} \}}{\{P\} C \{P\} C \{Q\} \}} \ \, (seq)$$

$$\frac{\{E > 0 \& P\} C \{Q\} \ \{P'\} C \{Q\} \}}{\{P\} \text{ if } e > 0 \text{ then } C 1 \text{ else } C 2 \{Q\} } \ \, (if)$$

Building Proofs

 A random bunch of boxes and arrows is not a consistent, welldefined notation for proofs:



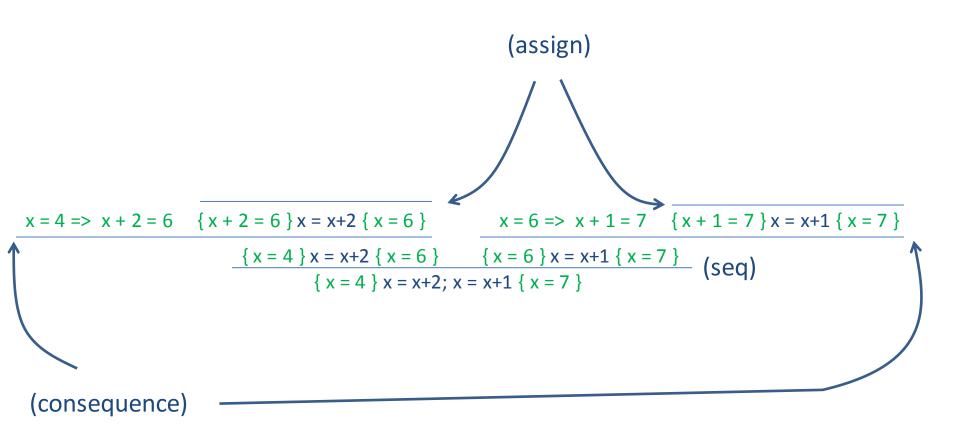
Building Proofs

- Build proofs by stringing together a collection of rules
- Valid axioms are at the top
- Valid rule instances connect premises to conclusions

```
x = 4 \Rightarrow x + 2 = 6 \{x + 2 = 6\}x = x + 2\{x = 6\} x = 6 \Rightarrow x + 1 = 7 \{x + 1 = 7\}x = x + 1\{x = 7\}
 = \{x = 4\}x = x + 2\{x = 6\}  \{x = 6\}x = x + 1\{x = 7\}
 = \{x = 4\}x = x + 2\{x = 6\}  \{x = 6\}x = x + 1\{x = 7\}
```

Building Proofs

 There wasn't space on the slide, but putting a name next to each horizontal line indicates the rule that was used:



 Start with the Hoare Triple you want to prove at the bottom of your page:

- Consider the rules that apply.
- Typically:
 - the rule for the kind of statement
 - the rule of consequence
- Use the rule you choose to generate premises.
- Write the premises above the line
- Continue until you have axioms

 There wasn't space on the slide, but putting a name next to each horizontal line indicates the rule that was used:

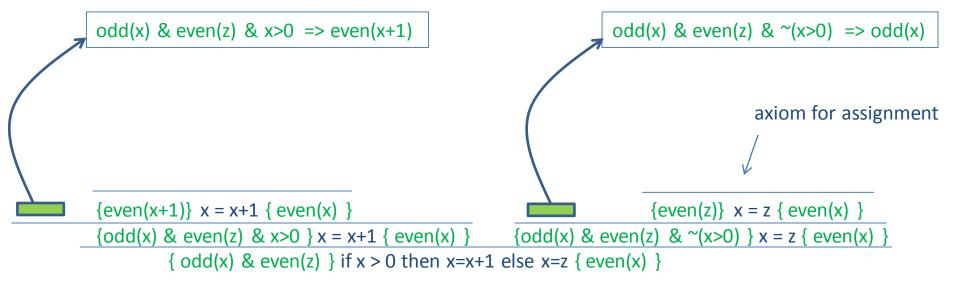
odd(x) & even(z) & x>0 => even(x+1)

```
\frac{\{\text{even}(x+1)\} \ x = x+1 \ \{\text{even}(x) \ \}}{\{\text{odd}(x) \ \& \text{even}(z) \ \& x>0 \ \} \ x = x+1 \ \{\text{even}(x) \ \}}}{\{\text{odd}(x) \ \& \text{even}(z) \ \& \text{if } x > 0 \ \text{then } x=x+1 \ \text{else } x=z \ \{\text{even}(x) \ \}}
```

 There wasn't space on the slide, but putting a name next to each horizontal line indicates the rule that was used:

```
axiom \ for \ assignment, so we can stop this branch of the proof \frac{\{even(x+1)\}\ x=x+1\ \{even(x)\ \}}{\{odd(x)\ \&\ even(z)\ \&\ x>0\ \}\ x=x+1\ \{even(x)\ \}} \frac{\{odd(x)\ \&\ even(z)\ \&\ x>0\ \}\ x=z\ \{even(x)\ \}}{\{odd(x)\ \&\ even(z)\ \}\ if\ x>0\ then\ x=x+1\ else\ x=z\ \{even(x)\ \}}
```

 There wasn't space on the slide, but putting a name next to each horizontal line indicates the rule that was used:



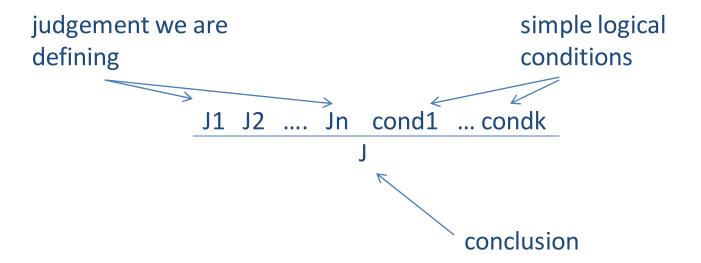
More Generally

- Proof systems tell us how to conclude certain kinds of propositions (aka assertions or properties) from a set of rules
- The propositions are typically called judgements
 - eg: { P } C { Q } is the Hoare Triple judgement
- The rules are typically called inference rules:

```
J1 J2 .... Jn cond1 ... condk
```

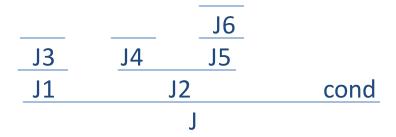
More Generally

- Proof systems tell us how to conclude certain kinds of propositions (aka assertions or properties) from a set of rules
- The propositions are typically called judgements
 - eg: { P } C { Q } is the Hoare Triple judgement
- The rules are typically called *inference rules*:



More Generally

- Proof systems tell us how to conclude certain kinds of propositions (aka assertions or properties) from a set of rules
- The propositions are typically called judgements
 - eg: { P } C { Q } is the Hoare Triple judgement
- The rules are typically called *inference rules*.
- A formal proof stitches together a finite number of valid rules, ending with axioms:



SUMMARY!

Summary

- PL researchers often describe programming languages using judgements and rules
- The rules for Hoare Logic look like this:

```
\frac{P' \text{ skip } \{P\}}{\{P\} \text{ skip } \{P\}} \qquad \frac{\{F [e/x]\} x = e \{F\}}{\{F [e/x]\} x = e \{F\}} 
\frac{P' \Rightarrow P \{P\} C \{Q\} Q \Rightarrow Q'}{\{P'\} C \{Q'\}} \qquad \text{(consequence)}
```

- Proofs stitch together a series of rules
 - in a valid proof
 - the proof tops out with valid instances of one of the axioms
 - every step from premises to conclusion is a valid instance of one of the inference rules