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Agenda 

• Last time 

– defining and using type classes 

• This time: 

– proving properties of type classes 



EQUALITY 



Equality 

• Haskell’s equality type class: 

 

 

 

 

• Some basic axioms about equality: 

– Reflexivity:  x == x 

– Transitivity:  x == y and y == z implies x == z 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 



Equality 

• An instance: 

 

 

 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 
 

data Bit = On | Off deriving (Show) 
 
instance Eq Bit where 
  (==) On  On   = True 
  (==) Off Off  = True 
  (==) On  Off  = False 
  (==) Off On   = False 



Equality 

 

• Reflexivity Proof (by cases on x): 

 

 

 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 
 

data Bit = On | Off deriving (Show) 
 
instance Eq Bit where 
  (==) On  On   = True 
  (==) Off Off   = True 
  (==) On  Off  = False 
  (==) Off On   = False 

case x = On: 
   On == On (unfold (==) at type Bit) 
 
case x = Off: 
   Off == Off (unfold (==) at type Bit) 



Equality 

 

• Transitivity Proof (by cases on x): 

 

 

 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 
 

data Bit = On | Off deriving (Show) 
 
instance Eq Bit where 
  (==) On  On   = True 
  (==) Off Off   = True 
  (==) On  Off  = False 
  (==) Off On   = False 

case x = On: 
   (0) x = On   (assumption for this case) 
   (1) x == y   (by assumption) 
   (2) y == z   (by assumption; now must prove x == z) 
   (3) y = On   (by (0,1) and (==) at type Bit) 
   (4) z = On   (by (2,1) and (==) at type Bit) 
   (5) x == z   (by (0,3) and (==) at type Bit) 
 
case x is Off:  Similar to the case for x = Off. 



Equality 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

data Pair a b = Pair a b deriving (Show) 
 
instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 



Equality 

• Reflexivity Proof (By Calculation): 

 

 

 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

data Pair a b = Pair a b deriving (Show) 
 
instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

Must prove:  p == p for any Pair a b such that Eq a and Eq b. 
What do such pairs look like? 



Equality 

• Reflexivity Proof (By Calculation): 

 

 

 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

data Pair a b = Pair a b deriving (Show) 
 
instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

Must prove:  p == p for any Pair a b such that Eq a and Eq b. 
What do such pairs look like? 
They must have the form p = Pair x y where x :: a and y :: b 
Hence, we must prove: 
    Pair x y == Pair x y 



Equality 

• Reflexivity Proof (By Calculation): 

 

 

 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

data Pair a b = Pair a b deriving (Show) 
 
instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

Must prove:  p == p for any Pair a b such that Eq a and Eq b. 
What do such pairs look like? 
They must have the form p = Pair x y where x :: a and y :: b 
Hence, we must prove: 
    Pair x y == Pair x y 
= (x == x) && (y == y)  (unfold == at type Pair a b) 



Equality 

• Reflexivity Proof (By Calculation): 

 

 

 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

data Pair a b = Pair a b deriving (Show) 
 
instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

Must prove:  p == p for any Pair a b such that Eq a and Eq b. 
What do such pairs look like? 
They must have the form p = Pair x y where x :: a and y :: b 
Hence, we must prove: 
    Pair x y == Pair x y 
= (x == x) && (y == y)  (unfold == at type Pair a b) 
= True && (y == y)  (by Eq reflexivity at type a) 

use axioms 
at types 
for which 
Eq already 
proven 



Equality 

• Reflexivity Proof (By Calculation): 

 

 

 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

data Pair a b = Pair a b deriving (Show) 
 
instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

Must prove:  p == p for any Pair a b such that Eq a and Eq b. 
What do such pairs look like? 
They must have the form p = Pair x y where x :: a and y :: b 
Hence, we must prove: 
    Pair x y == Pair x y 
= (x == x) && (y == y)  (unfold == at type Pair a b) 
= True && (y == y)  (by Eq reflexivity at type a) 
= True && True   (by Eq reflexivity at type b) 

use axioms 
at types 
for which 
Eq already 
proven 



Equality 

• Reflexivity Proof (By Calculation): 

 

 

 

class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

data Pair a b = Pair a b deriving (Show) 
 
instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

Must prove:  p == p for any Pair a b such that Eq a and Eq b. 
What do such pairs look like? 
They must have the form p = Pair x y where x :: a and y :: b 
Hence, we must prove: 
    Pair x y == Pair x y 
= (x == x) && (y == y)  (unfold == at type Pair a b) 
= True && (y == y)  (by Eq reflexivity at type a) 
= True && True   (by Eq reflexivity at type b) 
= True    (by unfold &&) 

use axioms 
at types 
for which 
Eq already 
proven 



Equality 

•  Transitivity Proof (By Calculation): 

 

 

 

class Eq a where ... 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 
implies Pair x1 y1 == Pair x3 y3 at type Pair a b. 



Equality 

•  Transitivity Proof (By Calculation): 

 

 

 

class Eq a where ... 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

(1) Pair x1 y1 == Pair x2 y2 (by assumption) 
(2) Pair x2 y2 == Pair x3 y3  (by assumption) 
(3) x1, x2, x3 :: a  and Eq a (by assumption) 
(4) y1, y2, y3 :: b and Eq b (by assumption) 

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 
implies Pair x1 y1 == Pair x3 y3 at type Pair a b. 



Equality 

•  Transitivity Proof (By Calculation): 

 

 

 

class Eq a where ... 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

(1) Pair x1 y1 == Pair x2 y2 (by assumption) 
(2) Pair x2 y2 == Pair x3 y3  (by assumption) 
(3) x1, x2, x3 :: a  and Eq a (by assumption) 
(4) y1, y2, y3 :: b and Eq b (by assumption) 
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b) 
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b) 

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 
implies Pair x1 y1 == Pair x3 y3 at type Pair a b. 



Equality 

•  Transitivity Proof (By Calculation): 

 

 

 

class Eq a where ... 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

(1) Pair x1 y1 == Pair x2 y2 (by assumption) 
(2) Pair x2 y2 == Pair x3 y3  (by assumption) 
(3) x1, x2, x3 :: a  and Eq a (by assumption) 
(4) y1, y2, y3 :: b and Eq b (by assumption) 
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b) 
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b) 

 
          Pair x1 y1 == Pair x3  y3  

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 
implies Pair x1 y1 == Pair x3 y3 at type Pair a b. 



Equality 

•  Transitivity Proof (By Calculation): 

 

 

 

class Eq a where ... 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

(1) Pair x1 y1 == Pair x2 y2 (by assumption) 
(2) Pair x2 y2 == Pair x3 y3  (by assumption) 
(3) x1, x2, x3 :: a  and Eq a (by assumption) 
(4) y1, y2, y3 :: b and Eq b (by assumption) 
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b) 
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b) 

 
          Pair x1 y1 == Pair x3  y3  
      = (x1 == x3) && (y1 == y3) (unfold == at type Pair a b) 

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 
implies Pair x1 y1 == Pair x3 y3 at type Pair a b. 



Equality 

•  Transitivity Proof (By Calculation): 

 

 

 

class Eq a where ... 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

(1) Pair x1 y1 == Pair x2 y2 (by assumption) 
(2) Pair x2 y2 == Pair x3 y3  (by assumption) 
(3) x1, x2, x3 :: a  and Eq a (by assumption) 
(4) y1, y2, y3 :: b and Eq b (by assumption) 
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b) 
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b) 

 
          Pair x1 y1 == Pair x3  y3  
      = (x1 == x3) && (y1 == y3) (unfold == at type Pair a b) 
      = True && (y1 == y3)  (by (5), (6), transitivity at type a) 

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 
implies Pair x1 y1 == Pair x3 y3 at type Pair a b. 



Equality 

•  Transitivity Proof (By Calculation): 

 

 

 

class Eq a where ... 
  -- axiom:  x == x 
  -- axiom:  x == y and y == z implies x == z 

instance (Eq a, Eq b) => Eq (Pair a b)  
where 
  (==) (Pair x1 y1) (Pair x2 y2) =  
    (x1 == x2) && (y1 == y2) 

(1) Pair x1 y1 == Pair x2 y2 (by assumption) 
(2) Pair x2 y2 == Pair x3 y3  (by assumption) 
(3) x1, x2, x3 :: a  and Eq a (by assumption) 
(4) y1, y2, y3 :: b and Eq b (by assumption) 
(5) (x1 == x2) && (y1 == y2) (by (1), (==) at type Pair a b) 
(6) (x2 == x3) && (y2 == y3) (by (2), (==) at type Pair a b) 

 
          Pair x1 y1 == Pair x3  y3  
      = (x1 == x3) && (y1 == y3) (unfold == at type Pair a b) 
      = True && (y1 == y3)  (by (5), (6), transitivity at type a) 
      = True && True = True  (by (5), (6), transitivity at type b; by &&) 

Must prove Pair x1 y1 == Pair x2 y2 and Pair x2 y2 == Pair x3 y3 
implies Pair x1 y1 == Pair x3 y3 at type Pair a b. 



Lessons 

• When proving things about type classes, be specific about the 
type at which you use a definition 

– eg:  unfold == at type Pair a b 

– eg:  unfold == at type a 

 
 

 



Lessons 

• What specific types have we proven have reflexive and 
transitive equality? 

– Bit 

– Pair Bit Bit 

– Pair (Pair Bit Bit) Bit 

– Pair (Pair (Pair Bit (Pair Bit Bit)) (Pair Bit Bit)) Bit 

– Pair … … 

• Why? 

– We proved == at type Bit satisfies the axioms 

– We proved that if == at type a and type b satisfies the axioms 
then == at type Pair a b satisfies the axioms 

– This is a kind of induction! 

– It is induction on the structure of types. 

 



Lessons 

• Type class proofs are often achieved by induction on the 
structure of the type 

– Given:  instance (T a) => T (Constructor a) where ... 

– Assume:  the axioms for T hold for type a 

– Must prove: the axioms hold for type Constructor a  

– the axioms at the smaller type a are used as inductive 
hypotheses within the proofs of the axioms for Constructor a 

– If all your type classes have the form 

• instance (T a) => T (Constructor a) where ... 

• then your type class is uninhabited!  You need some base cases. 

– Base cases arise when types unconditionally belong to the type 
class 

 

 



Lessons 

• When proving something with the form: 

– If A and B then C 

• You may structure your proof by assuming A and B, then 
proving C: 

 

Theorem:  If A and B then C. 
Proof:  By calculation, or induction, or whatever else works.  
 
(1) A  (By assumption) 
(2) B  (By assumption) 
(3) ... 
(4) ... 
(5) ... 
(6) C  (By 2, 3, 5) 
QED. 


