
Assignment #2:  
 
To complete this assignment, you will email the following files to the TA prior to the deadline.  You may 
work in pairs.  We recommend each member of the pair attempt the theory questions separately at first 
to maximize learning and then come together to write up an answer.  At the top of each file state the 
full names and logins of each student. 
 

 theory.txt – answers to I, II 

 code.hs – answers to III, IV, V.  This file must type check and compile using Haskell or you will 
receive a zero for this part of the assignment. 

 
Part I:   
 
Give answers to this part in the theory.txt file.  Do your proofs in 2-column style as shown in class with 
one step per line and a justification in parens beside it.  Do not skip any steps.  Show each fold or unfold 
step you do separately.  If you need to do an arithmetic manipulation, show that as a step separate from 
any fold/unfold of a definition.  You may use any basic facts about arithmetic you need such as 
associativity or commutativity of multiplication.  Write (simple arithmetic) to justify an arithmetic 
manipulation step.   Assume that all floating point operations have perfect precision (ie: they actually 
operations on real numbers; there are no rounding errors).  Consider the following Haskell type and 
function definitions: 
 
data Shape =     

    Rectangle Side Side 

  | Ellipse Radius Radius 

  | RtTriangle Side Side 

 

type Side   = Float 

type Radius = Float 

 

area :: Shape -> Float 

area (Rectangle s1 s2)  = s1 * s2 

area (Ellipse r1 r2)    = pi * r1 * r2 

area (RtTriangle s1 s2) = (s1 * s2) / 2 

 

circleArea :: Radius -> Float 

circleArea r = pi * r * r 

 

circle r = Ellipse r r 

 

rectArea :: Side -> Side -> Float 

rectArea s1 s2 = area (RtTriangle s1 s2) + area (RtTriangle s2 s1) 

 

 
a) Prove by calculation, not induction, that for all r,  

circleArea r = area (circle r) 

 

b) Prove by calculation, not induction, that for all s1 and s2, 
rectArea s1 s2 = area (Rectangle s1 s2) 



Part II:   

Give answers to this part in the theory.txt file. 
 
Consider the following Haskell functions where minbound is the minimum Int and max finds the 
maximum of two Int. 
 
zip :: ([a], [b]) -> [(a, b)] 

zip ([ ], _) = [ ] 

zip (_, [ ]) = [ ]  

zip ((x:xs), (y:ys)) =  (x, y) : zip (xs, ys) 

 

unzip :: [(a, b)] -> ([a], [b]) 

unzip [ ] = ([ ], [ ]) 

unzip ((x,y):zs) =  

  let (xs,ys) = unzip zs in 

  (x:xs, y:ys) 

 

maxs :: [Int] -> Int 

maxs [ ] = minbound 

maxs (x:xs) = max x (maxs xs) 

   
a) Theorem:  For all finite lists xs :: [(a,b)], zip (unzip xs) = xs. 

 
Proof:  By induction on the structure of xs.  Lay out the proof as you have been instructed to do 
in class.  Points will be given for having the right cases for the proof, stating the appropriate 
induction hypotheses, laying out the proof in 2-column style with appropriate justifications, etc.  
It is better to write "I don't know the justification" in your proof than to supply a wrong 
justification. 
 

b) Falsehood:  For all finite lists xs :: [a] and ys :: [b], unzip (zip (xs, ys)) == (xs, ys).   
 
Disprove this statement by giving a counter-example.  In other words, given an example of an xs 
and a ys for which the statement above is false. 
 

c) Theorem:  For all finite lists xs :: [Int] and ys :: [Int], max (maxs xs) (maxs ys) == maxs (xs ++ ys). 
 
Proof: By induction on the structure of xs.  You may use any obvious property of max and 
minbound that you like (be explicit about the properties you use in the justifications in your 
proof).  For example, you may use commutativity, associativity, or the fact minbound is a 
minimum: 

max a b = max b a 
max (max a b) c = max a (max b c) 
max a minbound = a 

 
d) Conjecture:  For all lists xs :: [a], length (3:xs) > length xs. 

 
Either prove it or give a counter example in Haskell. 

 



  



Part III 

In the first week of lecture, we gave mathematical definitions of the syntax binary and unary numbers.  

Those mathematical definitions looked like this: 

b ::= # | b0 | b1 

i ::= # | iS 

Boy, that sure looks a lot like a Haskell data type doesn’t it?  That is not a coincidence!  In this question, 

you will implement those mathematical definitions as directly as possible in Haskell.  In the file code.hs, 

implement the following types and functions: 

data Bin = … 

data  Un = … 

 

-- the denotational semantics of a binary number as an Int 

binSem :: Bin -> Int 

 

-- the denotational semantics of a unary number as an Int 

unSem  :: Un -> Int 

 

-- convert a binary number to a unary number 

bin2un :: Bin -> Un 

 

-- convert a unary number to a binary number 

un2bin :: Un -> Bin 

 

Your functions should satisfy the following properties.  Do not hand in proofs of these properties.  

However, doing these proofs is good prep for exams.  

Theorem:  for all u::Un, binSem (un2bin u) = unSem u 

Theorem:  for all b::Bin, unSem (bin2un b) = binSem b 

Think about, but do not hand in:   

Conjecture 1:  for all b::Bin, un2bin (bin2un b) = b. 

Conjecture 2:  for all u::Un, bin2un (un2bin u) = u.   

Conjecture 3:  for all b1,b2::Bin, binsem b1 = binsem b2 implies b1 = b2 

Which of these conjectures are true for your definitions?  Is the analogue of conjecture 3 true for unary 

numbers?  What does conjecture 3 lead you to believe about the relative “goodness” of your 

implementation of binary numbers?  Feel free to discuss these questions with your classmates or with 

the professor or TA during office hours. 



Part IV:  Practice with Higher-order Programming 

In the file code.hs, define the following functions.  When asked for a “recursive” version of the function 

in question, you should turn in an explicitly recursive function that calls itself: 

foo x = … foo x … 

When asked for a “non-recursive” function, you should not yourself write a function that calls itself.  

Instead, you should use map, fold, function composition and other standard functions from the 

Haskell prelude to construct your function.  Explicitly give the type of each function. 

a) pairAndOneRec – a recursive function that for each Int element of a list, pairs that list 

element with itself plus one.  Eg:  pairAndOneRec [0, 5, 10] = [(0,1), (5,6), (10,11)] 

 

b) pairAndOneNon – as above but nonrecursive 

 

c) addPWRec – given a list of lists of Int.  Return a list of Int in which the ith element of the 

resulting list is the sum of the ith elements of the argument lists.  This is often referred to as 

“pointwise” application of the addition function The lists do not have to be the same length: 

Eg: addPWRec [[1, 5, 9], [2, 3], [7], [2, 2]] = [12, 10, 9] 

 

d) addPWNon – as above but nonrecursive. 

 

e) minListRec – a recursive function:  return the minimum positive element or zero if there is 

no positive element. Eg: minListRec [1, -3, 4] = 1 

 

f) minListNon – as above but nonrecursive 

  



 

Part V : Drawing Fractals 

For this assignment we will have to set up some graphics libraries for use with Haskell.  We will also be 

using code from Paul Hudak’s “Haskell School of Expression” (SOE).  To install the graphics library and 

SOE, see the course web pages.  Test that it is working by going to the SOE/src directory and typing 

$ ghci Draw.lhs 

*Draw> main0 

You should see a graphics window displayed with a couple of shapes in it. 

Read the handout on using Haskell graphics and Sierpinski Triangles. 

a) In the file code.hs, implement a  function called “carpet” (with well-structured auxiliary 

definitions) that brings up a window displaying the following picture.  A keypress by the user 

should close the window.  You will either need to run your program in SOE/src or add that path 

to GHC’s search path.  You will need to put “import SOE” at the top of your file. 

 

b) In the file code.hs, implement a function “fractal” (again with well-structured auxiliary 

definitions) that brings up a window displaying a fractal pattern of your own design.  A key press 

by a user should close the window safely.  Be creative!  The only constraint is that it shows some 

interesting self-similar recursive pattern.  To get additional ideas, try Google or Wikipedia for 

information on fractals.  Explain your pattern and any mathematics behind it in a comment 

preceding your fractal function.  As always, cite sources for your ideas.  Grading for this part of 

the assignment will be done in 4 categories: (0) Not handed in or doesn’t compile/draw, (1) 

Minor variation of Sierpinski triangle/carpet, (2) Major departure from Sierpinski triangle/carpet 

demonstrating significant thought, (3) Outstanding, sophisticated, surprising, creative, artistic, 

detailed. 


