
Introducing Haskell 

COS 441 Slides 3 
 

Slide content credits:   
Ranjit Jhala (UCSD) 

Benjamin Pierce (UPenn) 



Course Agenda (Initial Lectures) 

• Week 1 (Appel): 

– Syntactic definitions 

– Denotational definitions 

– Proofs by induction 

 

• The coming weeks (Walker): 

– Introduction to Haskell 

– Syntactic definitions in Haskell 

– Denotational definitions in Haskell 

– Proofs in Haskell and about Haskell  programs 

– Type classes 

– Applications of denotational semantics:   

• Domain-specific languages for graphics & animation 



PL: Some Broad Categories 

• Imperative 

– oriented around assignment to variables and simple control flow 

– C, Pascal, Go  

• Object-oriented (Class-based) 

– oriented around classes and objects 

– Java, C# 

• Logic programming 

– oriented around logical formulae, unification and search 

– Prolog, Twelf 

• Functional 

– oriented around functions and immutable data structures 

– SML, O’Caml, F#, Coq, Scheme, Map-Reduce, Erlang, Haskell 

 

 

 



Vastly Abbreviated FP Geneology 

LCF Theorem 
Prover (70s) 

Edinburgh ML 

Miranda (80s) 

Haskell  
(90s - now) 

Standard ML 
(90s - now) OCaml 

(90s - now) 

Caml 
(80s-now) 

F# 
(now) 

LISP 
(50s-now) 

Scheme 
(70s-now) 

lazy, pure 

typed, polymorphic 

untyped 

Coq 
(80s - now) 

dependently 
typed 
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Haskell 
for specifying 
equity derivatives 

mathematicians Coq proof of 
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Haskell vs. ML 

• My research, many of my courses have used ML  

– SML or O’Caml 

• What do ML and Haskell have in common? 

– functions as first-class data 

– rich, sound type systems & type inference 

– rich data types and algebraic pattern matching 

– immutable data is the default 

• ML has: 

– A powerful module system 

– SML has a complete, formal definition 

• Haskell has: 

– Type classes, Pure functions, Monads 

– Lazy evaluation 

• I vastly prefer programming in ML or Haskell vs. C or Java 

 

 

 

 

 

 

not my favourite as a default 



INTRODUCING HASKELL 



Computation by Calculation 

• A Haskell program is much like a set of mathematical 
equations – that’s why we’ll use it to implement math 

• All computation occurs via substitution of one expression for 
another equal expression, like in ordinary mathematics: 

 3 * (4 + 5)  
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• This seems pretty obvious but the remarkable thing is that it 
holds all the time in Haskell, unlike in C: 
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Computation by Calculation 

• A Haskell program is much like a set of mathematical 
equations – that’s why we’ll use it to implement math 

• All computation occurs via substitution of one expression for 
another equal expression, like in ordinary mathematics: 

 

 

 

• This seems pretty obvious but the remarkable thing is that it 
holds all the time in Haskell, unlike in C: 

3 * (4 + 5)  
  = 3 * 9  (by add  4 + 5 = 9) 
  = 27  (by mult 3 * 9 = 27) 

int x = 0; 
 
… 
 
y = x + x; 

int x = 0; 
 
… 
 
y = 0 + 0; 

int x = 0; 
 
x = 1; 
 
y = x + x; 

? 



Computation with Abstraction 

• Good programmers use abstraction: 

– we recognize repeated patterns and capture them succinctly in 
one place instead of many 

– for example: 
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• This is functional abstraction:  the process of capturing 
repeated idioms and representing them as functions 
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easy x y z = x * (y + z) 

easy 3 4 5 easy 9 1 7 easy 200 1 (-8) 



Computation by Calculation with Abstraction 

• Computation by calculation with function abstraction is done 
by unfolding function definitions (just like we unfolded 
mathematical definitions): 

easy 3 4 5 
 
=  3 * (4 + 5) (by unfold/by definition) 
 
=  3 * 9  (by add) 
 
=  27  (by multiply) 

definition: 
easy x y z = x * (y + z) 



Computation by Calculation with Abstraction 

• We can also reason with symbolic values: 

 

 

 

 

 

 

• With these concepts: 

– computation by calculation 

– abstraction 

– symbolic values 

• … we are well on our way to reasoning about Haskell 
definitions just like we reasoned about mathematical 
definitions, though Haskell gives us an implementation! 

easy a b c 
 
=  a * (b + c) (by unfold) 
 
=  a * (c + b) (by commutativity of add) 
 
=  easy a c b (by fold) 

definition: 
easy x y z = x * (y + z) 



HASKELL BASICS:   
EXPRESSIONS, VALUES, TYPES 



Expressions, Values, Types 

• The phrases on which we calculate are called expressions. 

• When no more unfolding of user-defined functions or 
application of primitives like + is possible, the resulting 
expression is called a value. 

• A type is a collection of expressions with common attributes. 
Every expression (and thus every value) belongs to a type. 

• We write exp :: T to say that expression exp has type T. 

 



Basic Types 

• Integers 

 3 + 4 * 5  :: Integer 

• Floats 

 3 + 4.5 * 5.5  :: Float 

• Characters 

 ‘a’   :: Char 



Functions 

• The type of a function taking arguments A and B and 
returning a result of type C is written A -> B -> C 

 

(+)     :: Integer -> Integer -> Integer 

easy  :: Integer -> Integer -> integer 

 

• Note that (+) is syntax for treating an infix operator as a 
regular one.  Conversely, we can take a non-infix operator and 
make it infix: 

 

plus x y = x + y 

 

easier x y z = x * (y ‘plus’ z) 



A SHORT DEMO 



Summary 

• Haskell is 

– a functional language emphasizing immutable data 

– where every expression has a type: 

• Char, Int, Int -> Char 

• Reasoning about Haskell programs involves 

– substitution  of “equals for equals,”  unlike in Java or  C 

– proofs about Haskell programs often: 

• unfold function abstractions 

• push symbolic names around like we do in mathematical proofs 

• reason locally using properties of operations (eg: + commutes) 

• fold function abstractions back up 

• Homework:  Install Haskell.  Read LYAHFGG Intro, Chapter 1 

 


