
Programming Languages 
COS 441 

Denotational Semantics II 



Last Time 

• The denotational modus operandi: 

1. Define the syntax of the language  

• How do you write the programs down? 

• Use BNF notation  (BNF = Backus Naur Form) 

2. Define the denotation (aka meaning) of the language 

• Use a function from syntax to mathematical objects 

• Make sure the function is inductive and (usually) total 

 



This Time 

• The denotational modus operandi: 

1. Define the syntax of the language  

• How do you write the programs down? 

• Use BNF notation  (BNF = Bachus Naur Form) 

2. Define the denotation (aka meaning) of the language 

• Use a function from syntax to mathematical objects 

• Make sure the function is inductive and (usually) total 

3. Prove something about the language 

• Most of our proofs about denotational definitions will 
be by induction on the structure of the syntax of the 
language 

 



PROOFS BY  
STRUCTURAL INDUCTION 



Proofs by induction 

• Often, we want to know something about all objects of a 
certain type:  
– for all binary numbers b, there exists a larger binary number. 

 
– for all binary numbers b, either even(b) or odd(b) is true 

 
– for all arithmetic expressions e, if expsem(e) = 0 then e contains a 

subexpression of the form num(n) and mixsem(n) = 0 
 

– for all well-typed programs p, p never dereferences a null pointer 
 

– for all well-typed programs p, p never releases high-security 
information to a low-security client 
 

– for all programs p, semantics(p) = semantics(compile(p)) 
 

• We typically prove these properties by induction. 
– one kind of induction is structural induction or induction on syntax 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b, property(b).  
 
Proof:  ? 

b ::= # | b0 | b1 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b, property(b).  
 
Proof:  ? 

b ::= # | b0 | b1 

for all 
clues you in 
to the fact 
that you may 
need to do 
induction 

your goal  
is to prove 
the property 
for all b. 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b, property(b).  
 
Proof strategy:   
 
• tackle each case (#, b0, b1) separately.  Be sure to tackle 
all cases (missing a case means your proof is incomplete) -- proofs 
must be total, like semantic functions were total in the last lecture. 
 
• for base cases like #, prove the property directly 

 
• for inductive cases like b0 and b1, use the induction hypothesis. 
In other words, when proving case b0, assume that property(b) 
is true and use that information to conclude that property(b0) is 
true.  (Likewise when proving b1.)  In general, you get to assume  
your property is true for all smaller binary numbers. 

 

b ::= # | b0 | b1 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b, property(b).  
 
Proof:  By induction on the structure of b. 
 
case #: 
    .... 
    must prove:  property (#) is true                
 
case b0: 
    IH:  property(b) is true 
    ... 
    must prove:  property(b0) is true 
 
case b1: 
    IH: property(b) is true 
    ... 
    must prove:  property(b1) is true 
 

b ::= # | b0 | b1 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b, property(b).  
 
Proof:  By induction on the structure of b. 
 
case #: 
    .... 
    must prove:  property (#) is true                
 
case b0: 
    IH:  property(b) is true 
    ... 
    must prove:  property(b0) is true 
 
case b1: 
    IH: property(b) is true 
    ... 
    must prove:  property(b1) is true 
 

b ::= # | b0 | b1 

always write 
proof method first 

when I say always  
I mean always 

one 
case 
per 
syntax 
alternative 

always state 
the specific 
induction hypothesis 
you can use in 
your proof case 

proof of a case concludes 
when you establish the property 
for this specific piece of syntax   



BINARY SYNTAX: 
AN EXAMPLE PROOF 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b,  
if binsem(b) > 0 then b contains a 1.  
 
Proof:  By induction on the structure of b. 
 
 

Definitions: 
 
b ::= # | b0 | b1 
 
binsem ( # ) = 0 
binsem (b0) = 2*(binsem(b))  
binsem (b1) = 2*(binsem(b)) + 1 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b,  
if binsem(b) > 0 then b contains a 1.  
 
Proof:  By induction on the structure of b. 
 
case #: 
      

Definitions: 
 
b ::= # | b0 | b1 
 
binsem ( # ) = 0 
binsem (b0) = 2*(binsem(b))  
binsem (b1) = 2*(binsem(b)) + 1 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b,  
if binsem(b) > 0 then b contains a 1.  
 
Proof:  By induction on the structure of b. 
 
case #: 
     1: binsem ( # ) = 0 (by binsem def) 
                                
     2: binsem( # ) > 0 (by 1) 
 
case done (2 implies the theorem if statement is trivially satisfied) 

Definitions: 
 
b ::= # | b0 | b1 
 
binsem ( # ) = 0 
binsem (b0) = 2*(binsem(b))  
binsem (b1) = 2*(binsem(b)) + 1 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b,  
if binsem(b) > 0 then b contains a 1.  
 
Proof:  By induction on the structure of b. 
 
case b’0: 

Definitions: 
 
b ::= # | b0 | b1 
 
binsem ( # ) = 0 
binsem (b0) = 2*(binsem(b))  
binsem (b1) = 2*(binsem(b)) + 1 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b,  
if binsem(b) > 0 then b contains a 1.  
 
Proof:  By induction on the structure of b. 
 
case b’0: 
    IH:  if binsem(b’) > 0 then b’ contains a 1 

Definitions: 
 
b ::= # | b0 | b1 
 
binsem ( # ) = 0 
binsem (b0) = 2*(binsem(b))  
binsem (b1) = 2*(binsem(b)) + 1 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b,  
if binsem(b) > 0 then b contains a 1.  
 
Proof:  By induction on the structure of b. 
 
case b’0: 
    IH:  if binsem(b’) > 0 then b’ contains a 1 
    1:  binsem (b’0) = 2 * (binsem(b’))    (by binsem def) 
    2:  if binsem(b’0) > 0 then binsem(b’) > 0  (by 1) 
    3:  if binsem(b’0) > 0 then b’ contains a 1 (by 2 and IH) 
    4:  if binsem(b’0) > 0 then b’0 contains a 1  (by 3 and meaning of “contains”) 
 
case done. 

Definitions: 
 
b ::= # | b0 | b1 
 
binsem ( # ) = 0 
binsem (b0) = 2*(binsem(b))  
binsem (b1) = 2*(binsem(b)) + 1 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b,  
if binsem(b) > 0 then b contains a 1.  
 
Proof:  By induction on the structure of b. 
 
case b’1: 
      

Definitions: 
 
b ::= # | b0 | b1 
 
binsem ( # ) = 0 
binsem (b0) = 2*(binsem(b))  
binsem (b1) = 2*(binsem(b)) + 1 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b,  
if binsem(b) > 0 then b contains a 1.  
 
Proof:  By induction on the structure of b. 
 
case b’1: 
     IH:  if binsem(b’) > 0 then b’ contains a 1 

Definitions: 
 
b ::= # | b0 | b1 
 
binsem ( # ) = 0 
binsem (b0) = 2*(binsem(b))  
binsem (b1) = 2*(binsem(b)) + 1 

not needed this time, 
but write it down anyway 



Structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b,  
if binsem(b) > 0 then b contains a 1.  
 
Proof:  By induction on the structure of b. 
 
case b’1: 
     IH:  if binsem(b’) > 0 then b’ contains a 1 
     1: binsem (b’1) = 2 * (binsem(b’)) + 1            (by binsem def) 
     2: binsem (b’1) > 0 and b’1 contains a 1        (by 1 and meaning of contains) 
                                
case done (2 implies the required conclusion). 

Definitions: 
 
b ::= # | b0 | b1 
 
binsem ( # ) = 0 
binsem (b0) = 2*(binsem(b))  
binsem (b1) = 2*(binsem(b)) + 1 



Recap: structure of inductive proofs for binary syntax 

Theorem:  For all binary numbers b,  property(b).  
 
Proof:  By induction on the structure of b. 
 
case #: 
    ... 
    property (#) is true 
case done. 
 
case b0: 
    IH:  property(b) 
    ... 
    property(b0) is true 
case done. 
 
case b1: 
    IH: property(b) is true 
    ... 
    property(b1) is true 
case done. 

Definitions: 
 
b ::= # | b0 | b1 
 
binsem ( # ) = 0 
binsem (b0) = 2*(binsem(b))  
binsem (b1) = 2*(binsem(b)) + 1 



A PROOF ABOUT ARITHMETIC 
EXPRESSIONS 



Last time 

• Arithmetic expression syntax: 

 

 

• Arithmetic expression semantics: 

e   ::=   num n | add(e,e) | mult(e, e) 

expsem ( num (n) ) = mixsem (n) 
 
expsem ( add (e1,e2) ) = expsem (e1) + expsem (e2)  
 
expsem ( mult (e1,e2) ) = expsem (e1) * expsem (e2)  

depends on semantics  
for number syntax; 
(computes a natural number) 



Arithmetic Expressions 

• Another definition:  “contains a zero” 

 

 

 

 

• Goal Theorem:   

– for all e, if expsem(e) = 0 then cz(e) 

 
cz ( num (n) )         = if mixsem (n) = 0 then true else false 
cz ( add (e1,e2) )    = cz (e1) or cz (e2)  
cz( mult (e1,e2) )   = cz (e1) or cz (e2)  



Theorem:  For all expressions e,  property(e).  
 
Proof:  By induction on the structure of e. 
 
case num n: 
    ... 
    property (num n) 
case done. 
 
case add(e1, e2): 
    IH1:  property(e1) 
    IH2:  property(e2) 
    ... 
    property(add(e1, e2))  
case done. 
 
case mult(e1, e2): 
    IH1: property(e1) is true 
    IH2: property(e2) is true 
    ... 
    property(mult(e1, e2)) 
case done. 

Definitions: 
 
e   ::=   num n | add(e,e) | mult(e, e) 
 
expsem ( num (n) )         = mixsem (n) 
expsem ( add (e1,e2) )    = expsem (e1) + expsem (e2)  
expsem ( mult (e1,e2) )   = expsem (e1) * expsem (e2) 
 
cz ( num (n) )     = if mixsem (n) = 0 then true else false 
cz( add (e1,e2) )  = cz (e1) or  cz (e2)  
cz( mult (e1,e2) ) = cz (e1) or cz (e2)  

both e1 and e2 are smaller so 
we can use IH on both 

Proving properties  
of expressions 



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case num n: 
    1. expsem (num n) = mixsem (n) (by expsem def) 
 
 

expsem ( num (n) ) = mixsem (n) 
expsem (...) = ... 
 
cz ( num (n) ) = if mixsem (n) = 0 then true else false 
cz (...) = ... 

Proving properties  
of expressions 



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case num n: 
    1. expsem (num n) = mixsem (n) (by expsem def) 
 
    subcase expsem (num n) = 0: 
 
 
 
 
    subcase expsem (num n) not= 0 
          
  
 

expsem ( num (n) ) = mixsem (n) 
expsem (...) = ... 
 
cz ( num (n) ) = if mixsem (n) = 0 then true else false 
cz (...) = ... 

Proving properties  
of expressions 



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case num n: 
    1. expsem (num n) = mixsem (n) (by expsem def) 
 
    subcase expsem (num n) = 0: 
        2. mixsem (n) = 0                        (by 1 and subcase) 
        3. cz (num n) is true  (by 2 and def of cz) 
        we have proven the theorem! 
 
    subcase expsem (num n) not= 0 
           
 

expsem ( num (n) ) = mixsem (n) 
expsem (...) = ... 
 
cz ( num (n) ) = if mixsem (n) = 0 then true else false 
cz (...) = ... 

Proving properties  
of expressions 



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case num n: 
    1. expsem (num n) = mixsem (n) (by expsem def) 
 
    subcase expsem (num n) = 0: 
        2. mixsem (n) = 0                        (by 1 and subcase) 
        3. cz (num n) is true  (by 2 and def of cz) 
        we have proven the theorem! 
 
    subcase expsem (num n) not= 0 
         we have trivially proven the theorem! 
  
case done. 
 

expsem ( num (n) ) = mixsem (n) 
expsem (...) = ... 
 
cz ( num (n) ) = if mixsem (n) = 0 then true else false 
cz (...) = ... 

Proving properties  
of expressions 



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case add(e1, e2): 
 
 

Proving properties  
of expressions 

expsem ( add (e1,e2) )    = expsem (e1) + expsem (e2)  
 
cz( add (e1,e2) )  = cz (e1) or  cz (e2)  



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case add(e1, e2): 
     IH1:  if expsem(e1) = 0 then cz(e1).  
     IH2:  if expsem(e2) = 0 then cz(e2).  
 
 

Proving properties  
of expressions 

expsem ( add (e1,e2) )    = expsem (e1) + expsem (e2)  
 
cz( add (e1,e2) )  = cz (e1) or  cz (e2)  



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case add(e1, e2): 
     IH1:  if expsem(e1) = 0 then cz(e1).  
     IH2:  if expsem(e2) = 0 then cz(e2).  
 
    1. expsem (add(e1, e2))= expsem (e1) + expsem (e2)       (by expsem def) 
    1b.  iff expsem (add(e1, e2)) = 0 then expsem(e1)+expsem(e2)=0 
    2. if expsem (add(e1, e2)) = 0 then expsem (e1) = 0 and  expsem (e2) = 0 (by 1) 
    3. if expsem (add(e1, e2)) = 0 then expsem (e1) = 0    (by 2) 
 
 
 

Proving properties  
of expressions 

expsem ( add (e1,e2) )    = expsem (e1) + expsem (e2)  
 
cz( add (e1,e2) )  = cz (e1) or  cz (e2)  



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case add(e1, e2): 
     IH1:  if expsem(e1) = 0 then cz(e1).  
     IH2:  if expsem(e2) = 0 then cz(e2).  
 
    1. expsem (add(e1, e2))= expsem (e1) + expsem (e2)       (by expsem def) 
    2. if expsem (add(e1, e2)) = 0 then expsem (e1) = 0 and  expsem (e2) = 0 (by 1) 
    3. if expsem (add(e1, e2)) = 0 then expsem (e1) = 0    (by 2) 
    4. if expsem (add(e1, e2)) = 0 then cz (e1)    (by 3, IH1) 
 
 
 

Proving properties  
of expressions 

expsem ( add (e1,e2) )    = expsem (e1) + expsem (e2)  
 
cz( add (e1,e2) )  = cz (e1) or  cz (e2)  



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case add(e1, e2): 
     IH1:  if expsem(e1) = 0 then cz(e1).  
     IH2:  if expsem(e2) = 0 then cz(e2).  
 
    1. expsem (add(e1, e2))= expsem (e1) + expsem (e2)       (by expsem def) 
    2. if expsem (add(e1, e2)) = 0 then expsem (e1) = 0 and  expsem (e2) = 0 (by 1) 
    3. if expsem (add(e1, e2)) = 0 then expsem (e1) = 0    (by 2) 
    4. if expsem (add(e1, e2)) = 0 then cz (e1)    (by 3, IH1) 
    5. if expsem (add(e1, e2)) = 0 then cz (add(e1, e2))    (by 4, cz def)  
 
case done. 
 

Proving properties  
of expressions 

expsem ( add (e1,e2) )    = expsem (e1) + expsem (e2)  
 
cz( add (e1,e2) )  = cz (e1) or  cz (e2)  



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case mult(e1, e2): 
 

Proving properties  
of expressions 

expsem ( mult (e1,e2) )    = expsem (e1) * expsem (e2)  
 
cz( mult (e1,e2) )  = cz (e1) or  cz (e2)  



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case mult(e1, e2): 
     IH1:  if expsem(e1) = 0 then cz(e1).  
     IH2:  if expsem(e2) = 0 then cz(e2).  
 
 

Proving properties  
of expressions 

expsem ( mult (e1,e2) )    = expsem (e1) * expsem (e2)  
 
cz( mult (e1,e2) )  = cz (e1) or  cz (e2)  



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case mult(e1, e2): 
     IH1:  if expsem(e1) = 0 then cz(e1).  
     IH2:  if expsem(e2) = 0 then cz(e2).  
 
    1. expsem (mult(e1, e2)) = expsem (e1) * expsem (e2)       (by expsem def) 
    2. if expsem (mult(e1, e2)) = 0 then expsem (e1) = 0 or  expsem (e2) = 0 (by 1) 
 
 
 

Proving properties  
of expressions 

expsem ( mult (e1,e2) )    = expsem (e1) * expsem (e2)  
 
cz( mult (e1,e2) )  = cz (e1) or  cz (e2)  



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case mult(e1, e2): 
     IH1:  if expsem(e1) = 0 then cz(e1).  
     IH2:  if expsem(e2) = 0 then cz(e2).  
 
    1. expsem (mult(e1, e2)) = expsem (e1) * expsem (e2)       (by expsem def) 
    2. if expsem (mult(e1, e2)) = 0 then expsem (e1) = 0 or  expsem (e2) = 0 (by 1) 
    3. if expsem (mult(e1, e2)) = 0 then cz (e1) or cz (e2)    (by 2, IH1, IH2) 
 
 
 

Proving properties  
of expressions 

expsem ( mult (e1,e2) )    = expsem (e1) * expsem (e2)  
 
cz( mult (e1,e2) )  = cz (e1) or cz (e2)  



Theorem:  For all e,  if expsem(e) = 0 then cz(e).  
 
Proof:  By induction on the structure of e. 
 
case mult(e1, e2): 
     IH1:  if expsem(e1) = 0 then cz(e1).  
     IH2:  if expsem(e2) = 0 then cz(e2).  
 
    1. expsem (mult(e1, e2)) = expsem (e1) * expsem (e2)       (by expsem def) 
    2. if expsem (mult(e1, e2)) = 0 then expsem (e1) = 0 or  expsem (e2) = 0 (by 1) 
    3. if expsem (mult(e1, e2)) = 0 then cz (e1) or cz (e2)    (by 2, IH1, IH2) 
    4. if expsem (mult(e1, e2)) = 0 then cz (mult(e1, e2))    (by 3, cz def)  
 
case done. 
 

Proving properties  
of expressions 

expsem ( mult (e1,e2) )    = expsem (e1) * expsem (e2)  
 
cz( mult (e1,e2) )  = cz (e1) or cz (e2)  



A NOTE ON TYPES FOR FUNCTIONS 



Types for functions 

• So far, function types have been implicit. 
• When things start getting more complicated, it is useful to be able 

to write them down to remind ourselves what kinds of denotation 
functions we are dealing with: 
 
 
 
 
 
 
 

 
 

  
 

 
  

x    ::    T1 -> T2 



Types for functions 

• So far, function types have been implicit. 
• When things start getting more complicated, it is useful to be able 

to write them down to remind ourselves what kinds of denotation 
functions we are dealing with: 
 
 
 
 
 
 
 
 

• Examples: 
binsem :: BinarySyntax -> Natural 
even      :: BinarySyntax -> Bool 
usem     :: UnarySyntax -> Natural 
 
(we’ll see more examples and more types shortly; you will pick it up as we go) 

x    ::    T1 -> T2 

variable name 

“::” is read “has type” 

function with argument type T1 
and result type T2 



THE MATHEMATICAL STRUCTURE 
OF LISTS 



Lists 

• Natural numbers, integers, booleans, sets are well-
known mathematical objects; so are lists 

 

• A natural number j is either 
– 0, or 

– j’+1 (the successor of some natural number j’) 

 

• Analogously list of natural numbers l is either 
– [ ] (empty), or 

– j : l’ (a list with at least one element j followed by a list l’) 

 

• In BNF: 
l ::= [ ] | j : l 



Lists 

• Lists have inductive structure like natural numbers 
– [ ] is the smallest list 
– the list l is smaller than the list with an extra element tacked on 

the front:  (j : l) 

• Some useful inductive functions over lists: 
– (check they total and inductive) 

 
 
 
 
 

• Notation: 
– l1 ++ l2 means “concatenate ( l1,  l2 )” 
– *1, 2, 3, 4+ means “1 : 2 : 3 : 4 : * +” 

concatenate ( [ ],     l2 ) = l2  

concatenate ( j : l1,  l2 )    = j : (concatenate(l1, l2)) 

length ( [ ] )  = 0 

length ( j : l1 )  = 1 + length ( l1 ) 
inductive 
because we  
define “smaller” 
for pairs here 
to be when  
the first  
element of the 
pair is smaller 
 
(there are other 
ways to define 
“smaller” for 
pairs) 



Proofs over Lists 

Theorem:  For all l1 and for all l2, length ( l1 ++ l2 ) = length ( l1 ) + length ( l2 )  
 
Proof:  By induction on the structure of ?? 
 
 
 
 
 

l    ::=    [ ]    |    j : l 
 
length ( [ ] )     = 0  

length ( j : l1 )  = 1 + length ( l1 ) 
 
[ ] ++ l2          = l2  

(j : l1) ++ l2        = j : (l1 ++ l2) 



Proofs over Lists 

Theorem:  For all l1 and for all l2, length ( l1 ++ l2 ) = length ( l1 ) + length ( l2 )  
 
Proof:  By induction on the structure of l1. 
 
 
 
 
 
 
 

l    ::=    [ ]    |    j : l 
 
length ( [ ] )     = 0  

length ( j : l1 )  = 1 + length ( l1 ) 
 
[ ] ++ l2          = l2  

(j : l1) ++ l2        = j : (l1 ++ l2) 

why not l2? 
It’s because of the fact 
that length and ++ 
operate at the front of 
the list.  However, this is 
not a rule.  Often 
you just have to try 
induction on one thing 
or the other and see if 
it works. 



Proofs over Lists 

Theorem:  For all l1 and for all l2, length ( l1 ++ l2 ) = length ( l1 ) + length ( l2 )  
 
Proof:  By induction on the structure of l1. 
 
case l1 = [ ]: 
 
  
 
 
 
 
 
 
 l    ::=    [ ]    |    j : l 

 
length ( [ ] )     = 0  

length ( j : l1 )  = 1 + length ( l1 ) 
 
[ ] ++ l2          = l2  

(j : l1) ++ l2        = j : (l1 ++ l2) 



Proofs over Lists 

Theorem:  For all l1 and for all l2, length ( l1 ++ l2 ) = length ( l1 ) + length ( l2 )  
 
Proof:  By induction on the structure of l1. 
 
case l1 = [ ]: 
 
 length ( [ ] ++ l2 )  
 = ? 
 
 
 
 
 
 
 

l    ::=    [ ]    |    j : l 
 
length ( [ ] )     = 0  

length ( j : l1 )  = 1 + length ( l1 ) 
 
[ ] ++ l2          = l2  

(j : l1) ++ l2        = j : (l1 ++ l2) 



Proofs over Lists 

Theorem:  For all l1 and for all l2, length ( l1 ++ l2 ) = length ( l1 ) + length ( l2 )  
 
Proof:  By induction on the structure of l1. 
 
case l1 = [ ]: 
 
 length ( [ ] ++ l2 )  
 = length ( l2 )  (by def of ++ ) 
 = 0 + length ( l2 )   (by ordinary arithmetic) 
 = length ( [ ] ) + length ( l2 )  (by def of length, in reverse) 
 
case done. 
 
 
 
 
 
 
 
 

l    ::=    [ ]    |    j : l 
 
length ( [ ] )     = 0  

length ( j : l1 )  = 1 + length ( l1 ) 
 
[ ] ++ l2          = l2  

(j : l1) ++ l2        = j : (l1 ++ l2) 



Proofs over Lists 

Theorem:  For all l1 and for all l2, length ( l1 ++ l2 ) = length ( l1 ) + length ( l2 )  
 
Proof:  By induction on the structure of l1. 
 
case l1 = j : l1’: 
 
 
 
 
 
 
 
 

l    ::=    [ ]    |    j : l 
 
length ( [ ] )     = 0  

length ( j : l1 )  = 1 + length ( l1 ) 
 
[ ] ++ l2          = l2  

(j : l1) ++ l2        = j : (l1 ++ l2) 



Proofs over Lists 

Theorem:  For all l1 and for all l2, length ( l1 ++ l2 ) = length ( l1 ) + length ( l2 )  
 
Proof:  By induction on the structure of l1. 
 
case l1 = j : l1’: 
  IH:  length ( l1’ ++ l2 ) = length ( l1’ ) + length ( l2 )  
 
  
 
 
 
 
 
 
 

l    ::=    [ ]    |    j : l 
 
length ( [ ] )     = 0  

length ( j : l1 )  = 1 + length ( l1 ) 
 
[ ] ++ l2          = l2  

(j : l1) ++ l2        = j : (l1 ++ l2) 



Proofs over Lists 

Theorem:  For all l1 and for all l2, length ( l1 ++ l2 ) = length ( l1 ) + length ( l2 )  
 
Proof:  By induction on the structure of l1. 
 
case l1 = j : l1’: 
 IH:  length ( l1’ ++ l2 ) = length ( l1’ ) + length ( l2 )  
 
 length ( (j : l1’) ++ l2 )  
 = 
 
 
 
 
 
 
 
 

l    ::=    [ ]    |    j : l 
 
length ( [ ] )     = 0  

length ( j : l1 )  = 1 + length ( l1 ) 
 
[ ] ++ l2          = l2  

(j : l1) ++ l2        = j : (l1 ++ l2) 



Proofs over Lists 

Theorem:  For all l1 and for all l2, length ( l1 ++ l2 ) = length ( l1 ) + length ( l2 )  
 
Proof:  By induction on the structure of l1. 
 
case l1 = j : l1’: 
 IH:  length ( l1’ ++ l2 ) = length ( l1’ ) + length ( l2 )  
 
 length ( (j : l1’) ++ l2 )  
 = length ( j : (l1’ ++ l2 ) )  (by def of ++ ) 
 = 1 + length (l1’ ++ l2)   (by def of length) 
 = 1 + length ( l1’ ) + length ( l2 )  (by IH) 
 = length (j : l1’) + length ( l2 )   (by def of length) 
 
case done. 
 
 
 
 
 
 
 
 

l    ::=    [ ]    |    j : l 
 
length ( [ ] )     = 0  

length ( j : l1 )  = 1 + length ( l1 ) 
 
[ ] ++ l2          = l2  

(j : l1) ++ l2        = j : (l1 ++ l2) 



Typical Structure of Proofs About Lists 

Theorem:  For all l. ... property of l ...  
 
Proof:  By induction on the structure of l. 
 
case l = [ ] 
 
   ... 2-column proof of property of [ ] ... 
   ... justifications use definitions given and basic mathematical facts 
  
case done. 
 
 
case l = j : l’: 
 IH:  property of  l’ 
 
  ... 2-column proof of property of j : l’ 
  ... justifications use IH, definitions, basic mathematical facts 
 
case done. 
 
 
 



Exercises 

theorem 1:    
    for all l1, for all l2,   
        length ( l1 ++ (j2 : l2) ) = 1 + length ( l1 ++ l2 ) 
 
proof: ? 
 
theorem 2:   
    for all l,   
        length (l ++ l) = 2 * length ( l ) 
 
proof: ?  (hint:  use theorem 1 as one of your justifications) 
 
theorem 3: 
    for all l, l ++ [ ] = l 
 
proof: ? 
 

Note:  You don’t have to do them,  
            but exercises given out in class might show up on exams! 



A LIST-PROCESSING LANGUAGE 



A list processing language 

 

list language syntax 
s ::=  
    empty       -- empty list 
 | single j             -- singleton list containing j 
 | cons (j, s)            -- prepend j onto s 
 | concat (s1, s2)  -- concatentate s1 and s2  
 | take (j, s)       -- the first j elements of s  
 | rem (j, s) -- everything but the first j elements of s 

natural numbers 
j ::= 0 | 1 | 2 | ... 
 



A list processing language 

• Examples (all equal to the list [5, 3, 2]): 
– cons (5, cons (3, cons (2, empty)))  
– concat (cons (5, cons (3, empty)), single 2)  
– take (3,  
         cons (5, cons (3, cons (2, cons (6, cons (6, cons (7, empty)))))))  
– rem (2, 
        cons (9, cons (11, cons (5, cons (3, single 2))))) 
– concat (single 5, concat (single 2, single 3)) 

 

list language syntax 
s ::=  
    empty       -- empty list 
 | single j             -- singleton list containing j 
 | cons (j, s)            -- prepend j onto s 
 | concat (s1, s2)  -- concatentate s1 and s2  
 | take (j, s)       -- the first j elements of s  
 | rem (j, s) -- everything but the first j elements of s 

natural numbers 
j ::= 0 | 1 | 2 | ... 
 



A list processing language 

• The denotational semantics will explain how to convert 
list syntax into concrete lists 

natural numbers 
j ::= 0 | 1 | 2 | ... 

list language syntax 
s ::=  empty | single j | cons (j, s) | concat (s1 , s2) | take (j, s) | rem (j, s) 



A list processing language 

natural numbers 
j ::= 0 | 1 | 2 | ... 

listsem :: ListSyntax -> List 
 
listsem (empty)   = [ ] 
listsem (single j)   = [ j ] 
listsem (cons (j, s))  = j : (listsem(s)) 
listsem (concat (s1 , s2))  = listsem (s1) ++ listsem (s2) 
listsem (take (j, s))   = ??? 
listsem (rem (j,s))  = ??? 
 
 
 
 

list language syntax 
s ::=  empty | single j | cons (j, s) | concat (s1 , s2) | take (j, s) | rem (j, s) 



A list processing language 

natural numbers 
j ::= 0 | 1 | 2 | ... 

listsem :: ListSyntax -> List 
 
listsem (empty)   = [ ] 
listsem (single j)   = [ j ] 
listsem (cons (j, s))  = j : (listsem(s)) 
listsem (concat (s1 , s2))  = listsem (s1) ++ listsem (s2) 
listsem (take (j, s))   = takeaux (j, listsem (s))  
listsem (rem (j,s))  = ??? 
 
 
 
 

takeaux :: (Natural, List) -> List 
 
takeaux (0, list)          = [ ] 
takeaux (j+1, [ ])   = [ ] 
takeaux (j+1, j’ : list) = j’ : (takeaux (j, list)) 
 

list language syntax 
s ::=  empty | single j | cons (j, s) | concat (s1 , s2) | take (j, s) | rem (j, s) 

lexicographic ordering for inductive definition:  
(x1,y1) is smaller than (x2, y2) if x1 smaller than x2  
                                                     or x1 = x2 and y1 smaller than y2  



A list processing language 

natural numbers 
j ::= 0 | 1 | 2 | ... 

listsem :: ListSyntax -> List 
 
listsem (empty)   = [ ] 
listsem (single j)   = [ j ] 
listsem (cons (j, s))  = j : (listsem(s)) 
listsem (concat (s1 , s2))  = listsem (s1) ++ listsem (s2) 
listsem (take (j, s))   = takeaux (j, listsem (s))  
listsem (rem (j,s))  = remaux (j, listsem(s)) 
 
 
 
 

takeaux :: (Natural, List) -> List 
 
takeaux (0, list)          = [ ] 
takeaux (j+1, [ ])   = [ ] 
takeaux (j+1, j’ : list) = j : takeaux (j, list) 
 

remaux :: (Natural , List) -> List 
 
remaux (0, list)                  = list 
remaux (j+1, [ ])  = [ ] 
remaux (j+1, j’ : list)  = remaux (j, list) 
 

list language syntax 
s ::=  empty | single j | cons (j, s) | concat (s1 , s2) | take (j, s) | rem (j, s) 



Exercise 

• Consider these additional definitions: 

 

 

 

 

 

 

 

 

• Prove this theorem: 
– for all s, if isempty(s) = Yes then listsem(s) = [ ] 

result ::= Yes | Maybe 

isempty :: ListSyntax -> Result 
 
isempty (empty)   = Yes 
isempty (single j)   = Maybe 
isempty (cons (j, s))  = Maybe 
isempty (concat (s1 , s2))  = if (isempty (s1) = Yes) and isempty (s2) = Yes 
                                                        then Yes 
                                                        else Maybe 
isempty (take (j, s))   = Maybe 
isempty (rem (j,s))  = Maybe 
 
 
 



Summary:  Inductive proof structure 

• Proofs by induction on syntax: 
– start with a statement of the methodology used: 

• eg:  “By induction on the syntax of binary numbers” 

– must be total  

• they must have proof cases for all syntactic alternatives 

– have an induction hypothesis that can be applied to smaller subexpressions 

– should be done in a 2-column format and have cases that look like this: 

 

 
case syntactic alterative: 
     IH:  ... statement of inductive hypothesis on subexpression ... 
    1.  fact                       (justification) 
    2.  fact                       (justification) 
    3.  fact                       (justification) 
case done. justifications use: 

• IH,  
• previous facts established (1, 2), 
• definitions like binsem or ++ given,  
• simple mathematical reasoning 



Summary: kinds of induction 

– induction on natural numbers 

• case for 0 

• case for j+1 with IH used on j 

– induction on lists 

• case for [ ] 

• case j : l with IH used on j 

– induction on syntax:  s ::= alt1 | alt2 | alt3 | ... 

• case for each of alt1, alt2, alt3, ... with IH used on subexpressions s 

– mutual induction on syntax:   s ::= alt1 | alt2     and      t ::= alt3 | alt4 

• case for each of alt1, alt2, alt3, ... with IH used on subexpressions s or t 

– induction on pairs (first, second) 

• sometimes:  by induction on the first element 

• sometimes:  by induction on the second element 

• sometimes:  by lexicographic ordering of first and second (or second and first) 

– in all of the above, sometimes you break down the basic cases further: 

• natural numbers:  0/j+1 broken down further to 0/1/j+1 or 0/1/j+2 etc. 

• whatever the breakdown, cover all cases & use IH on smaller subexpressions 

 

 

 


