
COS 441 Assignment 1 

The main goal of the assignment is to get used to working with syntax, inductive definitions, 

denotational semantics and simple proofs by induction. 

Assume that b, h, n,  i, and j are metavariables for the binary, hex, mixed, unary and natural numbers 

defined in lecture.  Assume that e is the metavariable for arithmetic expressions defined in lecture. 

Assume binsem, mixsem, etc. are defined as in lecture. 

Your work should be done on a printout of this assignment.  Turn in your printout filled in. 

Part I 

Consider each of the functions and assume that the function argument has one of the types we defined 

in class (binary, hex, mixed, unary, arithmetic expression or natural number).  Fill in the blanks with 

“yes” or “no” or “it’s ambiguous”. 

a. evenbin(#) = true  

evenbin(b0) = true           

 

evenbin is total: __________      evenbin is inductive: _________ 

          

b. oddu(#) = false 

oddu(#S) = true 

oddu(iSS) = oddu(i)  

 

oddu  is total: __________       oddu is inductive: _________ 

 

c. iszero(#) = true 

 

iszero  is total: __________       iszero is inductive: _________ 

 

d. grow(#) = 0 

grow(b0) = grow(b1) - 1 

grow(b1) = 1 + grow(b0) 

 

grow  is total: __________       grow is inductive: _________ 

 

e. trumpet(add(e1,e2)) = drums(e1) + trumpet(e2) 

trumpet(mult(e1,e2)) = drums(e1) - trumpet(e2) 

trumpet(num(n)) = mixsem(n) + mixsem(n) 

drums(e) = expsem(e) 

trumpet  is inductive: __________       drums  is inductive: _________ 



Part II 

This question is about Roman numerals.  Refresh your memory (or learn about) Roman numerals here: 

http://en.wikipedia.org/wiki/Roman_numerals 

a. Give a BNF definition for the Roman numbers from 1 to 100 inclusive.  The easiest way to do this 

to simply list them all (you can do that because there are only finitely many between 1 and 100). 

ie: 

 

r ::= I | II | III | IV | V | VI | … | C 

 

Obviously, that takes a long time.  Your job is to give the most compact BNF definition that you 

can.  Avoid repeating symbols or patterns whenever possible but be sure you represent every 

number and only numbers between 1 and 100. 

 

 

 

 

 

 

 

 

 

 

 

 

b. Give a denotational semantics for your definition.  In other words, define a total, inductive 

function “semr” from the syntax of roman numerals to the natural numbers. 

  



Part III 

Recall the unary numbers: 

i ::= # | iS 

Define even(i) as follows: 

even (#) = true 

even (#S) = false 

even (iSS) = even(i) 

Theorem:  For every i, either even(i) or even(iS). 

Proof (Fill in the blank parts to complete the proof):  By induction on the syntax of i. 

case #: 

 

 

 

case #S: 

 

 

 

 

case iSS: 

 

  



Part IV 

a. Define a function that reverses the order of the elements of a list: 

 

reverse :: List -> List 

 

reverse ( [ ] ) = ____________________ 

 

reverse ( j : l ) = ____________________ 

 

b. Prove this theorem: 

 

theorem:  for all l, reverse (l ++ [ j ] ) = j : (reverse (l)) 

 

(recall that “* j +” is just a shorter way of writing “j : * +”) 

 

Proof:  by induction on the structure of lists 

 

case l = [ ] 

 

 

 

 

 

 

case l = (j’ : l’) 

 

IH:  reverse ( l’  ++ [ j ] )  = j : (reverse  l’ ) 

 

 

 

  



Part V 

String patterns.  Let u be a meta variable that ranges over uppercase letters A, B, C: 

Upper case characters:   u ::= A | B | C  

Consider the following language of string patterns. 

String patterns:     r ::= nothing | emptystr | single u | concat(r, r) | or(r, r)  

The semantics of individual characters u is a string containing just the letter itself: 

semchar(A) = “A” 

semchar(B) = “B” 

semchar(C) = “C” 

 

The semantics of string patterns will be given as a function from syntax to the set of strings that the 

pattern matches.  In the definition, assume that the operation s1 ++ s2 concatenates the two strings s1 

and s2.   We write s ϵ S when string s is a member of the set of strings S. 

 

semre (nothing)  = { } 

semre(emptystr)  = {  “” } 

semre(single u)   = { semchar u } 

semre(concat (r1, r2))  = { s1 ++ s2 | s1 ϵ semre(r1)   and   s2 ϵ semre(r2) } 

semre(or (r1, r2))  = { s | s ϵ semre(r1)   or   s ϵ semre(r2) } 

 

Examples:  

semre (or (single A, single B)) = , “A”, “B” - 

semre (concat (single A, single B)) = , “AB” - 

semre (concat (or (single A, single B), or (single B, single C))) = , “AB”, “AC”, “BB”, BC” - 

 

Compute the semantics of the following expressions. 

a. semre(concat(single A, nothing)) = _________________________ 

 

b. semre(concat(or (single A, single B), or (single C, nothing))) = ________________________ 

 

c. semre(concat(or(single A, single B), or (single C, emptystr))) = _______________________ 

 

  



Part VI 

 

Consider the following definition: 

 

isempty (nothing) = true 

isempty(emptystr) = false 

isempty(single u)  = false 

isempty(concat (r1, r2))  = isempty (r1) or isempty(r2) 

isempty(or(r1, r2))  = isempty (r1) and isempty(r2) 

 

Theorem: For all r, if isempty(r) then semre(r) = { }. 

 

Proof:  By induction on the syntax of r.   

Complete the proof here.  Carry over to blank page if necessary – don’t scrunch it up and make 

it hard to read! 

Format the proof like you have been shown in 2-column style.   

Be sure you have the correct number of cases. 

Be sure you write down the induction hypothesis you are allowed to use in each case. 

Even if you cannot figure out the details, showing that you know what the general form of the 

proof should look like will give you partial credit. 

 

 

 

 

  



 (Extra page) 


