Hoare Examples
& Proof Theory

COS 441 Slides 11

Agenda

e The last several lectures:
— Denotational semantics of formulae in Haskell
— Reasoning using Hoare Logic

* This lecture:
— Exercises

— A further introduction to the mathematical notation used in
programming languages research

EXERCISES

Which Implications are Valid?

 Assume all formulae and states are well-formed.
 Animplication P => Qs valid if P describes fewer (or the same) states as Q

* Which implications are valid?
— false =>true
— true => false
— true =>true
— false =>false

— false=>P (for any formula P)
— P =>false (for any formula P)
— P =>true (for any formula P)
— true=>P (for any formula P)

— X =x+1=>true
— X=x+l=>y=y+l

— 5=5=>6>3

— X>Y=>Xx<Yy

— B&A=>A (for any A, B)
— A=>A||B (for any A)

— true && false => true | | false

Which Triples are Valid?

1. { false } skip { true }
2. { false } skip { false }

3. {true } skip { false }

4. {true } skip { true }

5. {x=x+1}skip {y=y+1}
6.{true }skip{0=3}
7.{2=2}skip{5=5}

8.{8 >3 }skip {false }

Which Triples are Valid?

1.{ false } skip { true }
2. { false } skip { false }

3. {true } skip { false }

4. {true } skip { true }

5. {x=x+1}skip {y=y+1}
6.{true }skip{0=3}
7.{2=2}skip{5=5}

8.{8 >3 }skip {false }

yes (any triple with false precondition)
yes

no (postcondition can’t be made true)
yes

yes (precondition is equivalent to false)
no 0 = 3 is equivalent to false

yes, equivalent to { true } skip { true }

no, equivalent to { true } skip { false }

Fill in the Pre-conditions

17}
Y=X

y=X+X+Yy,

{y=3%}

Fill in the Pre-conditions

{true } <
{x+x+x=3%}
y=X;

{x+x+y=3%}
Y=X+X+Y;
{y=3%}

simplify using the rule of consequence

Fill in the Pre-conditions

17}

Z=X+ 2;

Vy=2+2z;

X=2+Yy
{x>z&y=3}

Fill in the Pre-conditions

{2*x=-1} false if we are dealing with integers
{(x+2) + (x+2) =3} no integer solution!

Z=X+2;

{z+z2=3} < simplify using the rule of consequence

{true &z +2=3} // part-way through

{z+(z+2)>2&z+12=3}
V=2+72;
{z+y>z&y=3}
X=2+Yy

{x>z&y=3}

Fill in the Pre-conditions

{?}
if (x-y<0)then {

}else {

{z<=y & z<=x}

Fill in the Pre-conditions

{?}
if (x-y<0)then {

Z=X
{z<=y&z<=x}
}else {

Z=y
{z<=y & z<=x}

}

{z<=y & z<=x}

Fill in the Pre-conditions

{?}

if (x-y<0)then {
{x<=y & x<=x}
Z=X
{z<=y & z<=x}

}else {
{y<=y&y<=x}
Z=Yy
{z<=y&z<=x}

}

{z<=y&z<=x}

Fill in the Pre-conditions

{?}

if (x-y<0)then {
{x<=y}

{x<=y &x<=x} rule of consequence
Z=X
{z<=y&z<=x}

}else {

{y<=x}
{y<=y&y<=x}
z=Yy
{z<=y&z<=x}

rule of consequence

}
{z<=y&z<=x}

Fill in the Pre-conditions

{?}
if (x-y<0)then { if rule:
{x<=vy} If{e<0&?}Cl1{Q}and{~(e<0)&?}C2{Q}
{x<=y&x<=x} then {? }ife<Othen Clelse C2{Q}
Z=X
{z<=y&z<=x} we need to find ? such that:
}else {
{y<=x]} (x-y<0)&? => x<=y
{y<=y&y<=x}
and
zZ=Yy
{z<=y&z<=x} ~(x-y<0)&? => y<=x
}

{z<=y & z<=x}

Fill in the Pre-conditions

{?}
if (x-y<0)then { if rule:
{x<=vy} If{e<0&?}Cl1{Q}and{~(e<0)&?}C2{Q}
{x<=y&x<=x} then {? }ife<Othen Clelse C2{Q}
Z=X
{z<=y&z<=x} we need to find ? such that:
}else {
{y<=x]} (x-y<0)&? => x<=y
{y<=y&y<=x}
and
zZ=Yy
{z<=y&z<=x} ~(x-y<0)&? => y<=x
}

{z<=y&z<=x} x—y <0 already implies x <=y

~(x —y < 0) already implies y <= x
Anything for ? works, including true.

Fill in the Pre-conditions

{?}
if (x>0) then {

X =x+1

}else {

Fill in the Pre-conditions

{?}
if (x>0) then {

X =x+1
{ even(x) }

}else {

X=12
{ even(x) }

{ even (x) }

Fill in the Pre-conditions

{?}
if (x>0) then {
{ even(x+1) }

X=Xx+1

{ even(x) }
}else {

{ even(z) }

X=1z

{ even(x) }
}

{ even (x) }

Fill in the Pre-conditions

{?}
if (x>0) then { if rule:
{ even(x+1) } f{e>0&?}C1{Q}and {~(e>0)&?}C2{Q}
x = x+1 then {? }ife<O0then Clelse C2{Q}
{ even(x) }
felse { we need to find ? such that:
{ even(z) }
X =7 x>0&? => -even(x+l)
{ even(x) }
} and

{even (x) } ~(x>0)&?=> even(z)

Fill in the Pre-conditions

{?}
if (x>0) then {
{ even(x+1) }

X=Xx+1

{ even(x) }
}else {

{ even(z) }

X=1z

{ even(x) }
}
{even (x) }

if rule:

If{e>0&?}C1{Q}and {~(e>0)&?}C2{Q}
then {? }ife<Othen Clelse C2{Q}

we need to find ? such that:
x>0&? => -even(x+l)
and

~(x>0) & ?=> even(z)

? could be odd(x) & even(z)

Fill in the Pre-conditions

{?}
if (x>0) then {
{ even(x+1) }

X=Xx+1

{ even(x) }
}else {

{ even(z) }

X=1z

{ even(x) }
}
{even (x) }

if rule:

If{e>0&?}C1{Q}and {~(e>0)&?}C2{Q}
then {? }ife<Othen Clelse C2{Q}

we need to find ? such that:

x> 0 & odd(x) & even(z)
=> even(x+1)

and

~(x > 0) & odd(x) & even(z)
=> even(z)

? could be odd(x) & even(z)

AN INTRODUCTION TO
PROOF THEORY

Semantics So Far

* Relatively speaking, the semantics of expressionsis simple
— itis given by a simple partial function
— €1, e2 are any expressions (they are “metavariables”)
— sis any state (s is also a “metavariable”)

[[el+e2]]ls=[[el]]ls+[[e2]]s

* Semantics of formulae is also easy:

[[true]]s = true
[[false]]s = false
[[f1&f2]]s=[[f1]]s &[[f2]]s

Semantics So Far

* Semantics of formulae:

[[true]]s = true
[[false]]s = false
[[f1 &f2]]s=[[f1]]s &[[f2]]s

* Inyour handout:

sl=f <« “state s satisfies formula f” or
“formula f describes state s” or

l “formula f is true in state s”

the same as: [[f]]s == true
* Some examples:

s |=true (for anys) Xx=3,y=7] |=(x>1)& (y=7)

Semantics So Far

* Relatively speaking, the semantics of expressionsis simple

— itis given by a simple partial function:

[[el+e2]]ls=[[el]]ls+[[e2]]s

* Hoare proof theory is a little more complicated

— it was given by a series of “rules”:

Skip:

{P}skip{P}

Consequence:

Assignment:

{Fle/x] }x=e{F}

While:

fP’=>Pand {P}C{Q}and Q=>Q
then {P’}C{Q’}

fP=>land{e>0&I}C{l}and & ~(e >0)=>Q
then {P } while(e>0)do C{Q}

Sequence:

if{F1}C1{F2}and{F2}C2{F3}
then {F1}C1; C2{F3}

If:

f{e>0&P}Cl1{Q}and{~(e>0)&P}C2{Q}
then {P }ife>0then Clelse C2{Q }

Inference Rules

e Looking at the rules, they decompose into base cases (axioms):

Skip:
{P}skip{P}

Assignment:

{Fle/x] }x=e{F}

 And inductive cases that appeal to smaller proofs of Hoare

triple validity:

Consequence:

fP"=>Pand {P}C{Q}andQ=>Q’
then {P"}C{Q’ }

While:

Sequence:

if{F1}C1{F2}and{F2}C2{F3}
then {F1}C1; C2{F3}

fP=>land{e>0&I}C{l}and I & ~(e >0)=>Q
then {P } while (e >0)do C{Q}

If:

f{e>0&P}Cl1{Q}and{~(e>0)&P}C2{Q}
then {P }ife>0then Clelse C2{Q }

* When | say “smaller proofs of Hoare triple validity”, what | mean
is a smaller number of uses of the above inference rules

Inference rules

* |’'ve been careful to write all of the inference rules for Hoare
logic in a suggestive format:

Sequence:

if{F1}C1{F2}and{F2}C2{F3}
then {F1}C1; C2{F3}

Inference rules

* |’'ve been careful to write all of the inference rules for Hoare
logic in a suggestive format:

Sequence:

if{F1}C1{F2}and{F2}C2{F3}
then {F1}C1; C2{F3}

* PLresearchers use the following notation:

horizontal line % premises

means “if" __ {F1jci{F2} {F2}C2{F3)
{F1}CL; C2{F3}

conclusion

Inference rules

* |’'ve been careful to write all of the inference rules for Hoare
logic in a suggestive format:

Sequence:

if{F1}C1{F2}and{F2}C2{F3}
then {F1}C1; C2{F3}

* PLresearchers use the following notation:

horizontal line % premises

means “if" __ (F1jci{F2) {F2}C2{F3)
{F1}CL; C2{F3}

/ conclusion

metavariables can be replaced
by any (well-formed) element of
the right sort

Inference rules

* |’'ve been careful to write all of the inference rules for Hoare
logic in a suggestive format:

Sequence:

if{F1}C1{F2}and{F2}C2{F3}
then {F1}C1; C2{F3}

* PLresearchers use the following notation:

horizontal line % premises

means “if —, {F1}C1{F2} {F2}C2{F3} (gpq)
{F1}C1; C2{F3}

conclusion name

metavariables can be replaced
by any (well-formed) element of
the right sort

Inference rules

* PLresearchers use the following notation:

% premises

(FIYC1{F2} {F2}C2{F3)
{F1}CL: C2{F3} (Sea)

/ conclusion

metavariables can be replaced
by any (well-formed) element of
the right sort

 Example instance of the rule:

{x=4}x=x+2{x=6} {x=6}x=x+1{x=7}
{x=4}x=x+2;x=x+1{x=7} (Sea)

Complete Hoare Rules

(skip) (assign)
{P}skip{P} {Fle/x] }x=e{F}

PP=>P {P}C{Q} Q=>Q
{P}Cc{Q}

(consequence)

P=>1 {e>0&I1}C{l} I1&~e>0)=>Q (while)
{P}while(e>0)doC{Q}

{F1}C1{F2} {F2}C2{F3}
{F1}C1;C2{F3}

(seq)

{e>0&P}C1{Q} {~e>0)&P}C2{Q}
{P}ife>0thenClelse C2{Q}

(if)

axioms

inductive
rules

Building Proofs

* A random bunch of boxes and arrows is not a consistent, well-
defined notation for proofs:

{true }

ifx>0 W
skip;
else

:1’
Yy —

{x>0 & true}

x>0 & true =>
x>0 ||y=1

skip;
{x>0|]y=1}

{x>0]]y=1}

DONE!

{~(x>0)&true }
y=1
{x>0[]y=1}

~(x > 0) & true =>
x>0]|]1=1

{x>0|]y=1}
skip;
{x>0[|ly=1}
{x>0|]1=1}
y=1,
{x>0||y=1}

Building Proofs

* Build proofs by stringing together a collection of rules
* Valid axioms are at the top
e Valid rule instances connect premises to conclusions

X=4=>x+2=6 {x+2=6}x=x+2{x=6} X=6=>x+1=7 {x+1=7}x=x+1{x=7}

{x=4}x=x+2{x=6} {x=6}x=x+1{x=7}
{x=4}x=x+2; x=x+1{x=7}

Building Proofs

* There wasn’t space on the slide, but putting a name next to
each horizontal line indicates the rule that was used:

(assign)
X=4=>x+2=6 {x+2=6}x=x+2{x=6} X=6=>x+1=7 {x+1=7}x=x+1{x=7}
{x=4}x=x+2{x=6} {x=6}x=x+1{x=7}
{x=4}x=x+2; x=x+1{x=7} (Seq)

(consequence)

Building Proofs Bottom-up

e Start with the Hoare Triple you want to prove at the bottom of
your page:

{ odd(x) & even(z) } if x >0 then x=x+1 else x=z { even(x) }

Building Proofs Bottom-up

Consider the rules that apply.
Typically:
— the rule for the kind of statement
— the rule of consequence

Use the rule you choose to generate premises.
Write the premises above the line

Continue until you have axioms

{odd(x) & even(z) & x>0 } x = x+1 { even(x) } {odd(x) & even(z) & ~(x>0) } x =z {even(x) }

{ odd(x) & even(z) } if x >0 then x=x+1 else x=z { even(x) }

[Building Proofs Bottom-up

* There wasn’t space on the slide, but putting a name next to
each horizontal line indicates the rule that was used:

odd(x) & even(z) & x>0 => even(x+1)

{even(x+1)} x = x+1 {even(x) }
{odd(x) & even(z) & x>0 } x = x+1 { even(x) } {odd(x) & even(z) & ~(x>0) } x =z {even(x) }
{ odd(x) & even(z) } if x >0 then x=x+1 else x=z { even(x) }

[Building Proofs Bottom-up

* There wasn’t space on the slide, but putting a name next to
each horizontal line indicates the rule that was used:

odd(x) & even(z) & x>0 => even(x+1)

axiom for assignment,

/ so we can stop this branch of the proof

{even(x+1)} x = x+1 {even(x) }
{odd(x) & even(z) & x>0 } x = x+1 { even(x) } {odd(x) & even(z) & ~(x>0) } x =z {even(x) }
{ odd(x) & even(z) } if x >0 then x=x+1 else x=z { even(x) }

[Building Proofs Bottom-up

* There wasn’t space on the slide, but putting a name next to
each horizontal line indicates the rule that was used:

odd(x) & even(z) & x>0 => even(x+1)

{even(x+1)} x = x+1 {even(x) }

odd(x) & even(z) & ~(x>0) => odd(x)

{odd(x) & even(z) & x>0 } x = x+1 { even(x) }

axiom for assignment

/

{even(z)} x =z { even(x) }

{odd(x) & even(z) & ~(x>0) } x =z {even(x) }

{ odd(x) & even(z) } if x >0 then x=x+1 else x=z { even(x) }

More Generally

* Proof systems tell us how to conclude certain kinds of
propositions (aka assertions or properties) from a set of rules

* The propositions are typically called judgements
— eg:{P}C{Q}isthe Hoare Triple judgement

* The rules are typically called inference rules:

J1 J2 ... Jn condl ...condk
J

More Generally

* Proof systems tell us how to conclude certain kinds of
propositions (aka assertions or properties) from a set of rules
* The propositions are typically called judgements
— eg:{P}C{Q}isthe Hoare Triple judgement

* The rules are typically called inference rules:

judgement we are simple logical
defining conditions

v //
J1 J2 Jn condl ... condk
J

conclusion

More Generally

Proof systems tell us how to conclude certain kinds of
propositions (aka assertions or properties) from a set of rules

The propositions are typically called judgements
— eg:{P}C{Q}isthe Hoare Triple judgement
The rules are typically called inference rules.

A formal proof stitches together a finite number of valid rules,
ending with axioms:

J1 12 cond

SUMMARY!

Summary

* PLresearchers often describe programming languages using
judgements and rules

* The rules for Hoare Logic look like this:

(skip) (assign)
{P}skip{P} {Fle/x] }x=e{F}

P=>P {P}C{Q} Q=>Q
(P}C{Q'}

(consequence)

* Proofs stitch together a series of rules

— in a valid proof
* the proof tops out with valid instances of one of the axioms

* every step from premises to conclusion is a valid instance of one of
the inference rules

