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Agenda 

• The last few weeks 

– the principles of functional programming 

• defining new functions:  functional abstraction for code reuse 

• defining new types:  type abstraction 

• higher-order programming:  using functions as data 

• the same algorithm over different data:  parametric polymorphism 

• related operations over different types: ad hoc polymorphism via 
type classes 

 

• This time: 

– Bringing it all together:  developing a domain-specific language 
for functional animation 



SHAPES, REGIONS & PICTURES 



Shapes 

data Shape =  
     Rectangle Side Side 
  | Ellipse Radius Radius 
  | RtTriangle Side Side 
  | Polygon [Vertex] 
  deriving (Show) 
 
type Side = Float 
type Radius = Float 
type Vertex = (Float, Float) 
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Shapes 

data Shape =  
     Rectangle Side Side 
  | Ellipse Radius Radius 
  | RtTriangle Side Side 
  | Polygon [Vertex] 
  deriving (Show) 
 
type Side = Float 
type Radius = Float 
type Vertex = (Float, Float) 
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Rectangle s1 s2 = 

Ellipse r1 r2 = 

s2 
s1 RtTriangle s1 s2 = 

v2 

v1 v3 

v4 v5 

Polygon [v1, ...,v5] = 

  s1 = Rectangle 3 2 
  s2 = Ellipse 1 1.5 
  s3 = RtTriangle 3 2 
  s4 = Polygon [(-2.5, 2.5) 
             ,(-3, 0) 
                        ,(-1.7,-1.0) 
             ,(-1.1,0.2) 
             ,(-1.5,2.0) ] 



Regions 

• Regions are compositions of basic shapes: 

 

 

 

 

 

 

 

 

 

 

data Region =  
   Shape Shape    -- primitive shape 
| Translate Vector Region   -- translated region 
| Scale Vector Region   -- scaled region 
| Complement Region   -- inverse of region 
| Region `Union` Region   -- union of regions 
| Region `Intersect` Region  -- intersection of regions 
| Region `Xor` Region   -- XOR of regions 
| Empty     -- empty region 
deriving Show 
 
type vector = (Int, Int) 



Regions 

• Regions are compositions of basic shapes: 

 

 

 

 

 

 

 

 

 

 

data Region =  
   Shape Shape    -- primitive shape 
| Translate Vector Region   -- translated region 
| Scale Vector Region   -- scaled region 
| Complement Region   -- inverse of region 
| Region `Union` Region   -- union of regions 
| Region `Intersect` Region  -- intersection of regions 
| Region `Xor` Region   -- XOR of regions 
| Empty     -- empty region 
deriving Show 
 
type vector = (Int, Int) 

r1 = Shape s1 
r2 = Shape s2 
r3 = Shape s3 
r4 = Shape s4 

reg0 = (Complement r2) `Union` r4 
 
reg1 = r3 `Union` (r1 `Intersect` r0) 
 



Regions 

• Notice that regions are recursive data structures;  
consequently, they can be arbtrarily complex: 

step = Shape (Rectangle 50 50) 
 
stairs k = 
  if k <= 0 then Empty 
                 else Translate (k*20, k*20) (step `Union` stairs (k-1))  
 
 
 
 
stairs 4 = 



Pictures 

• Pictures add color to regions 

 

 

 

 

 

 

• Some pictures: 

 

 

 

data Picture =  
   Region Color Region 
| Picture `Over` Picture 
| EmptyPic 
deriving Show 
 
type Color = Red | Yellow | ... 

pic1 = Region Red reg1 
 
r5 = Shape $ Rectangle 1 1 
r6 = Shape $ Ellipse 0.5 0.5 
reg2 = (Scale (2,2) r6) `Union`  (Translate (2,1) r6) `Union`  (Translate (-2,0) r5) 
pic2 = Region Yellow reg2 
pic3 = pic2 `Over` pic1 



Drawing Pictures 

• the SOE libraries have implemented a draw function for us: 

 

 

 

• try it: 

 

 

 

 

 

 

• go to demo 

main1 = draw "Picture 1" pic1 
 
main2 = draw "Picture 2" pic2 
 
main3 = draw "Picture 3" pic3 

type Title = String 
draw :: Title -> Picture -> IO () 



FROM STATIC PICTURES 
TO DYNAMIC ANIMATIONS 



Animation 

• We create animations by exploiting persistence of vision and 
rendering a series of images: 

1. Initialize image 

2. Render image 

3. Pause 

4. Change image 

5. Go to 1. 

 

• At a low level, this is what will happen, but we'd like to build 
a library of combinators (ie: functions) that can be reused 
and that allow us to build complex animations from simpler 
parts 

 



Key Idea 

• We are going to represent an animation using a function 

 

 

 

• At every instant in time, the animation function generates an 
object with type a 

• Since the animation type is polymorphic, we'll be able to 
animate many different kinds of things 

type Animation a = Time -> a 
type Time = Float 

type PictureAnimation = Time -> Picture 
type ShapeAnimation   = Time -> Shape 
type StringAnimation    = Time -> String 



A first animation 

• Once you've thought of the right type, defining basic 
animations is easy: 

rubberBall :: Animation Shape 
rubberBall = \t -> Ellipse (sin t) (cos t)  

time 



More Animations 

revolvingBall :: Animation Region 
 
revolvingBall = \t -> Translate (sin t, cos t) ball  
    where ball = Shape (Ellipse 0.2 0.2) 



More Animations 

• Composition at work! 

• By making animations functions, we can compose them using 
ordinary function application or function composition: 

rubberBall :: Animation Shape 
rubberBall = \t -> Ellipse (sin t) (cos t)  
 
revolvingBall :: Animation Region 
revolvingBall = \t -> Translate (sin t, cos t) ball  
    where ball = Shape (Ellipse 0.2 0.2) 
 
planets :: Animation Picture 
planets t = p1 `Over` p2 
    where p1 = Region Red $ Shape (rubberBall t)  
                 p2 = Region Yellow $ revolvingBall t 



More Animations 

• We can animate anything: 

 

 

 

 

 

• An animation is any time-varying value 

 

 

ticker :: Animation String 
 
ticker t = "The time is :" ++ show t 



Rendering Animations 

• A Graphic is a data structure representing a static picture that 
can be rendered efficiently 

• To render any animation, we need two things: 

– a function to convert an Animation a to an Animation Graphic 

– a function to render any Animation Graphic  

• The second is supplied by the SOE library: 

 

 

• The first can be developed provided we have some basic 
Graphic generators: 

 

animate :: Title -> Animation Graphic -> IO () 

shapeToGraphic  :: Shape -> Graphic 
regionToGraphic  :: Region -> Graphic 
pictureToGraphic :: Picture -> Graphic 
text   :: Point -> String -> Graphic 
withColor  :: Color -> Graphic -> Graphic 



Rendering Animations 

• A simple example: 

 

 

 

• Check:  does it have the right type? 

 

 

 

 

 

• Let's try to run it 

 

blueBall :: Animation Graphic 
blueBall = withColor Blue . shapeToGraphic . rubberBall  

rubberBall       :: Time -> Shape 
shapeToGraphic       :: Shape -> Graphic 
withColor Blue       :: Graphic -> Graphic 
withColor Blue . shapeToGraphic . rubberBall :: Time -> Graphic  
       = Animation Graphic 



Rendering Animations 

• Let's look at some more: 

main4 = animate "Shape" $ withColor Blue . shapeToGraphic . rubberBall  
 
main5 = animate "Text" $ text (100,200) . ticker  
 
main6 = animate "Region" $ withColor Yellow . regionToGraphic . revolvingBall 
 
main7 = animate "Picture" $ picToGraphic . planets 



Implementing Animate 

• Some details of the animator (see script for more): 

animate title anim = runGraphics $ do 
    w <- openWindowEx title (Just (0,0)) (Just (xWin, yWin)) drawBufferedGraphic  
    t0 <- timeGetTime 
    animateLoop w t0 anim 
 
 
 
animateLoop w t0 anim = do  
    t <- timeGetTime 
    let ft = intToFloat (fromInteger (toInteger (t - t0))) / 1000 
    setGraphic w (anim ft) 
    spaceCloseEx w $ animateLoop w t0 anim 

set up window 

begin animation loop with initial time 

compute 
next 
time 

draw the 
picture at the 
computed time 

check for termination signal continue 



GOING FURTHER: 
A DSL FOR ANIMATIONS 



An Embedded DSL for Animations 
• So far, we've built animations bottom-up with Time -> a functions  

• But: 

– we can't (easily) transform or modify existing animations 

– we can't (easily) compose  existing, fully-formed animations 

– we don't treat animations as abstract objects 

• The next step: 

– Treat animations as abstract objects and define canonical 
transformers for them 

– Work entirely at the level of animations, hiding the implementation 
details 

– Our implementation might be called "a cool library" but ... we hide 
the underlying details so thoroughly we'll call the library an 
embedded, domain-specific language. 

– Haskell, with it's lightweight syntax and facilities for reuse and 
abstraction, is a terrific platform for developing new DSLs 



DSL Design Strategy 

• Choose primary abstract objects 

– define special types to represent them 

– in our case:  a special abstract Behavior type 

 

• Define operations over the abstract objects 

– make the above abstract objects instances of well-chosen type 
classes where appropriate so we can use compact, intuitive 
notation for manipulating our objects 

– in our case:  make behaviors instances of type classes for 
graphical and numeric manipulation 



A Taste of the DSL:  Everything is a Behavior 

type Behavior a 
type Coordinates = (Behavior Float, Behavior Float) 
 
run    :: Behavior Picture -> IO () 
 
red   :: Behavior Color 
ell   :: Behavior Radius -> Behavior Radius -> Behavior Shape 
shape    :: Behavior Shape -> Behavior Region 
reg    :: Behavior Color -> Behavior Region -> Behavior Picture 
over   :: Behavior Picture -> Behavior Picture -> Behavior Picture 
 
sin   :: Behavior Float -> Behavior Float 
tx    :: Coordinates -> Behavior Picture -> Behavior Picture 
timeTx   :: Behavior Time -> Behavior a -> Behavior a 
rewind   :: Behavior a -> Behavior a 
 
lift0    :: a -> Behavior a 
lift1    :: (a -> b) -> Behavior a -> Behavior b 
lift2    :: (a -> b -> c) -> Behavior a -> Behavior b -> Behavior c 
 
 

primary  
abstract 
type 

selected 
operations 
over  
abstract  
objects 

bootstrapping 



Examples 

• A stationary ball: 

 

 

• Bouncing the ball: 

 

 

• Bouncing a triangle: 

 

 

• Bouncing anything yellow: 

 

 

demo1 = run $ reg yellow $ ballB 

demo2 = run $ reg yellow $ tx (0, sin time) ballB 

demo2 = run $ reg yellow $ tx (0, sin time) pentaB 

bounce b = reg yellow $ tx (0, sin time) b 



Examples 

• Colors can vary with time.  Why stick with constant yellow? 

 

 

 

 

• Any animation can be composed with any other 

flash :: Behavior Color 
 
demo4 = run $ reg flash $ tx (0, sin time) ballB 

demo5 = run $ a1 `over` a2  
    where a1 = reg red $ tx (0, sin time) ballB 
                a2 = reg yellow $ tx (sin time, 0) pentaB 



Examples 

• We can define new kinds of motions and apply them to many 
different kinds of objects 

turn :: (Deformable a) => Float -> a -> a 
lift2 :: (a -> b -> c) -> Behavior a -> Behavior b -> Behavior c 
lift2 turn :: Behavior Float -> Behavior a -> Behavior a 
 
demo6 = run $ a1 `over` a2  
    where a1 = reg red $ tx (0, sin time) ballB 
                a2 = reg yellow $ lift2 turn angle pentaB 
                angle = pi * sin time 

angle is a  
behavior. 
notice the  
overloading: 
type classes! 



Examples 

• We can manipulate time itself!  Thereby delaying, slowing 
down or speeding up animations. 

demo7 = run $ a1 `over` a2  
  where a1 = reg red $ tx (sin time, cos time) ballB 
              a2 = timeTx (2 + time) a1  
 
 
 
 
 
 
demo8 = run $ a1 `over` a2  
  where a1 = reg red $ tx (sin time, cos time) ballB 
               a2 = timeTx (2 * time) a1  

a delayed animation 
composed with  
itself 

notice the  
overloading: 
type classes! 

a fast-forwarded 
animation 



Examples 

• We can even put time in reverse and run an animation 
backwards. (Makes me wonder if we could do some DVR 
programming in Haskell ...)  

demo0 = run $ a1 `over` a2  
  where a1 = reg red $ tx (sin time, cos time) ballB 
               a2 = timeTx (-1 * time) a1  

run backwards 



BUILDING THE DSL 



The Behavior Type 

• Whereas an animation was just a synonym for a function type, 
a behavior is abstract: 

 

 

• There are a couple of reasons: 

– we would like to control the invariants governing Behaviors 

– we would like to hide implementation details from clients 

– we will be using some type classes, and type classes don't work 
properly with type synonyms 

• why?  Intuitively because a synonym is completely interchangeable 
with its definition.  Hence, we can't define a different behavior for 
the synonym than its definition.  (If we could, they wouldn't be 
interchangeable.) 

• Note:  A newtype is a data type with just 1 constructor and no 
performance overhead for using it 

 

 

 

 

 

newtype Behavior a = Beh (Time -> a) 



Implementing the Animator 

newtype Behavior a = Beh Time -> a 
 
animateB :: String -> Behavior Picture -> IO () 
animateB s (Beh f) = animate s (picToGraphic . f) 
 
run = animateB "Animation Window"  



Bootstrapping 

• Recall the map function: It took an ordinary function and 
made it into a function over lists: 

 

 

• One might say that map "lifts" an ordinary function up in to 
the domain of list-processing functions 

• Likewise, we will want to "lift" ordinary functions up in to the 
domain of behavior-processing functions: 

 

 

 

• Lift is a way to include all of Haskell's powerful function-
definition facilities within our newly developed DSL  

map :: (a -> b)-> ([a] -> [b]) 

lift1 :: (a -> b) -> Behavior a -> Behavior b 
lift1 f (Beh g) = Beh (\t -> f (g t)) 



Bootstrapping 

• Lift1 works with single-argument functions.  We may need to 
do heavier lifting: 

 

 

 

 

 

• You can think of a constant, like the color Red, as a 0-
argument function.  We'll want to lift constants too: 

lift2 :: (a -> b -> c) -> Behavior a -> Behavior b -> Behavior c 
lift2 f (Beh a) (Beh b) = Beh $ \t -> f (a t) (b t) 
 
lift3 :: (a -> b -> c -> d) -> Behavior a -> Behavior b -> Behavior c -> Behavior d 
lift3 f (Beh a) (Beh b) (Beh c) = Beh $ \t -> f (a t) (b t) (c t) 

lift0 :: a -> Behavior a 
lift0 x = Beh $ \t -> x 

a constant function; it returns x all the time 



Bootstrapping 

• Since lists are so common in Haskell, we'll lift list-processing 
functions too 

• Explore the details in your spare time: 

 

 

 

• But notice, even without looking at the code, how much 
information you get out of the type of the function: 

 

 

• There's really only 1 reasonable thing that liftXs could do, 
given its type 

liftXs :: ([t] -> a) -> [Behavior t] -> Behavior a 
liftXs f bs = Beh (\t -> f (map (\(Beh b) -> b t) bs)) 

liftXs :: ([t] -> a) -> ([Behavior t] -> Behavior a) 



Numeric Behaviors 

• Our examples involve managing coordinates, scaling factors 
and timewarp; we need support for numeric behaviors 

• Let's define standard numeric operations over behaviors by 
making it an instance of the Num Class 

 

 

 

 

 

 

instance Num a => Num (Behavior a) where 
   (+) = lift2 (+) 
   (*) = lift2 (*) 
   negate = lift1 negate 
   abs = lift1 abs 
   signum = lift1 signum 
   fromInteger = lift0 . fromInteger 



Numeric Behaviors 

• Unsure what (+) on Behaviors does?  Run through an example 
using computation by calculation 

    
   (+) time one  
= lift2 (+) time one 
= lift2 (+) (Beh (\t -> t)) (Beh (\t -> 1)) 
= Beh (\t -> (+) ((\t -> t) t) ((\t -> 1) t)) 
= Beh (\t -> (+) t 1) 
= Beh (\t -> t + 1) 
 

instance Num a => Num (Behavior a) where 
   (+) = lift2 (+)                ... 
 
lift2 :: (a -> b -> c) -> Behavior a -> Behavior b -> Behavior c 
lift2 f (Beh a) (Beh b) = Beh $ \t -> f (a t) (b t) 
 
lift0 :: a -> Behavior a 
lift0 x = Beh $ \t -> x 
 
one  = Beh (\t -> 1) 
time = Beh (\t -> t) 
 
 

It just adds  
the numbers 
from the same  
time instant! 



Operations over Float Behaviors 

instance Floating a => Floating (Behavior a) where 
  pi = lift0 pi 
  sqrt = lift1 sqrt 
  exp = lift1 exp 
  log = lift1 log 
  sin = lift1 sin 
  cos = lift1 cos 
  tan = lift1 tan 
  asin = lift1 asin 
  acos = lift1 acos 
  atan = lift1 atan 
  sinh = lift1 sinh 
  cosh = lift1 cosh 
  tanh = lift1 tanh 
  asinh = lift1 asinh 
  acosh = lift1 acosh 
  atanh = lift1 atanh 



Once again, check our work by calculating 

instance Floating a => Floating (Behavior a) where 
  sin = lift1 sin 
  ... 
 
lift1 :: (a -> b) -> Behavior a -> Behavior b 
lift1 f (Beh g) = Beh (\t -> f (g t)) 
 
time :: Behavior Time 
time = Beh (\t -> t) 
 
sin time = lift1 sin time 
               = lift1 sin (Beh (\t -> t))  
               = \t -> sin ((\t -> t) t)  
               = \t -> sin t  



Add in Operations for Colors, Pictures, Regions 

reg  = lift2 Region 
shape  = lift1 Shape 
poly  = liftXs Polygon 
ell  = lift2 Ellipse 
red  = lift0 Red 
yellow  = lift0 Yellow 
green  = lift0 Green  
blue  = lift0 Blue 
 
tx (Beh a1, Beh a2) (Beh r) = Beh (\t -> Translate (a1 t, a2 t) (r t)) 

• Ok, at this point, you've got to admit that whoever came up 
with the concept of "lifting" and the idea of defining the liftN 
functions was pretty smart -- they are getting a lot of play! 



Creating Behavioral Shapes 

• Our basic ball: 

 

 

• Our basic pentagon: 

 

 

 

 

• A revolving balls and pentagons: 

pentaB :: Behavior Region 
pentaB = shape $ poly (map lift0 vs)  
  where vs = [ ( 0.0, 0.8) 
                       , ( 0.3,-0.5) 
                       , (-0.3,-0.5)] 

ballB :: Behavior Region 
ballB = shape $ ell 0.2 0.2 

revolveRegion = tx (sin time, cos time) 
 
revBallB = revolveRegion ballB 
revPentaB = revolveRegion pentaB  



Power Tools:  Conditional Behaviors 

• We can really start building a whole new language when we 
start adding conditional behaviors: 

 

 

 

• Behavioral comparisons: 

 

 

 

• Alternating behaviors: 

cond :: Behavior Bool -> Behavior a -> Behavior a -> Behavior a 
cond = lift3 $ \b x y -> if b then x else y  

(>*) = lift2 (>) 
(<*) = lift2 (<) 

flash = cond (cos time >* 0) red yellow 
flash' = cond (cos time >* 0) green blue 



Power Tools:  Domain-Specific Type Classes 

• Are there operations that apply to several different 
abstractions within our DSL? 

• What about the concept of “over” – one shape, region, 
picture or behavior “over” top of another?  

 

 

 

 

• Write functions to layer all elements of a list: 

 

class Combine a where 
  empty :: a 
  over     :: a -> a -> a 

overMany :: Combine a => [a] -> a  
overMany = foldr over empty 



Power Tools:  Domain-Specific Type Classes 

 

 

 

 

• Write instances of the new class for pictures and behaviors 

class Combine a where 
  empty :: a 
  over     :: a -> a -> a 

instance Combine Picture where  
    empty = EmptyPic  
    over     = Over   
 
instance Combine a => Combine (Behavior a) where 
    empty = lift0 empty  
    over     = lift2 over 



Power Tools:  Domain-Specific Type Classes 

 

 

 

 

 

 

• Play with the new type classes: 

overMany = foldr over empty 
 
anim5 = animateB "Many Spheres" $ overMany [b1,b2,b3]  
    where b1 = reg flash $ tx ((sin time)-1, cos time) ballB  
                b2 = reg flash' $ tx ((sin time)+1, cos time) ballB  
                b3 = reg flash'' $ tx (2 * sin time, cos time) pentaB 

class Combine a where 
  empty :: a 
  over     :: a -> a -> a 

instance Combine Picture where ... 
 
instance Combine a => Combine (Behavior a) where ... 



More Demos 

• Check out the use of conditional animations and new type 
classes in these programs: 

 

 

 

 

 

 

 

 

• Read through the rest of the animation notes 

anim2 
 
anim3 
 
anim4 
 
... 
 
anim9 



SUMMARY! 



Summary 

• Defining a new embedded DSL involves 

– defining key abstract types to be used by the client programs 

– defining reuseable operations over those abstract types 

• Along the way, we saw: 

– heavy use of functions as data 

– the idea of lifting a Haskell function to a new abstract domain 

– the use of type classes 

• new instances for existing classes: related operations on new types 

• new classes: new domain-specific operations 

• Historical note:  Programming language researchers from 90s 
onward spent years defining and refining the basic principles of 
DSL design and looking for the right reusable, modular 
abstractions.  And the research continues.  Moreover, getting 
the specifics right is a fun, ongoing challenge in many domains. 


