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Agenda 

• Haskell so far: 

– First-order functions 

 

• This time: 

– Higher-order functions: 

• Functions as data, arguments & results 

• Reuseable abstractions 

• Capturing recursion patterns 

– Functional programming really starts to differentiate itself! 



FUNCTIONS AS FIRST CLASS VALUES 



A Perspective on Java 

• In Java, you can do lots of things with integers: 

– create them whereever you want, in any bit of code 

– operate on them (add, subtract, etc) 

– pass them to functions, return them as results from functions 

– store them in data structures 

• In Java, you can do barely anything at all with a method: 

– all you can do is declare a method inside a pre-existing class 

• you can't pass them to functions 

• you can't return them as results 

• you can't store them in data structures 

• you can't define them locally where you need them 

– of course, you can declare an entire new class (at the top level) 
and put the one method you are interested in inside it 

• this is incredibly heavy weight and still isn't very flexible!! 

• you still can't define methods locally where you want them 

 



Functions as First-Class Data 

• Haskell treats functions as first-class data.  So does: 

– SML, OCaml, Scala (an OO language) 

 

• "First-class" == all the "privileges" of any other data type: 

– you can declare them where ever you want 

• declarations can depend upon local variables in the context 

– you can pass them as arguments to functions 

– you can return them as results 

– you can store them in data structures 

 

• This feature makes it easy to create powerful abstractions 

• Because it is easy, it encourages a programming style in which 
there is great code reuse, many abstractions and clear code 



Functions as First-Class Data 

• An example: 

 

 

• Storing functions in data structures: 

 

 

 

• .. any data structure: 

 

 

 

 

plus1    x = x + 1 
minus1 x = x - 1 

funp :: (Int -> Int, Int -> Int) 
funp = (plus1, minus1) 

funs :: [Int -> Int] 
funs = [plus1, minus1, plus1] 



Functions as Inputs 

• An example: 

 

 

• Using it: 

 

 

 

 

 

 

 

 

doTwice f x = f (f x) 

plus2 :: Int -> Int 
plus2 = doTwice plus1  



Functions as Inputs 

• An example: 

 

 

• Using it: 

 

 

 

• Reasoning about it: 

 

 

 

 

doTwice f x = f (f x) 

plus2 :: Int -> Int 
plus2 = doTwice plus1  

    plus2 3 



Functions as Inputs 

• An example: 

 

 

• Using it: 

 

 

 

• Reasoning about it: 

 

 

 

 

doTwice f x = f (f x) 

plus2 :: Int -> Int 
plus2 = doTwice plus1  

    plus2 3 
= (doTwice plus1) 3 (unfold plus2) 



Functions as Inputs 

• An example: 

 

 

• Using it: 

 

 

 

• Reasoning about it: 

 

 

 

 

doTwice f x = f (f x) 

plus2 :: Int -> Int 
plus2 = doTwice plus1  

    plus2 3 
= (doTwice plus1) 3 (unfold plus2) 
= doTwice plus1 3 (parenthesis convention) 

(f x) y == f x y 



Functions as Inputs 

• An example: 

 

 

• Using it: 

 

 

 

• Reasoning about it: 

 

 

 

 

doTwice f x = f (f x) 

plus2 :: Int -> Int 
plus2 = doTwice plus1  

    plus2 3 
= (doTwice plus1) 3 (unfold plus2) 
= doTwice plus1 3 (parenthesis convention) 
= plus1 (plus1 3)  (unfold doTwice) 
= plus1 (3 + 1)  (unfold plus1) 
= plus1 4  (def of +) 
= 4 + 1 = 5  (unfold plus1, def of +) 

(f x) y == f x y 



Interlude 

• What have we learned?   

 

 



Interlude 

• What have we learned?  Almost nothing! 

– function application is left-associative: 

• ((f x) y) z == f x y z  

– like + or - is left-associative: 

• (3 - 4) - 6 == 3 - 4 - 6 

– this is useful, but intellectually uninteresting 

• We have, however, unlearned something important: 

– some things one might have thought were fundamental 
differences between functions and other data types,  turn out 
not to be differences at all! 

• PL researchers (like me!) often work with the theory of 
functional languages because they are uniform and elegant 

– they don't make unnecessary distinctions 

– they get right down to the essentials, the heart of computation 

– at the same time, they do not lack expressiveness 

 

 



Functions as Results 

• Rather than writing multiple functions "plus1", "plus2", 
"plus3" we can write one: 

 

 

 

• plusn returns a function -- one that adds n to its argument 

• any time we need an instance of plus, it is easy to build one: 

 

 

 

• we can also use plusn directly: 

 

plusn :: Int -> (Int -> Int) 
plusn n = f 
    where f x = x + n 

plus10 :: Int -> Int 
plus10 = plusn 10 

result1   = (plusn 25) 100 



Functions as Results 

• More trivial reasoning: 

 
result1   = (plusn 25) 100 
 = (f) 100 where f x = x + 25  (unfold plusn) 
 = 100 + 25   (unfold f) 
 = 125    (def of +)  

plusn :: Int -> (Int -> Int) 
plusn n = f 
    where f x = x + n 



Precedence & Partial Application 

• Function app is left-assoc.; Function types are right-assoc. 

 

 

 

• We've seen two uses of plusn: 

 

 

 

• Whenever we have a function f with type T1 -> T2 -> T3, we can 
choose: 

– apply f to both arguments right now, giving a T3 

– partially applying f, ie: applying f to one argument, yielding new 
function with type T2 -> T3 and a chance to apply the new function 
to a second argument later 

 

(plusn 25) 100 == plusn 25 100 
 
 Int -> (Int -> Int) == Int -> Int -> Int 

plus20 = plusn 20 
 
oneTwentyFive = plusn 25 100 

 

partial 
application 



Defining higher-order functions 

• The following was a stupid way to define plusn --- but it made it 
clear plusn was indeed returning a function: 

 

 

 

• This is more beautiful code: 

 

 

• We can prove them equivalent for all arguments a and b 

 

 

 

• So of course we can partially apply plusn' just like plusn 

plusn :: Int -> Int -> Int 
plusn n = f 
    where f x = x + n 

plusn' :: Int -> Int -> Int 
plusn' n x = x + n 

plusn a b  = f b where f x = x + a (unfold plusn) 
   = b + a   (unfold f) 
   = plusn' a b  (fold plusn') 



ANONYMOUS FUNCTIONS 



Anonymous Numbers 

• You are all used to writing down numbers inside expressions 

– This: 

 

 

– Is way more compact than this: 

 

 

 

 

– Why can't functions play by the same rules? 

2 + 3 

two = 2 
three = 3 
sum = two + three 



Anonymous Numbers 

• Compare: 

 

 

 

 

 

 

• When are anonymous functions a good idea?   

– When functions are small and not reused. 

• Why is this a good language feature? 

– It encourages the definition of abstractions like doTwice 

– Why?  Without anonymous functions, doTwice would be a little 
harder to use -- heavier weight; programmers would do it less 

– Moreover, why make different rules for numbers vs. functions? 

plus1 x       = x + 1 
minus1 x     = x - 1 
doTwice f x = f (f x) 
 
baz = doTwice plus1 3 
bar = doTwice minus1 7 

doTwice f x = f (f x) 
 
baz' = doTwice (\x -> x + 1) 3 
bar' = doTwice (\x -> x - 1) 7 

function with 
argument x 



More useful abstractions 

• Do you like shell scripting?  Why not build your own pipeline 
operator in Haskell? 

 

 

 

 

 

• Use it: 

(|>) x f = f x 

define an infix operator 
by putting a name made 
of symbols inside parens 

arguments, body 
are the same as 
usual 

dothrice f x = x |> f |> f |> f 
 
transmute x = x |> plusn 4  
                             |> minus1  
                             |> even  
                             |> not  



More useful abstractions 

• Do you like shell scripting?  Why not build your own pipeline 
operator in Haskell? 

 

 

 

 

 

• Use it: 

(|>) x f = f x 

define an infix operator 
by putting a name made 
of symbols inside parens 

arguments, body 
are the same as 
usual 

dothrice f x = x |> f |> f |> f 
 
transmute x = x |> (plusn 4)  
                             |> minus1  
                             |> even  
                             |> not  

by defaullt: 
function application 
has the highest  
precedence 

by default:  operators 
left associative 



More useful abstractions 

• Do you like shell scripting?  Why not build your own pipeline 
operator in Haskell? 

 

 

 

 

 

• Use it: 

(|>) x f = f x 

define an infix operator 
by putting a name made 
of symbols inside parens 

arguments, body 
are the same as 
usual 

dothrice f x = x |> f |> f |> f 
 
transmute x = ((((x |> plusn 4)  
                                  |> minus1)  
                                  |> even) 
                                  |> not)  

by default:  operators 
left associative 



More useful abstractions 

• Understanding functions in Haskell often boils down to 
understanding their type 

• What type does the pipeline operator have? 

 

 

 

 

• Read it like this:  "for all types a and all types b, |> takes a 
value of type a and a function from a to b and returns a b" 

• Hence: 

 

 

 

(|>) x f = f x 

(|>) :: a -> (a -> b) -> b 

( 3 |>  plus1 )            :: Int (a was Int, b was Int) 
 
( 3 |> even )            :: Bool (a was Int, b was Bool) 
 
( "hello" |> putStrLn )  :: IO () (a was String, b was IO ()) 



More useful abstractions 

• Another heavily-used operator, function composition: 

 

 

 

 

 

 

 

 

 

 

(.) f g x = f (g x) 



More useful abstractions 

• Another heavily-used operator, function composition: 

 

 

• What type does it have? 

 

 

 

 

 

 

 

(.) f g x = f (g x) 

(.) :: (b -> c) -> (a -> b) -> (a -> c) 

type of f type of g type of f . g 



More useful abstractions 

• Another heavily-used operator, function composition: 

 

 

• What type does it have? 

 

 

 

 

• Examples: 

 

 

(.) f g x = f (g x) 

plus2 = plus1 . plus1 
 
odd = even . plus1 
 
bof = doTwice plus1 .  doTwice minus1 
baz = doTwice (plus1 . minus1)  

(.) :: (b -> c) -> (a -> b) -> (a -> c) 

type of f type of g type of f . g 

Exercise: prove 
equivalence 



ABSTRACTING RECURSION 
PATTERNS 



Abstracting Computation Patterns 

• Higher-order functions and polymorphism are the "secret 
sauce" that really makes functional programming fun 

 

• They make it not only possible but easy and delightful* for 
programmers to factor out repeated patterns in their code 
into highly reuseable routines 

 

• It's especially effective in recursive routines -- one can 
sometimes eliminate the explicit recursion to be left with 
simple, non-recursive and abundantly clear code. 

 

* Some people find delight from different sources than I do. 



Recall:  Polymorphic Lists 

• Lists are heavily used in Haskell and other functional 
programming languages because they are light-weight, built-in 
"collection" data structure 

• However, every major idea we present using lists applies 
similarly to any collection data structure we might define 

• Recall some of the basic operations: 

[ ]  :: [a] 
 
(:)  :: a -> [a] -> [a] 
 
(++)  :: [a] -> [a] -> [a] 
 
head  :: [a] -> a 
 
tail  :: [a] -> a  
 
length  :: [a] -> Int 

cool! 
The empty list 
is a polymorphic 
data structure 



Computation Pattern:  "Apply to all" 

• Recall that strings are lists: 

 

 

• Suppose we want to convert all characters to upper case: 

 

 

 

• Here I've applied toUpper to all elements of the list 

 

 

 

type String = [Char] 

toUpperString :: String -> String 
toUpperString [ ]       = [ ] 
toUpperString (x:xs) = toUpper x : toUpperString xs 

Comment:  try finding functions like "toUpper" by searching by type on http://haskell.org/hoogle 



Computation Pattern:  "Apply to all" 

• Similar idioms come up often, even in completely different 
applications: 

 

 

 

• It is easy to move a single point: 

 

 

 

• And with more work, entire polygon: 

 

 

 

 

 

 

 

 

type Point= (Int, Int) 
type Vector = (Int, Int) 
type Polygon = [XY] 

shift :: Vector -> Polygon -> Polygon 
shift d [ ]       = [ ] 
shift d (x:xs) = shiftPoint d x : shift d xs 

shiftPoint :: Vector -> Point -> Point 
shiftPoint (dx, dy) (x, y) = (x + dx, y + dy) 



Computation Pattern:  "Apply to all" 

• How to extract the pattern? 

 

 

 

• vs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shift :: Vector -> Polygon -> Polygon 
shift d [ ]       = [ ] 
shift d (x:xs) = shiftPoint d x : shift d xs 

toUpperString :: String -> String 
toUpperString [ ]       = [ ] 
toUpperString (x:xs) = toUpper x : toUpperString xs 



Computation Pattern:  "Apply to all" 

• How to extract the pattern? 

 

 

 

• vs 

 

 

 

• Here's the common pattern: 

 

 

 

• map applies f to all elements of the list in place 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shift :: Vector -> Polygon -> Polygon 
shift d [ ]       = [ ] 
shift d (x:xs) = shiftPoint d x : shift d xs 

toUpperString :: String -> String 
toUpperString [ ]       = [ ] 
toUpperString (x:xs) = toUpper x : toUpperString xs 

map :: (a -> b) -> [a] -> [b] 
map f [ ]       = [ ] 
map f (x:xs) = f x : map f xs 



Computation Pattern:  "Apply to all" 

• Rewriting: 

 

 

• and 

 

 

• Now that's delightful! 

• Compare: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shift d polygon = map (shiftPoint d)  polygon 

toUpperString s = map toUpper s  

shift d [ ]       = [ ] 
shift d (x:xs) = shiftPoint d x : shift d xs 

 
toUpperString [ ]       = [ ] 
toUpperString (x:xs) = toUpper x : toUpperString xs 

partial 
application 



A step further 

• Rewrite this: 

 

 

 

• To this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shift d polygon = map (shiftPoint d)  polygon 

toUpperString s = map toUpper s  

shift d = map (shiftPoint d) 

toUpperString = map toUpper  



A step further 

• Rewrite this: 

 

 

 

• To this: 

 

 

 

• In general, rewrite: 

 

• To 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shift d polygon = map (shiftPoint d)  polygon 

toUpperString s = map toUpper s  

shift d = map (shiftPoint d) 

toUpperString = map toUpper  

f x = e x 

f = e       (when x does not appear in e) 

this is quite common but  
I actually find it harder to read 
 
the syntactic redundancy with 
argument "x" gives me a hint  
about the type 



Computation Pattern:  Iteration 

• Two more functions: 

 

 

 

 

 

• You can see the syntactic pattern.  How do I capture it? 

listAdd [ ] = 0 
listAdd (x:xs) = x + (listAdd xs) 
 
listMul [ ] = 1 
listMul (x:xs) = x * (listMul xs) 



Computation Pattern:  Iteration 

• Two more functions: 

 

 

 

 

 

• You can see the syntactic pattern.  How do I capture it? 

listAdd [ ] = 0 
listAdd (x:xs) = x + (listAdd xs) 
 
listMul [ ] = 1 
listMul (x:xs) = x * (listMul xs) 

foldr op base [ ] = base 
foldr op base (x:xs) = x `op` (foldr op base xs) 



Computation Pattern:  Iteration 

• Two more functions: 

 

 

 

 

 

• You can see the syntactic pattern.  How do I capture it? 

listAdd [ ] = 0 
listAdd (x:xs) = x + (listAdd xs) 
 
listMul [ ] = 1 
listMul (x:xs) = x * (listMul xs) 

foldr op base [ ] = base 
foldr op base (x:xs) = x `op` (foldr op base xs) 
 
listAdd = foldr 0 (+)  
 
listMul = foldr 1 (*)  



Computation Pattern:  Iteration 

• Some more folds: 

length xs = length [ ]       = 0 
length (x:xs) = 1 + (length xs) 

factorial 0 = 1 
factorial n = n * (factorial (n-1)) 

factorial n = 

sequence as = sequence_ :: [IO ()] -> IO ()  
sequence_ [ ]        = null 
sequence_ (a:as)  = a >> sequence_ as 

foldr op base [ ] = base 
foldr op base (x:xs) = x `op` (foldr op base xs) 



Computation Pattern:  Iteration 

• Some more folds: 

length xs = foldr 0 (1+) xs length [ ]       = 0 
length (x:xs) = 1 + (length xs) 

factorial 0 = 1 
factorial n = n * (factorial (n-1)) 

factorial n = 

sequence as = sequence_ :: [IO ()] -> IO ()  
sequence_ [ ]        = null 
sequence_ (a:as)  = a >> sequence_ as 

foldr op base [ ] = base 
foldr op base (x:xs) = x `op` (foldr op base xs) 



Computation Pattern:  Iteration 

• Some more folds: 

length xs = foldr 0 (1+) xs length [ ]       = 0 
length (x:xs) = 1 + (length xs) 

factorial 0 = 1 
factorial n = n * (factorial (n-1)) 

factorial n = foldr 1 (*) [1..n] 

sequence as = sequence_ :: [IO ()] -> IO ()  
sequence_ [ ]        = null 
sequence_ (a:as)  = a >> sequence_ as 

foldr op base [ ] = base 
foldr op base (x:xs) = x `op` (foldr op base xs) 



Computation Pattern:  Iteration 

• Some more folds: 

length xs = foldr 0 (1+) xs length [ ]       = 0 
length (x:xs) = 1 + (length xs) 

factorial 0 = 1 
factorial n = n * (factorial (n-1)) 

factorial n = foldr 1 (*) [1..n] 

sequence as = foldr null (>>) as sequence_ :: [IO ()] -> IO ()  
sequence_ [ ]        = null 
sequence_ (a:as)  = a >> sequence_ as 

foldr op base [ ] = base 
foldr op base (x:xs) = x `op` (foldr op base xs) 



Map and Fold 

 

 

 

• Can we define map in terms of foldr? 

 

 

map :: (a -> b) -> [a] -> [b] 
 
foldr :: b -> (a -> b -> b) -> [a] -> b 



Map and Fold 

 

 

 

• Can we define map in terms of foldr? 

 

 

map :: (a -> b) -> [a] -> [b] 
 
foldr :: b -> (a -> b -> b) -> [a] -> b 

map f xs = foldr [] (\x ys -> f x : ys) xs  



Map and Fold 

 

 

 

• Can we define foldr in terms of map? 

map :: (a -> b) -> [a] -> [b] 
 
foldr :: b -> (a -> b -> b) -> [a] -> b 



Map and Fold 

 

 

 

• Can we define foldr in terms of map? 

– No.  How do we prove it? 

– A formal theorem might say:   

• for all b, f, xs, there exists g, ys such that foldr b f xs == map g ys 

 

map :: (a -> b) -> [a] -> [b] 
 
foldr :: b -> (a -> b -> b) -> [a] -> b 



Map and Fold 

 

 

 

• Can we define foldr in terms of map? 

– No.  How do we prove it? 

– A formal theorem might say:   

• for all b, f, xs, there exists g, ys such that foldr b f xs == map g ys 

– To disprove that theorem, find a counter-example. Consider: 

• length xs = foldr 0 (1+) xs 

– Does there exist a g and ys such that 

• fold 0 (1+) xs == map g ys   ? 

map :: (a -> b) -> [a] -> [b] 
 
foldr :: b -> (a -> b -> b) -> [a] -> b 



Map and Fold 

 

 

 

• Can we define foldr in terms of map? 

– No.  How do we prove it? 

– A formal theorem might say:   

• for all b, f, xs, there exists g, ys such that foldr b f xs == map g ys 

– To disprove that theorem, find a counter-example. Consider: 

• length xs = foldr 0 (1+) xs 

– Does there exist a g and ys such that 

• fold 0 (1+) xs == map g ys   ? 

– Consider the types: 

• fold 0 (1+) xs :: Int 

• map g ys :: [b]       

map :: (a -> b) -> [a] -> [b] 
 
foldr :: b -> (a -> b -> b) -> [a] -> b 

incomparable types no matter what b is! 



Exercises 

• Lists are one kind of container data structure; they support 

– map:  the "apply all in place" pattern 

– fold:  "the accumulative iteration" pattern 

 

• What about trees? 

 

 

• Define treeMap and treeFold 

• Give them appropriate types 

• Can you define treeMap in terms of treeFold?  Vice versa? 

 

 

data Tree a = Leaf a | Branch (Tree a) (Tree a) 



A NOTE ON I/O 



A Note on I/O 

• What is the null action? 

 

 

• return is very (very!) different from return in Java or C 

 

• "return v" creates an action that has no effect but results in v 

 

 

null :: IO () 
null = return () 

return "hi"     -- action that returns the string "hi" and does nothing else 
return ()         -- action that returns the unit value () and does nothing else 



A Note on I/O 

• We can use return in conjunction with do notation 

• Example: 

 

 

 

• In general: 

 

 

 

• This is another powerful law for reasoning about programs 
using substitution of equals for equals 

• The fascinating thing is that it interacts safely with effects 

• More on this later! 

do 
    s <- return "hi" 
    putStrLn s 

do 
    putStrLn "hi" = 

do 
    x <- return e 
    ... x ... x ... 

do 
    ... e ... e ... = 



SUMMARY 



Summary 

• Higher-order programs 

– receive functions as arguments 

– return functions as results 

– store functions in data structures 

– use anonymous functions wisely 

 

• Great programmers identify repeated patterns in their code and 
devise higher-order functions to capture them 

– map and fold are two of the most useful  


