
Introducing Haskell

COS 441 Slides 3

Slide content credits:
Ranjit Jhala (UCSD)

Benjamin Pierce (UPenn)

Course Agenda (Initial Lectures)

• Week 1 (Appel):

– Syntactic definitions

– Denotational definitions

– Proofs by induction

• The coming weeks (Walker):

– Introduction to Haskell

– Syntactic definitions in Haskell

– Denotational definitions in Haskell

– Proofs in Haskell and about Haskell programs

– Type classes

– Applications of denotational semantics:

• Domain-specific languages for graphics & animation

PL: Some Broad Categories

• Imperative

– oriented around assignment to variables and simple control flow

– C, Pascal, Go

• Object-oriented (Class-based)

– oriented around classes and objects

– Java, C#

• Logic programming

– oriented around logical formulae, unification and search

– Prolog, Twelf

• Functional

– oriented around functions and immutable data structures

– SML, O’Caml, F#, Coq, Scheme, Map-Reduce, Erlang, Haskell

Vastly Abbreviated FP Geneology

LCF Theorem
Prover (70s)

Edinburgh ML

Miranda (80s)

Haskell
(90s - now)

Standard ML
(90s - now) OCaml

(90s - now)

Caml
(80s-now)

F#
(now)

LISP
(50s-now)

Scheme
(70s-now)

lazy, pure

typed, polymorphic

untyped

Coq
(80s - now)

dependently
typed

Functional Languages: Who’s using them?

F# in Visual Studio

Functional Languages: Who’s using them?

F# in Visual Studio

Erlang for
concurrency,
Haskell for
managing PHP

Functional Languages: Who’s using them?

F# in Visual Studio

map-reduce in their data centers

Erlang for
concurrency,
Haskell for
managing PHP

Functional Languages: Who’s using them?

F# in Visual Studio

map-reduce in their data centers

Erlang for
concurrency,
Haskell for
managing PHP

O’Caml
for reliability

Haskell
for specifying
equity derivatives

Functional Languages: Who’s using them?

F# in Visual Studio

map-reduce in their data centers

Erlang for
concurrency,
Haskell for
managing PHP

Scala for
correctness, maintainability, flexibility

O’Caml
for reliability

Haskell
for specifying
equity derivatives

Functional Languages: Who’s using them?

F# in Visual Studio

map-reduce in their data centers

Erlang for
concurrency,
Haskell for
managing PHP

Haskell to
synthesize hardware

Scala for
correctness, maintainability, flexibility

O’Caml
for reliability

Haskell
for specifying
equity derivatives

Functional Languages: Who’s using them?

F# in Visual Studio

map-reduce in their data centers

Erlang for
concurrency,
Haskell for
managing PHP

Haskell to
synthesize hardware

Scala for
correctness, maintainability, flexibility

O’Caml
for reliability

Haskell
for specifying
equity derivatives

mathematicians Coq proof of
4-color theorem

Functional Languages: Who’s using them?

F# in Visual Studio

map-reduce in their data centers

Erlang for
concurrency,
Haskell for
managing PHP

Haskell to
synthesize hardware

Scala for
correctness, maintainability, flexibility

O’Caml
for reliability

www.artima.com/scalazine/articles/twitter_on_scala.html
http://gregosuri.com/how-facebook-uses-erlang-for-real-time-chat
http://www.janestcapital.com/technology/ocaml.php
http://msdn.microsoft.com/en-us/fsharp/cc742182
http://labs.google.com/papers/mapreduce.html
http://www.haskell.org/haskellwiki/Haskell_in_industry

Haskell
for specifying
equity derivatives

mathematicians Coq proof of
4-color theorem

Haskell vs. ML

• My research, many of my courses have used ML

– SML or O’Caml

• What do ML and Haskell have in common?

– functions as first-class data

– rich, sound type systems & type inference

– rich data types and algebraic pattern matching

– immutable data is the default

• ML has:

– A powerful module system

– SML has a complete, formal definition

• Haskell has:

– Type classes, Pure functions, Monads

– Lazy evaluation

• I vastly prefer programming in ML or Haskell vs. C or Java

not my favourite as a default

INTRODUCING HASKELL

Computation by Calculation

• A Haskell program is much like a set of mathematical
equations – that’s why we’ll use it to implement math

• All computation occurs via substitution of one expression for
another equal expression, like in ordinary mathematics:

 3 * (4 + 5)

Computation by Calculation

• A Haskell program is much like a set of mathematical
equations – that’s why we’ll use it to implement math

• All computation occurs via substitution of one expression for
another equal expression, like in ordinary mathematics:

3 * (4 + 5)
 = 3 * 9 (by add 4 + 5 = 9)

Computation by Calculation

• A Haskell program is much like a set of mathematical
equations – that’s why we’ll use it to implement math

• All computation occurs via substitution of one expression for
another equal expression, like in ordinary mathematics:

3 * (4 + 5)
 = 3 * 9 (by add 4 + 5 = 9)
 = 27 (by mult 3 * 9 = 27)

Computation by Calculation

• A Haskell program is much like a set of mathematical
equations – that’s why we’ll use it to implement math

• All computation occurs via substitution of one expression for
another equal expression, like in ordinary mathematics:

• This seems pretty obvious but the remarkable thing is that it
holds all the time in Haskell, unlike in C:

3 * (4 + 5)
 = 3 * 9 (by add 4 + 5 = 9)
 = 27 (by mult 3 * 9 = 27)

int x = 0;

…

y = x + x;

Computation by Calculation

• A Haskell program is much like a set of mathematical
equations – that’s why we’ll use it to implement math

• All computation occurs via substitution of one expression for
another equal expression, like in ordinary mathematics:

• This seems pretty obvious but the remarkable thing is that it
holds all the time in Haskell, unlike in C:

3 * (4 + 5)
 = 3 * 9 (by add 4 + 5 = 9)
 = 27 (by mult 3 * 9 = 27)

int x = 0;

…

y = x + x;

int x = 0;

…

y = 0 + 0;

?

Computation by Calculation

• A Haskell program is much like a set of mathematical
equations – that’s why we’ll use it to implement math

• All computation occurs via substitution of one expression for
another equal expression, like in ordinary mathematics:

• This seems pretty obvious but the remarkable thing is that it
holds all the time in Haskell, unlike in C:

3 * (4 + 5)
 = 3 * 9 (by add 4 + 5 = 9)
 = 27 (by mult 3 * 9 = 27)

int x = 0;

…

y = x + x;

int x = 0;

…

y = 0 + 0;

int x = 0;

x = 1;

y = x + x;

?

Computation with Abstraction

• Good programmers use abstraction:

– we recognize repeated patterns and capture them succinctly in
one place instead of many

– for example:

3 * (4 + 5) 9 * (1 + 7) 200 * (1 – 8)

Computation with Abstraction

• Good programmers use abstraction:

– we recognize repeated patterns and capture them succinctly in
one place instead of many

– for example:

– captured by:

3 * (4 + 5) 9 * (1 + 7) 200 * (1 – 8)

easy x y z = x * (y + z)

Computation with Abstraction

• Good programmers use abstraction:

– we recognize repeated patterns and capture them succinctly in
one place instead of many

– for example:

– captured by:

– and specific instances written:

3 * (4 + 5) 9 * (1 + 7) 200 * (1 – 8)

easy x y z = x * (y + z)

easy 3 4 5 easy 9 1 7 easy 200 1 (-8)

Computation with Abstraction

• Good programmers use abstraction:

– we recognize repeated patterns and capture them succinctly in
one place instead of many

– for example:

– captured by:

– and specific instances written:

• This is functional abstraction: the process of capturing
repeated idioms and representing them as functions

3 * (4 + 5) 9 * (1 + 7) 200 * (1 – 8)

easy x y z = x * (y + z)

easy 3 4 5 easy 9 1 7 easy 200 1 (-8)

Computation by Calculation with Abstraction

• Computation by calculation with function abstraction is done
by unfolding function definitions (just like we unfolded
mathematical definitions):

easy 3 4 5

= 3 * (4 + 5) (by unfold/by definition)

= 3 * 9 (by add)

= 27 (by multiply)

definition:
easy x y z = x * (y + z)

Computation by Calculation with Abstraction

• We can also reason with symbolic values:

• With these concepts:

– computation by calculation

– abstraction

– symbolic values

• … we are well on our way to reasoning about Haskell
definitions just like we reasoned about mathematical
definitions, though Haskell gives us an implementation!

easy a b c

= a * (b + c) (by unfold)

= a * (c + b) (by commutativity of add)

= easy a c b (by fold)

definition:
easy x y z = x * (y + z)

HASKELL BASICS:
EXPRESSIONS, VALUES, TYPES

Expressions, Values, Types

• The phrases on which we calculate are called expressions.

• When no more unfolding of user-defined functions or
application of primitives like + is possible, the resulting
expression is called a value.

• A type is a collection of expressions with common attributes.
Every expression (and thus every value) belongs to a type.

• We write exp :: T to say that expression exp has type T.

Basic Types

• Integers

 3 + 4 * 5 :: Integer

• Floats

 3 + 4.5 * 5.5 :: Float

• Characters

 ‘a’ :: Char

Functions

• The type of a function taking arguments A and B and
returning a result of type C is written A -> B -> C

(+) :: Integer -> Integer -> Integer

easy :: Integer -> Integer -> integer

• Note that (+) is syntax for treating an infix operator as a
regular one. Conversely, we can take a non-infix operator and
make it infix:

plus x y = x + y

easier x y z = x * (y ‘plus’ z)

A SHORT DEMO

Summary

• Haskell is

– a functional language emphasizing immutable data

– where every expression has a type:

• Char, Int, Int -> Char

• Reasoning about Haskell programs involves

– substitution of “equals for equals,” unlike in Java or C

– proofs about Haskell programs often:

• unfold function abstractions

• push symbolic names around like we do in mathematical proofs

• reason locally using properties of operations (eg: + commutes)

• fold function abstractions back up

• Homework: Install Haskell. Read LYAHFGG Intro, Chapter 1

