
The Haskell HOP:
Higher-order Programming

COS 441 Slides 6

Slide content credits:
Ranjit Jhala, UCSD

Agenda

• Haskell so far:

– First-order functions

• This time:

– Higher-order functions:

• Functions as data, arguments & results

• Reuseable abstractions

• Capturing recursion patterns

– Functional programming really starts to differentiate itself!

FUNCTIONS AS FIRST CLASS VALUES

A Perspective on Java

• In Java, you can do lots of things with integers:

– create them whereever you want, in any bit of code

– operate on them (add, subtract, etc)

– pass them to functions, return them as results from functions

– store them in data structures

• In Java, you can do barely anything at all with a method:

– all you can do is declare a method inside a pre-existing class

• you can't pass them to functions

• you can't return them as results

• you can't store them in data structures

• you can't define them locally where you need them

– of course, you can declare an entire new class (at the top level)
and put the one method you are interested in inside it

• this is incredibly heavy weight and still isn't very flexible!!

• you still can't define methods locally where you want them

Functions as First-Class Data

• Haskell treats functions as first-class data. So does:

– SML, OCaml, Scala (an OO language)

• "First-class" == all the "privileges" of any other data type:

– you can declare them where ever you want

• declarations can depend upon local variables in the context

– you can pass them as arguments to functions

– you can return them as results

– you can store them in data structures

• This feature makes it easy to create powerful abstractions

• Because it is easy, it encourages a programming style in which
there is great code reuse, many abstractions and clear code

Functions as First-Class Data

• An example:

• Storing functions in data structures:

• .. any data structure:

plus1 x = x + 1
minus1 x = x - 1

funp :: (Int -> Int, Int -> Int)
funp = (plus1, minus1)

funs :: [Int -> Int]
funs = [plus1, minus1, plus1]

Functions as Inputs

• An example:

• Using it:

doTwice f x = f (f x)

plus2 :: Int -> Int
plus2 = doTwice plus1

Functions as Inputs

• An example:

• Using it:

• Reasoning about it:

doTwice f x = f (f x)

plus2 :: Int -> Int
plus2 = doTwice plus1

 plus2 3

Functions as Inputs

• An example:

• Using it:

• Reasoning about it:

doTwice f x = f (f x)

plus2 :: Int -> Int
plus2 = doTwice plus1

 plus2 3
= (doTwice plus1) 3 (unfold plus2)

Functions as Inputs

• An example:

• Using it:

• Reasoning about it:

doTwice f x = f (f x)

plus2 :: Int -> Int
plus2 = doTwice plus1

 plus2 3
= (doTwice plus1) 3 (unfold plus2)
= doTwice plus1 3 (parenthesis convention)

(f x) y == f x y

Functions as Inputs

• An example:

• Using it:

• Reasoning about it:

doTwice f x = f (f x)

plus2 :: Int -> Int
plus2 = doTwice plus1

 plus2 3
= (doTwice plus1) 3 (unfold plus2)
= doTwice plus1 3 (parenthesis convention)
= plus1 (plus1 3) (unfold doTwice)
= plus1 (3 + 1) (unfold plus1)
= plus1 4 (def of +)
= 4 + 1 = 5 (unfold plus1, def of +)

(f x) y == f x y

Interlude

• What have we learned?

Interlude

• What have we learned? Almost nothing!

– function application is left-associative:

• ((f x) y) z == f x y z

– like + or - is left-associative:

• (3 - 4) - 6 == 3 - 4 - 6

– this is useful, but intellectually uninteresting

• We have, however, unlearned something important:

– some things one might have thought were fundamental
differences between functions and other data types, turn out
not to be differences at all!

• PL researchers (like me!) often work with the theory of
functional languages because they are uniform and elegant

– they don't make unnecessary distinctions

– they get right down to the essentials, the heart of computation

– at the same time, they do not lack expressiveness

Functions as Results

• Rather than writing multiple functions "plus1", "plus2",
"plus3" we can write one:

• plusn returns a function -- one that adds n to its argument

• any time we need an instance of plus, it is easy to build one:

• we can also use plusn directly:

plusn :: Int -> (Int -> Int)
plusn n = f
 where f x = x + n

plus10 :: Int -> Int
plus10 = plusn 10

result1 = (plusn 25) 100

Functions as Results

• More trivial reasoning:

result1 = (plusn 25) 100
 = (f) 100 where f x = x + 25 (unfold plusn)
 = 100 + 25 (unfold f)
 = 125 (def of +)

plusn :: Int -> (Int -> Int)
plusn n = f
 where f x = x + n

Precedence & Partial Application

• Function app is left-assoc.; Function types are right-assoc.

• We've seen two uses of plusn:

• Whenever we have a function f with type T1 -> T2 -> T3, we can
choose:

– apply f to both arguments right now, giving a T3

– partially applying f, ie: applying f to one argument, yielding new
function with type T2 -> T3 and a chance to apply the new function
to a second argument later

(plusn 25) 100 == plusn 25 100

 Int -> (Int -> Int) == Int -> Int -> Int

plus20 = plusn 20

oneTwentyFive = plusn 25 100

partial
application

Defining higher-order functions

• The following was a stupid way to define plusn --- but it made it
clear plusn was indeed returning a function:

• This is more beautiful code:

• We can prove them equivalent for all arguments a and b

• So of course we can partially apply plusn' just like plusn

plusn :: Int -> Int -> Int
plusn n = f
 where f x = x + n

plusn' :: Int -> Int -> Int
plusn' n x = x + n

plusn a b = f b where f x = x + a (unfold plusn)
 = b + a (unfold f)
 = plusn' a b (fold plusn')

ANONYMOUS FUNCTIONS

Anonymous Numbers

• You are all used to writing down numbers inside expressions

– This:

– Is way more compact than this:

– Why can't functions play by the same rules?

2 + 3

two = 2
three = 3
sum = two + three

Anonymous Numbers

• Compare:

• When are anonymous functions a good idea?

– When functions are small and not reused.

• Why is this a good language feature?

– It encourages the definition of abstractions like doTwice

– Why? Without anonymous functions, doTwice would be a little
harder to use -- heavier weight; programmers would do it less

– Moreover, why make different rules for numbers vs. functions?

plus1 x = x + 1
minus1 x = x - 1
doTwice f x = f (f x)

baz = doTwice plus1 3
bar = doTwice minus1 7

doTwice f x = f (f x)

baz' = doTwice (\x -> x + 1) 3
bar' = doTwice (\x -> x - 1) 7

function with
argument x

More useful abstractions

• Do you like shell scripting? Why not build your own pipeline
operator in Haskell?

• Use it:

(|>) x f = f x

define an infix operator
by putting a name made
of symbols inside parens

arguments, body
are the same as
usual

dothrice f x = x |> f |> f |> f

transmute x = x |> plusn 4
 |> minus1
 |> even
 |> not

More useful abstractions

• Do you like shell scripting? Why not build your own pipeline
operator in Haskell?

• Use it:

(|>) x f = f x

define an infix operator
by putting a name made
of symbols inside parens

arguments, body
are the same as
usual

dothrice f x = x |> f |> f |> f

transmute x = x |> (plusn 4)
 |> minus1
 |> even
 |> not

by defaullt:
function application
has the highest
precedence

by default: operators
left associative

More useful abstractions

• Do you like shell scripting? Why not build your own pipeline
operator in Haskell?

• Use it:

(|>) x f = f x

define an infix operator
by putting a name made
of symbols inside parens

arguments, body
are the same as
usual

dothrice f x = x |> f |> f |> f

transmute x = ((((x |> plusn 4)
 |> minus1)
 |> even)
 |> not)

by default: operators
left associative

More useful abstractions

• Understanding functions in Haskell often boils down to
understanding their type

• What type does the pipeline operator have?

• Read it like this: "for all types a and all types b, |> takes a
value of type a and a function from a to b and returns a b"

• Hence:

(|>) x f = f x

(|>) :: a -> (a -> b) -> b

(3 |> plus1) :: Int (a was Int, b was Int)

(3 |> even) :: Bool (a was Int, b was Bool)

("hello" |> putStrLn) :: IO () (a was String, b was IO ())

More useful abstractions

• Another heavily-used operator, function composition:

(.) f g x = f (g x)

More useful abstractions

• Another heavily-used operator, function composition:

• What type does it have?

(.) f g x = f (g x)

(.) :: (b -> c) -> (a -> b) -> (a -> c)

type of f type of g type of f . g

More useful abstractions

• Another heavily-used operator, function composition:

• What type does it have?

• Examples:

(.) f g x = f (g x)

plus2 = plus1 . plus1

odd = even . plus1

bof = doTwice plus1 . doTwice minus1
baz = doTwice (plus1 . minus1)

(.) :: (b -> c) -> (a -> b) -> (a -> c)

type of f type of g type of f . g

Exercise: prove
equivalence

ABSTRACTING RECURSION
PATTERNS

Abstracting Computation Patterns

• Higher-order functions and polymorphism are the "secret
sauce" that really makes functional programming fun

• They make it not only possible but easy and delightful* for
programmers to factor out repeated patterns in their code
into highly reuseable routines

• It's especially effective in recursive routines -- one can
sometimes eliminate the explicit recursion to be left with
simple, non-recursive and abundantly clear code.

* Some people find delight from different sources than I do.

Recall: Polymorphic Lists

• Lists are heavily used in Haskell and other functional
programming languages because they are light-weight, built-in
"collection" data structure

• However, every major idea we present using lists applies
similarly to any collection data structure we might define

• Recall some of the basic operations:

[] :: [a]

(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

head :: [a] -> a

tail :: [a] -> a

length :: [a] -> Int

cool!
The empty list
is a polymorphic
data structure

Computation Pattern: "Apply to all"

• Recall that strings are lists:

• Suppose we want to convert all characters to upper case:

• Here I've applied toUpper to all elements of the list

type String = [Char]

toUpperString :: String -> String
toUpperString [] = []
toUpperString (x:xs) = toUpper x : toUpperString xs

Comment: try finding functions like "toUpper" by searching by type on http://haskell.org/hoogle

Computation Pattern: "Apply to all"

• Similar idioms come up often, even in completely different
applications:

• It is easy to move a single point:

• And with more work, entire polygon:

type Point= (Int, Int)
type Vector = (Int, Int)
type Polygon = [XY]

shift :: Vector -> Polygon -> Polygon
shift d [] = []
shift d (x:xs) = shiftPoint d x : shift d xs

shiftPoint :: Vector -> Point -> Point
shiftPoint (dx, dy) (x, y) = (x + dx, y + dy)

Computation Pattern: "Apply to all"

• How to extract the pattern?

• vs

shift :: Vector -> Polygon -> Polygon
shift d [] = []
shift d (x:xs) = shiftPoint d x : shift d xs

toUpperString :: String -> String
toUpperString [] = []
toUpperString (x:xs) = toUpper x : toUpperString xs

Computation Pattern: "Apply to all"

• How to extract the pattern?

• vs

• Here's the common pattern:

• map applies f to all elements of the list in place

shift :: Vector -> Polygon -> Polygon
shift d [] = []
shift d (x:xs) = shiftPoint d x : shift d xs

toUpperString :: String -> String
toUpperString [] = []
toUpperString (x:xs) = toUpper x : toUpperString xs

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Computation Pattern: "Apply to all"

• Rewriting:

• and

• Now that's delightful!

• Compare:

shift d polygon = map (shiftPoint d) polygon

toUpperString s = map toUpper s

shift d [] = []
shift d (x:xs) = shiftPoint d x : shift d xs

toUpperString [] = []
toUpperString (x:xs) = toUpper x : toUpperString xs

partial
application

A step further

• Rewrite this:

• To this:

shift d polygon = map (shiftPoint d) polygon

toUpperString s = map toUpper s

shift d = map (shiftPoint d)

toUpperString = map toUpper

A step further

• Rewrite this:

• To this:

• In general, rewrite:

• To

shift d polygon = map (shiftPoint d) polygon

toUpperString s = map toUpper s

shift d = map (shiftPoint d)

toUpperString = map toUpper

f x = e x

f = e (when x does not appear in e)

this is quite common but
I actually find it harder to read

the syntactic redundancy with
argument "x" gives me a hint
about the type

Computation Pattern: Iteration

• Two more functions:

• You can see the syntactic pattern. How do I capture it?

listAdd [] = 0
listAdd (x:xs) = x + (listAdd xs)

listMul [] = 1
listMul (x:xs) = x * (listMul xs)

Computation Pattern: Iteration

• Two more functions:

• You can see the syntactic pattern. How do I capture it?

listAdd [] = 0
listAdd (x:xs) = x + (listAdd xs)

listMul [] = 1
listMul (x:xs) = x * (listMul xs)

foldr op base [] = base
foldr op base (x:xs) = x `op` (foldr op base xs)

Computation Pattern: Iteration

• Two more functions:

• You can see the syntactic pattern. How do I capture it?

listAdd [] = 0
listAdd (x:xs) = x + (listAdd xs)

listMul [] = 1
listMul (x:xs) = x * (listMul xs)

foldr op base [] = base
foldr op base (x:xs) = x `op` (foldr op base xs)

listAdd = foldr 0 (+)

listMul = foldr 1 (*)

Computation Pattern: Iteration

• Some more folds:

length xs = length [] = 0
length (x:xs) = 1 + (length xs)

factorial 0 = 1
factorial n = n * (factorial (n-1))

factorial n =

sequence as = sequence_ :: [IO ()] -> IO ()
sequence_ [] = null
sequence_ (a:as) = a >> sequence_ as

foldr op base [] = base
foldr op base (x:xs) = x `op` (foldr op base xs)

Computation Pattern: Iteration

• Some more folds:

length xs = foldr 0 (1+) xs length [] = 0
length (x:xs) = 1 + (length xs)

factorial 0 = 1
factorial n = n * (factorial (n-1))

factorial n =

sequence as = sequence_ :: [IO ()] -> IO ()
sequence_ [] = null
sequence_ (a:as) = a >> sequence_ as

foldr op base [] = base
foldr op base (x:xs) = x `op` (foldr op base xs)

Computation Pattern: Iteration

• Some more folds:

length xs = foldr 0 (1+) xs length [] = 0
length (x:xs) = 1 + (length xs)

factorial 0 = 1
factorial n = n * (factorial (n-1))

factorial n = foldr 1 (*) [1..n]

sequence as = sequence_ :: [IO ()] -> IO ()
sequence_ [] = null
sequence_ (a:as) = a >> sequence_ as

foldr op base [] = base
foldr op base (x:xs) = x `op` (foldr op base xs)

Computation Pattern: Iteration

• Some more folds:

length xs = foldr 0 (1+) xs length [] = 0
length (x:xs) = 1 + (length xs)

factorial 0 = 1
factorial n = n * (factorial (n-1))

factorial n = foldr 1 (*) [1..n]

sequence as = foldr null (>>) as sequence_ :: [IO ()] -> IO ()
sequence_ [] = null
sequence_ (a:as) = a >> sequence_ as

foldr op base [] = base
foldr op base (x:xs) = x `op` (foldr op base xs)

Map and Fold

• Can we define map in terms of foldr?

map :: (a -> b) -> [a] -> [b]

foldr :: b -> (a -> b -> b) -> [a] -> b

Map and Fold

• Can we define map in terms of foldr?

map :: (a -> b) -> [a] -> [b]

foldr :: b -> (a -> b -> b) -> [a] -> b

map f xs = foldr [] (\x ys -> f x : ys) xs

Map and Fold

• Can we define foldr in terms of map?

map :: (a -> b) -> [a] -> [b]

foldr :: b -> (a -> b -> b) -> [a] -> b

Map and Fold

• Can we define foldr in terms of map?

– No. How do we prove it?

– A formal theorem might say:

• for all b, f, xs, there exists g, ys such that foldr b f xs == map g ys

map :: (a -> b) -> [a] -> [b]

foldr :: b -> (a -> b -> b) -> [a] -> b

Map and Fold

• Can we define foldr in terms of map?

– No. How do we prove it?

– A formal theorem might say:

• for all b, f, xs, there exists g, ys such that foldr b f xs == map g ys

– To disprove that theorem, find a counter-example. Consider:

• length xs = foldr 0 (1+) xs

– Does there exist a g and ys such that

• fold 0 (1+) xs == map g ys ?

map :: (a -> b) -> [a] -> [b]

foldr :: b -> (a -> b -> b) -> [a] -> b

Map and Fold

• Can we define foldr in terms of map?

– No. How do we prove it?

– A formal theorem might say:

• for all b, f, xs, there exists g, ys such that foldr b f xs == map g ys

– To disprove that theorem, find a counter-example. Consider:

• length xs = foldr 0 (1+) xs

– Does there exist a g and ys such that

• fold 0 (1+) xs == map g ys ?

– Consider the types:

• fold 0 (1+) xs :: Int

• map g ys :: [b]

map :: (a -> b) -> [a] -> [b]

foldr :: b -> (a -> b -> b) -> [a] -> b

incomparable types no matter what b is!

Exercises

• Lists are one kind of container data structure; they support

– map: the "apply all in place" pattern

– fold: "the accumulative iteration" pattern

• What about trees?

• Define treeMap and treeFold

• Give them appropriate types

• Can you define treeMap in terms of treeFold? Vice versa?

data Tree a = Leaf a | Branch (Tree a) (Tree a)

A NOTE ON I/O

A Note on I/O

• What is the null action?

• return is very (very!) different from return in Java or C

• "return v" creates an action that has no effect but results in v

null :: IO ()
null = return ()

return "hi" -- action that returns the string "hi" and does nothing else
return () -- action that returns the unit value () and does nothing else

A Note on I/O

• We can use return in conjunction with do notation

• Example:

• In general:

• This is another powerful law for reasoning about programs
using substitution of equals for equals

• The fascinating thing is that it interacts safely with effects

• More on this later!

do
 s <- return "hi"
 putStrLn s

do
 putStrLn "hi" =

do
 x <- return e
 ... x ... x ...

do
 ... e ... e ... =

SUMMARY

Summary

• Higher-order programs

– receive functions as arguments

– return functions as results

– store functions in data structures

– use anonymous functions wisely

• Great programmers identify repeated patterns in their code and
devise higher-order functions to capture them

– map and fold are two of the most useful

