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Agenda 

• Last time 

– Hoare Logic: 

• { P } C { Q } 

• If P is true in the initial state s.  And C in state s evaluates to s’. 
Then Q must be true in s’. 

– Program states s: 

• finite partial maps (ie: functions) from variables to values 

– Semantics of formulae: 

• fsem s P :: Maybe Bool 

• fsem s P is always Just b if s and P are “well-formed” 

• This time: 

– Mathematical presentation of the semantics of formulae 

– Rules of Hoare Logic 



SEMANTICS OF FORMULAE: 
PRESENTATION II:  MATHEMATICS 



Two Differences from the Haskell Presentation 

• The Haskell definitions used datatype notation for the syntax 
of formulae: 

 

 

 

 

 

• The standard math formulation overloads the same “*” and 
“+” symbols using them in different ways: 

 

 

 

 

expressions 
e ::= ... | e + e | e * e 

data Exp = ... 
     Add Exp Exp 
  | Mult Exp Exp 

esem s (Add e1 e2) = ... Just (... + ...) 
 
esem s (Mult e1 e2) =  ... Just (... * ... ) 

esem (e1 + e2) = ... + ... 
 
esem (e1 * e2) = ... * ...  

Expression syntax (type Exp) 
Defined using Haskell datatype 

Integer operators (type Int) 

Expression syntax (type “expression”) Integer  (type “math integer”) 



Two Differences from the Haskell Presentation 

• The Haskell semantic function explicitly creates “Maybe” 
objects all the time: 

 

 

 

 

 

 

 

 

 

• This makes the Haskell function a total function but it is 
verbose and obscures the main idea:   

– the syntax “And f1 f2” is defined to be f1 && f2 

fsem :: State -> Form -> Maybe Bool 
 
...  
 
fsem s (And f1 f2) = 
  case (fsem s f1, fsem s f2) of 
    (Just b1, Just b2) -> Just (b1 && b2) 
    (_, _) -> Nothing    
 
fsem s (Or f1 f2) =   
  case (fsem s f1, fsem s f2) of 
    (Just b1, Just b2) -> Just (b1 || b2) 
    (_, _) -> Nothing 



Two Differences from the Haskell Presentation 

• Whereas the Haskell function will be total, the math function 
will be partial -- it will be partial in all the places we would 
have used Nothing in Haskell 

• We will use a standard mathematical convention that when 
the result of a function contains undefined parts, the entire 
result is considered undefined 

• For example, if I were to write in math: 

 

 

• I mean “the semantics of e1 * e2 is (the semantics of e1) 
multiplied by (the semantics of e2), provided the semantics of 
e1 and e2 are both defined.  If one of them is not defined, 
then the semantics of e1 * e2 is not defined either” 

• That’s exactly what the Haskell code says, which makes it 
more explicit, but a lot more long-winded 

esem s (e1 * e2) = esem s (e1) * esem  s (e2) 



The Semantics Using Conventional Math Notation 

integer variables 
x := x1 | x2 | x3 | ... | y | z | ... 
 
integer expressions 
e ::= N | x | e + e | e * e 
 
predicates  
p ::= e = e | e < e 
 
formulae 
f ::= true | false| p| f & f | f || f | ~f 

Syntax 
[[ . ]] :: int exp -> state ->  int 
 
[[N]]s      = N 
[[x]]s      = s(x) 
[[e1 + e2]]s = [[e1]]s + [[e2]]s 
[[e1 * e2]]s = [[e1]]s + [[e2]]s 
 
[[ . ]] :: predicate -> state -> bool 
 
[[e1 = e2]]s = [[e1]]s == [[e2]]s 
[[e1 < e2]]s = [[e1]]s < [[e2]]s 
 
[[ . ]] :: formula -> state -> bool 
 
[[true]]s      = true  
[[false]]s     = false   
[[p]]s      = [[p]]s 
[[f1 & f2]]s  = [[f1]]s & [[f2]]s 
[[f1 || f2]]s = [[f1]]s || [[f2]]s 
[[~f]]s      = not [[f]]s 

Semantics could be a  
partial function 
symbol:   
but making 
those in 
powerpoint 
is irritating. 

these definitions are incredibly 
elegant and compact. 
 
experienced researchers can look  
at them and virtually instantaneously 
understand the meaning of the 
language or detect flaws in definition 

variable 
lookup in the 
environment 
(a finite 
partial map) 

“**  ++” is  
merely an 
unusual 
name for a 
function 



Math vs. Haskell 

• Summary: you should be able to understand and manipulate 
both kinds of notation. 

• In particular, you should be able to take a mathematical 
definition and convert it in to Haskell program: 

... 
 
[[f1 & f2]]s  = [[f1]]s & [[f2]]s 
[[f1 || f2]]s = [[f1]]s || [[f2]]s 

... 
 
fsem s (And f1 f2) = 
  case (fsem s f1, fsem s f2) of 
    (Just b1, Just b2) -> Just (b1 && b2) 
    (_, _) -> Nothing    
 
fsem s (Or f1 f2) =   
  case (fsem s f1, fsem s f2) of 
    (Just b1, Just b2) -> Just (b1 || b2) 
    (_, _) -> Nothing 



ONE MORE BIT OF NOTATION: 
SUBSTITUTION 



One Additional Bit of Notation 

• Given an expression containing some variables, we often want 
to substitute some other expression for one of the variables 

– eg: below, we substitute the expression “2+3” for “x” in the 
expression “x * x” 

 

 
let x = 2 + 3 in 
x * x 

(2 + 3) * (2 + 3) 



One Additional Bit of Notation 

• Given an expression containing some variables, we often want 
to substitute some other expression for one of the variables 

– eg: below, we substitute the expression “2+3” for “x” in the 
expression “x * x” 

 

 

– Another way to write the result is using substitution notation: 

 

let x = 2 + 3 in 
x * x 

(2 + 3) * (2 + 3) 

(x * x) [ 2 + 3 / x ]            ==                  (2 + 3) * (2 + 3) 



One Additional Bit of Notation 

• Given an expression containing some variables, we often want 
to substitute some other expression for one of the variables 

– eg: below, we substitute the expression “2+3” for “x” in the 
expression “x * x” 

 

 

– Another way to write the result is using substitution notation: 

 

 

– More generally, for any expressions e and e’, we write: 

e * e’/x + 

contains x, possibly 
several times or not at all 

let x = 2 + 3 in 
x * x 

(2 + 3) * (2 + 3) 

(x * x) [ 2 + 3 / x ]            ==                  (2 + 3) * (2 + 3) 

the expression replacing x 

the name of the variable  
to be replaced 
(could be x or y or z ...) 



IMP: 
A SIMPLE IMPERATIVE LANGUAGE 



IMP 

• Different languages have different sets of operations 

– the operations available in a language change the reasoning 
system quite a bit  

– that’s why reasoning about Haskell is so different from 
reasoning about C or Java! 

– if we added concurrency, it would be a whole new ball of wax ... 

 

• We will look at IMP:  the simplest possible language one can 
imagine that still embodies “imperative programming” 

 



IMP Syntax 

• IMP has three parts:   

– integer variables, integer expressions and statements 

– for simplicity, we’ve intentionally avoided having more than one 
type -- we are sticking with integers 

integer variables 
x := x1 | x2 | x3 | ... | y | z | ... 
 
integer expressions 
e ::= N | x | e + e | e * e 
 
statements (aka Commands) 
C ::= x = e    (an assignment) 
      | skip     (a no-op) 
      | C; C     (sequencing) 
      | if (e > 0) then C else C   (if statement) 
      | while (e > 0) do C  (while loop) 



An Example Program ... 

 
 
a = 0; 
i = N; 
 
while (i > 0) do  
    a = a + V; 
    i = i - 1 
 
 
 
     
 



... With It's Specification 

{ true } 
 
a = 0; 
i = N; 
 
while (i > 0) do  
    a = a + V; 
    i = i - 1 
 
{a = N*V} 
 
     
 



A HOARE LOGIC FOR IMP 



The Floyd-Hoare Rules for IMP 

• We are looking for very general reasoning rules: 

 

– We want to figure out the reasoning rules once and for all and 
then be able to apply them to any program 

 

– If we figure the rules out once and for all, we can verify that the 
rules are correct -- any future Hoare proofs that use the rules 
exactly as stated are guaranteed to be correct 

 



The Floyd-Hoare Rules for IMP 

• We are looking for very general reasoning rules: 

 

– We want the rules to be sound:  

• if the rules allow us to come to a conclusion {P} C {Q}, the 
definition must hold: 

• Whenever we start in a state s such that [[P]]s, and execution of C 
leaves us in final state s' then [[Q]]s' 

 

– We would also like the rules to be complete:  

• if {P} C {Q} is a valid Hoare triple, it should be possible for us to 
conclude it using the rules supplied. 

• It turns out completeness is unobtainable, but that doesn't 
prevent us from verifying many programs 

 



The Floyd-Hoare Rules for IMP 

• Strategy for devising rules 

– For each simple imperative statement, we define a rule 

– For each compound statements, we define a rule 

• these rules typically use proofs about the underlying statements 

– Finally, we have a few "structural" rules that help us glue proof 
pieces together 

 



NOT the Rule for Assignment 

• Consider this rule.  Is it good?  How good? 

 

 

• Is it sound? 

– The precondition does not restrict the state we are allowed to 
start in since [[true]]s is always true. 

 

 

 

 

{ true } x = e { x = e } 



NOT the Rule for Assignment 

• Consider this rule.  Is it good?  How good? 

 

 

• Is it sound? 

– The precondition does not restrict the state we are allowed to 
start in since [[true]]s is always true. 

– What if e is x + 1?  Specializing the rule: 

 

 

 

 

{ true } x = e { x = e } 

{ true } x = x+1 { x = x+1 } 

assignment statement that 
changes the value of x  

an equation: for what values of x is x 
equal to itself plus 1? 



NOT the Rule for Assignment 

• Consider this rule.  Is it good?  How good? 

 

 

• Is it sound? 

– The precondition does not restrict the state we are allowed to 
start in since [[true]]s is always true. 

– What if e is x + 1?  Specializing the rule: 

 

 

 

 

{ true } x = e { x = e } 

{ true } x = x+1 { x = x+1 } 

assignment statement that 
changes the value of x  

an equation: for what values of x is x 
equal to itself plus 1? 
 
there are no values of x that satisfy 
the equation! It doesn’t matter what x 
we start with. 



NOT the Rule for Assignment 

• Consider this rule.  Is it good?  How good? 

 

 

• Is it sound? 

– The precondition restricts the state we are allowed to start in 
since [[false]]s is always false for any s. 

– Semantics of Hoare Triples:  If we start in a state satisfying the 
precondition then … some other things need to hold 

– So it is trivially sound 

• Is it complete? 

– No.  Here’s a simple triple we can’t prove with the rule: 

 

 

– The precondition false is just wayyyyy to strong 

 

 

 

 

{ false } x = e { x = e } 

{ x = 9 } x = x + 1 { x = 10 } 



The Rule for Assignment 

• Consider this rule.  Is it good?  How good? 

 

 

 

 

 

{ F [e/x] } x = e { F } 



The Rule for Assignment 

• Consider this rule.  Is it good?  How good? 

 

 

• An example: 

 

 

• Is it sound? 

– What initial states satisfy x + 1 = 10? 

 

 

 

{ x + 1 = 10 } x = x + 1 { x = 10 } 

{ F [e/x] } x = e { F } 



The Rule for Assignment 

• Consider this rule.  Is it good?  How good? 

 

 

• An example: 

 

 

• Is it sound? 

– What initial states satisfy x + 1 = 10? 

• [x = 9] 

– When we execute the assignment in that state, what do we get? 

• [x = 10] 

– It seems to work! 

 

 

 

{ x + 1 = 10 } x = x + 1 { x = 10 } 

{ F [e/x] } x = e { F } 



The Rule for Assignment 

• Consider this rule.  Is it good?  How good? 

 

 

• Is it complete? 

– Are there valid triples that we cannot prove use this rule? 

– What about this one: 

 

 

– (x = 10) [ (x + 1) / x ] is x+1 = 10 

– But x+1 = 10  is not syntactically equivalent to x = 9 

– However, x = 9 is semantically equivalent to (x + 1) = 10 

• Summary:  this assignment rule is pretty good but we need 
another rule for converting between semantically equivalent 
formulae and more ... 

 

{ F [e/x] } x = e { F } 

{ x = 9 } x = x + 1 { x = 10 } 



The Rule of Consequence 

• Recall:  A Hoare triple is valid if whenever we start in a state 
that satisfies the pre-condition P and execution of C 
terminates, we wind up in a state that satisfies Q 

 

• Intuition:   

– P’ => P:  any state that satisfies P’ also satisfies P 

• P’ is “stronger” than P 

– Q => Q’:  any state that satisfies Q also satisfies Q’ 

• Q’ is “weaker” than Q 

 

• The rule of consequence: 

 

 

 

If P’ => P and , P - C , Q - and Q => Q’ 
 
then , P’ - C , Q’ -  



The Rule of Consequence 

• Rule of consequence: 

 

 

 

• Example: 

 

 

 

If P’ => P and , P - C , Q - and Q => Q’ 
then , P’ - C , Q’ -  

 
 
 
 
 
 
 
{ x = 9 & y = 7 }  x = x + 1 { x < 11 }   



The Rule of Consequence 

• Rule of consequence: 

 

 

 

• Example: 

 

 

 

If P’ => P and , P - C , Q - and Q => Q’ 
then , P’ - C , Q’ -  

 
 
 
(2) { x + 1 = 10 } x = x + 1 { x = 10 }  (valid assignment rule) 
 
 
 
{ x = 9 & y = 7 }  x = x + 1 { x < 11 }   



The Rule of Consequence 

• Rule of consequence: 

 

 

 

• Example: 

 

 

 

If P’ => P and , P - C , Q - and Q => Q’ 
then , P’ - C , Q’ -  

(1)  x = 9 & y = 7   =>   x + 1 = 10  (valid strengthening; 
       more states satisfy x + 1 = 10) 
 
(2) { x + 1 = 10 } x = x + 1 { x = 10 }  (valid assignment rule) 
 
 
 
{ x = 9 & y = 7 }  x = x + 1 { x < 11 }   



The Rule of Consequence 

• Rule of consequence: 

 

 

 

• Example: 

 

 

 

If P’ => P and , P - C , Q - and Q => Q’ 
then , P’ - C , Q’ -  

(1)  x = 9 & y = 7   =>   x + 1 = 10  (valid strengthening; 
       more states satisfy x + 1 = 10) 
 
(2) { x + 1 = 10 } x = x + 1 { x = 10 }  (valid assignment rule) 
 
(3)  x = 10 => x < 11   (valid strengthening) 
 
{ x = 9 & y = 7 }  x = x + 1 { x < 11 }  (by (1), (2), (3), rule of consequence) 



Compound Statements 

• We have a rule for a single assignment, what about a sequence? 

• Sequencing rule: 

 

 

 

 

 

if { F1 } C1 { F2 } and { F2 } C2 { F3} 
 
then { F1 } C1; C2 { F3 }  



Compound Statements 

• Example: 

 
 
 
 
x = x + 1; 
 
 
 
y = x – 3 
 
 
 
x = y + y 
 



Compound Statements 

• Example: 

 
 
 
 
x = x + 1; 
 
 
 
y = x – 3 
 
 
 
x = y + y 
 
{ x = 17 & y < 23} 
 
 



Compound Statements 

• Example: 

 
 
 
 
x = x + 1; 
 
 
 
y = x – 3 
 
{ y + y = 17  & y < 23 } 
 
x = y + y 
 
{ x = 17 & y < 23} 
 
 



Compound Statements 

• Example: 

 
 
 
 
x = x + 1; 
 
{ (x – 3) + (x – 3) = 17 & x – 3 < 23 } 
 
y = x – 3 
 
{ y + y = 17  & y < 23 } 
 
x = y + y 
 
{ x = 17 & y < 23} 
 
 



Compound Statements 

• Example: 

 
 
{ (x + 1) – 3 + (x + 1) – 3 = 17 & (x + 1) – 3 < 23 } 
 
x = x + 1; 
 
{ (x – 3) + (x – 3) = 17 & x – 3 < 23 } 
 
y = x – 3 
 
{ y + y = 17  & y < 23 } 
 
x = y + y 
 
{ x = 17 & y < 23} 



Compound Statements 

• Example: 

{ 2*x = 21 & x < 25 }  
 
{ (x + 1) – 3 + (x + 1) – 3 = 17 & (x + 1) – 3 < 23 } 
 
x = x + 1; 
 
{ (x – 3) + (x – 3) = 17 & x – 3 < 23 } 
 
y = x – 3 
 
{ y + y = 17  & y < 23 } 
 
x = y + y 
 
{ x = 17 & y < 23} 



Skip 

• Skip is a no-op “do nothing” statement 

• Easy Hoare rule: 

 

 

 

• Intuition: 

– If you start with any state s that satisfies the precondition P, and 
you do nothing, you’ll stay in the same state s and satisfy the 
postcondition P 

– And, of course, you can couple this rule with the rule of 
consequence. eg: 

{ P } skip { P } 

{ x = 10 } skip { x < 11 } 



If Statements 

• Rule for if statements 

 

 

 

• Example: 

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q } 
 
then { P } if e > 0 then C1 else C2 { Q }  

{ true } 
 
if x > 0 then 
   skip; 
else 
   y = 1; 
 
{ x > 0 || y = 1 } 



If Statements 

• Rule for if statements 

 

 

 

• Example: 

 

 

 

 

 

 

 

 

 

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q } 
 
then { P } if e > 0 then C1 else C2 { Q }  

{ true } 
 
if x > 0 then 
   skip; 
else 
   y = 1; 
 
{ x > 0 || y = 1 } 

{ x > 0 || y = 1 }  
   skip; 
{ x > 0 || y = 1 } 

{ x > 0 || 1 = 1 }  
   y = 1; 
{ x > 0 || y = 1 } 

assignment 
rule 



If Statements 

• Rule for if statements 

 

 

 

• Example: 

 

 

 

 

 

 

 

 

 

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q } 
 
then { P } if e > 0 then C1 else C2 { Q }  

{ true } 
 
if x > 0 then 
   skip; 
else 
   y = 1; 
 
{ x > 0 || y = 1 } 

{ ~(x > 0) & true }  
   y = 1; 
{ x > 0 || y = 1 } 

{ x > 0  &  true } 
   skip; 
{ x > 0 || y = 1 } 

{ x > 0 || y = 1 }  
   skip; 
{ x > 0 || y = 1 } 

{ x > 0 || 1 = 1 }  
   y = 1; 
{ x > 0 || y = 1 } 



If Statements 

• Rule for if statements 

 

 

 

• Example: 

 

 

 

 

 

 

 

 

 

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q } 
 
then { P } if e > 0 then C1 else C2 { Q }  

{ true } 
 
if x > 0 then 
   skip; 
else 
   y = 1; 
 
{ x > 0 || y = 1 } 

{ ~(x > 0) & true }  
   y = 1; 
{ x > 0 || y = 1 } 

{ x > 0  &  true } 
   skip; 
{ x > 0 || y = 1 } 

{ x > 0 || y = 1 }  
   skip; 
{ x > 0 || y = 1 } 

{ x > 0 || 1 = 1 }  
   y = 1; 
{ x > 0 || y = 1 } 

x > 0 & true  =>  
x > 0 || y = 1 

~(x > 0) & true =>  
x > 0 || 1 = 1 



If Statements 

• Rule for if statements 

 

 

 

• Example: 

 

 

 

 

 

 

 

 

 

If { e > 0 & P } C1 { Q } and { ~(e > 0) & P } C2 { Q } 
 
then { P } if e > 0 then C1 else C2 { Q }  

{ true } 
 
if x > 0 then 
   skip; 
else 
   y = 1; 
 
{ x > 0 || y = 1 } 

{ ~(x > 0) & true }  
   y = 1; 
{ x > 0 || y = 1 } 

{ x > 0  &  true } 
   skip; 
{ x > 0 || y = 1 } 

{ x > 0 || y = 1 }  
   skip; 
{ x > 0 || y = 1 } 

{ x > 0 || 1 = 1 }  
   y = 1; 
{ x > 0 || y = 1 } 

x > 0 & true  =>  
x > 0 || y = 1 

~(x > 0) & true =>  
x > 0 || 1 = 1 

DONE! 



While Statements 

• Rule for while statements 

 

 

 

 

If ??? 
 
then { P } while (e > 0) do C { Q }  



While Statements 

• Bogus rule for while statements 

 

 

 

 

If { P & e > 0 } C { Q } 
 
then { P } while (e > 0) do C { Q }  



While Statements 

• Bogus rule for while statements 

 

 

 

 

If { P & e > 0 } C { Q } 
 
then { P } while (e > 0) do C { Q }  

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

basic problem: 
this rule only  
captures 1 iteration 
of the loop,  
not all of them 



While Statements 

• Bogus rule for while statements 

 

 

 

 

If { P & e > 0 } C { Q } 
 
then { P } while (e > 0) do C { Q }  

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

{ i = N & a = 0 & i > 0 } 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

must 
prove 



While Statements 

• Bogus rule for while statements 

 

 

 

 

If { P & e > 0 } C { Q } 
 
then { P } while (e > 0) do C { Q }  

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

{ i = N & a = 0 & i > 0 } 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

this isn’t even 
close to a valid triple! 
With that precondition, 
a = K at the end! 

must 
prove 



While Statements 

• Problem:  We need to verify all iterations of a loop and we 
need to do it with a finite amount of work 

• Solution:  We will come up with an invariant that holds at the 
beginning and end of all iterations. 

– We prove that the loop body preserves the invariant every time 
around 

• Unfortunate reality:  Inferring invariants automatically is 
undecideable.   

– This puts significant limits on the degree to which we can 
automate verification. 

 

 

 

 

 



While Statements 

• While rule: 

 

 

 

 

 

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q 
 
then { P } while (e > 0) do C { Q }  

loop invariant I 



While Statements 

• While rule: 

 

 

 

 

 

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q 
 
then { P } while (e > 0) do C { Q }  

loop invariant I 

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 



While Statements 

• While rule: 

 

 

 

 

 

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q 
 
then { P } while (e > 0) do C { Q }  

loop invariant I 

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

{ i > 0 & I} 
    a = a + K; 
    i = i - 1; 
{ I } 

What works as I? 
• true initially 
• true before/after each  
           iteration 
• must imply Q when  
           loop terminates 



While Statements 

• While rule: 

 

 

 

 

 

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q 
 
then { P } while (e > 0) do C { Q }  

loop invariant I 

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

{ i > 0 & I} 
    a = a + K; 
    i = i - 1; 
{ I } 

Invariant is: 
a = (N-i) * K & i >= 0 

What works as I? 
• true initially 
• true before/after each  
           iteration 
• must imply Q when  
           loop terminates 



While Statements 

• Checking the invariant: 

– True initially: 

 

 

 

 

 

 

 

i = N & a = 0   =>   a = (N-i) * K & i >= 0 

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

Invariant is: 
a = (N-i) * K & i >= 0 

precondition 

invariant 



While Statements 

• Checking the invariant: 

– True initially: 

 

– True before/after each loop: 

 

 

 

 

 

 

 

 

 

 

 

{ a = (N-i) * K & i >= 0    & i > 0 } 
 
   a = a + K; 
 
    i = i - 1; 
{ a = (N-i) * K & i >= 0 } 

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

Invariant is: 
a = (N-i) * K & i >= 0 

i = N & a = 0   =>   a = (N-i) * K & i >= 0 



While Statements 

• Checking the invariant: 

– True initially: 

 

– True before/after each loop: 

 

 

 

 

 

 

 

 

 

 

 

{ a = (N-i) * K & i >= 0    & i > 0 } 
 
   a = a + K; 
{ a = (N - (i - 1)) * K & (i - 1) >= 0 } 
    i = i - 1; 
{ a = (N-i) * K & i >= 0 } 

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

Invariant is: 
a = (N-i) * K & i >= 0 

i = N & a = 0   =>   a = (N-i) * K & i >= 0 



While Statements 

• Checking the invariant: 

– True initially: 

 

– True before/after each loop: 

 

 

 

 

 

 

 

 

 

 

 

{ a = (N-i) * K & i >= 0    & i > 0 } 
{ a + K = (N - (i - 1)) * K & (i - 1) >= 0 } 
   a = a + K; 
{ a = (N - (i - 1)) * K & (i - 1) >= 0 } 
    i = i - 1; 
{ a = (N-i) * K & i >= 0 } 

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

Invariant is: 
a = (N-i) * K & i >= 0 

i = N & a = 0   =>   a = (N-i) * K & i >= 0 



While Statements 

• Checking the invariant: 

– True initially: 

 

– True before/after each loop: 

 

 

 

 

 

– Implies post-condition: 

 

 
 

 

 

 

{ a = (N-i) * K & i >= 0    & i > 0 } 
{ a + K = (N - (i - 1)) * K & (i - 1) >= 0 } 
   a = a + K; 
{ a = (N - (i - 1)) * K & (i - 1) >= 0 } 
    i = i - 1; 
{ a = (N-i) * K & i >= 0 } 

{ i = N & a = 0 } 
while (i > 0) do 
    a = a + K; 
    i = i - 1; 
{ a = N * K } 

Invariant is: 
a = (N-i) * K & i >= 0 a = (N-i) * K & i >= 0  & ~(i > 0) 

=> a = N * K  

invariant 

post condition 

i = N & a = 0   =>   a = (N-i) * K & i >= 0 

negation of while 
condition 



While Statements:  Summary 

• Given a Hoare triple for a while loop: 

– { P } while (e > 0) do C { Q }  

• We prove it correct by: 

– guessing an invariant I (this is the hard part) 

– proving I holds initially:  P => I 

– showing the loop body preserves I: 

• { e > 0 & I } C { I } 

– showing the postcondition holds on loop termination: 

• I & ~(e > 0) => Q 

• As a rule: 

 

 

• Note: one often adds I as an annotation on the loop:   

– while [I] (e > 0) do C 

 

If P => I and { e > 0 & I } C { I } and I & ~(e > 0) => Q 
then { P } while (e > 0) do C { Q }  



FRAMING & MODULARITY 



Another Issue:  Framing 

• Another valid triple: 

 

 

• Proving it using the rules: 

 

 

 

 

 

 

 

 

{ x = 9 & y = 7 & z = 23} x = x + 1 { x = 10 & y = 7 & z = 23} 



Another Issue:  Framing 

• Another valid triple: 

 

 

• Proving it using the rules: 

 

 

 

 

 

 

 

 

(1) { x + 1 = 9 & y = 7 & z = 23 } x = x + 1 { x = 10 & y = 7 & z = 23} (valid assignment rule) 
  
(2) x = 9 & y = 7 & z = 23   =>   x + 1 = 10 & y =7 & z = 23          (valid strengthening) 

 
(3) { x = 9 & y = 7 & z = 23} x = x + 1 { x = 10 & y = 7 & z = 23}   (by (1), (2), consequence) 

 

{ x = 9 & y = 7 & z = 23} x = x + 1 { x = 10 & y = 7 & z = 23} 



Another Issue:  Framing 

• Another valid triple: 

 

 

• Proving it using the rules: 

 

 

 

 

 

• Note:  Formulae not involving x are just propagated 

• More generally, formulae not involving variables that are not 
modified are just propagated 

• Can we factor those expressions out of most of the proof? 

 

 

 

(1) { x + 1 = 9 & y = 7 & z = 23 } x = x + 1 { x = 10 & y = 7 & z = 23} (valid assignment rule) 
  
(2) x = 9 & y = 7 & z = 23   =>   x + 1 = 10 & y =7 & z = 23          (valid strengthening) 

 
(3) { x = 9 & y = 7 & z = 23} x = x + 1 { x = 10 & y = 7 & z = 23}   (by (1), (2), consequence) 

 

{ x = 9 & y = 7 & z = 23} x = x + 1 { x = 10 & y = 7 & z = 23} 



The Simple Frame Rule 

• The Simple Frame Rule (also called the rule of constancy) 

 

 

 

• What counts as “modifying”?   

– In our simple language, the only way a variable may be modified 
is if it appears on the left in an assignment statement 

– In languages with functions or methods, calling one of them 
may have a modification effect 

– In C, you might be able to intentionally modify variables on the 
stack 

– In C, you might also have a buffer overflow ... yikes! 

• The frame rule is a way of simplifying proofs 

• Why are Haskell proofs so easy?  Nothing is modified! 

if { P } C { Q }  and C does not modify the (free) variables of R 
then { P & R } C { Q & R } 



The Simple Frame Rule 

• The Simple Frame Rule (also called the rule of constancy) 

 

 

 

• Example: 

if { P } C { Q }  and C does not modify the (free) variables of R 
then { P & R } C { Q & R } 

{ x = 6 & y = 7 & z = 23} x = x + 1; x = x * 2; x = x - 4; { x = 10 & y = 7 & z = 23} 



The Simple Frame Rule 

• The Simple Frame Rule (also called the rule of constancy) 

 

 

 

• Example: 

if { P } C { Q }  and C does not modify the (free) variables of R 
then { P & R } C { Q & R } 

{ x = 6 & y = 7 & z = 23} x = x + 1; x = x * 2; x = x - 4; { x = 10 & y = 7 & z = 23} 

{ x = 9 } x = x + 1; x = x * x; x = x - 5; { x = 10 } x = x + 1; x = x * 2; x = x - 4; 
does not modify y or z 



SUMMARY! 



Summary 

• States map variables to values 

• Formulae describe states: 

– semantics in Haskell: fsem :: State -> Form -> Maybe Bool 

– semantics in Math: [[f]]s 

– formulae and states we deal with are well-formed 

• well-formedness is a very simple syntactic analysis 

– P => Q means P is stronger than Q; P describes fewer states 

• Hoare Triples characterize program properties 

– { P } C { Q } – know when it is valid 

– know the statement rules you can use to conclude { P } C { Q } 

– understand the structural rules:  

• rule of consequence 

• frame rule 


