
Improving Term Extraction with Acyclic Constraints
Mike He

Princeton University

Princeton, NJ USA

dh7120@cs.princeton.edu

Haichen Dong

Princeton University

Princeton, NJ USA

hd5234@cs.princeton.edu

Sharad Malik

Princeton University

Princeton, NJ USA

sharad@princeton.edu

Aarti Gupta

Princeton University

Princeton, NJ USA

aartig@cs.princeton.edu

Abstract
Term extraction is a crucial workload in egg for determining

the desired terms to be extracted. Some prior works have for-

mulated term extraction as integer linear programming (ILP)

problems in order to cope with common sub-expressions for

optimality that could not be handled by greedy algorithms.

Although ILP-based extraction algorithms ensure optimality,

these formulations offload a topological sorting problem to

the ILP solver to avoid extracting cyclic terms, which does

not scale well with the complexity of cycles in the e-graph.

Instead of enforcing topological orders with constraints, we

propose to explicitly identify the cycles and encode them

to Acyclic constraints. This approach enables us to formu-

late term extraction problems in terms of Weighted Partial

MAXSAT problems and improve the solving speed of the

current ILP formulation. Our evaluation of term extraction

for equality saturation on real-world Deep Learning (DL)

workloads shows that using the improved formulation yields

up to ∼3x speed-up on the total extraction time compared

with using the state-of-the-art ILP encoding.

CCS Concepts: • Theory of computation→ Constraint
and logic programming.

Keywords: E-Graphs, Extraction, Optimization

1 Introduction
Equality saturation [11] and egg [14] are commonly used

for compiler optimizations. In practice, these applications

have a high demand for both efficiency and optimization

quality. Prior work has improved the efficiency of equality

saturation in egg by filtering out e-nodes that are not likely

to appear in the optimal term but requires sketches from

the programmers to guide the filtering [5]. Some works pro-

posed encoding term extraction as integer linear program-

ming (ILP) problems [9, 15]. While solving an ILP problem

promises to extract an optimal term, the current formulation

does not scale when put into practice.
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We observe that in the current formulations implemented

in Glenside [9] and Tensat [15], constraints that prevent

extracting cyclic terms are encoded as topological sorting.

These constraints are hard to solve when the cycles in the

input e-graph become complicated, and the topological order

variables are only bounded by the size of the e-graph, which

may yield an exponentially large search space.

Some recent updates made to egg [14] also implemented

ILP-based extraction. Instead of solving a topological sort-

ing problem, egg avoids extracting cycles by blacklisting

all e-nodes that potentially lead to a cyclic term. This over-

approximation may filter out the optimal term, and, in a

more extreme case, it blacklists all the e-nodes in the root

e-class, making the entire problem infeasible.

In this paper, inspired by these prior works, we propose

breaking cycles by identifying the cycles. The cycles detected

in a given e-graph will be encoded as Acyclic constraints,
which guide the solver to avoid extracting the cycles. This

approach enables us to formulate term extraction in terms

of weighted partial MAXSAT problems (WPMAXSAT) and

derive another version of the ILP formulation.

We implement both formulations and evaluate them on

Glenside [9] with term rewriting workloads on real-world

DL applications and compare the term extraction speed with

the state-of-the-art ILP encoding implemented in Tensat [15].

Our evaluations show that the extraction time using WP-

MAXSAT and the modified ILP formulation have approxi-

mately ∼3x speed up.

We also discuss some efforts we made on the LP relaxation

of the ILP problems and some optimizations to our new

formulations.

2 Notations
For ease of understanding and formalizing later, we adopt

the following set of notations,

• Denote an e-graph by 𝐺 ⟨𝑁,𝐶, 𝐸⟩, where let 𝑁 be the

set of e-nodes,𝐶 be the set of e-classes, and 𝐸 be the set

of edges 𝑒 : (𝑛, 𝑐) betweeen 𝑛 ∈ 𝑁 and 𝑐 ∈ 𝐶 .
• Denote the e-classwhere an e-node 𝑛 resides in by𝜅 (𝑛),
i.e. 𝜅 (𝑛) = 𝑐 ⇔ 𝑛 ∈ 𝑐 .
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• Denote the children of a node 𝑛 ∈ 𝑁 by 𝜒 (𝑛), which
is a set of e-classes. Formally, 𝑐 ∈ 𝜒 (𝑛) if and only if

∃𝑒 ∈ 𝐸, 𝑒 = ⟨𝑛, 𝑐⟩
• Denote the cost model by a total mapping 𝑀 : 𝑁 →
R+, which assigns each e-node a positive cost.

Definition 2.1. A cycle in an e-graph 𝐺 ⟨𝑁,𝐶, 𝐸⟩ is an or-

dered set of e-nodes Φ = (𝑛0, 𝑛1, . . . , 𝑛𝐿−1) ⊆ 𝑁 such that

𝜅 (𝑛 𝑗 ) ∈ 𝜒 (𝑛𝑖 ) for all 𝑖 + 1 ≡ 𝑗 (mod 𝐿).

Definition 2.2. Given a cycle Φ ⊆ 𝑁 , the class cycle of Φ is

Φ𝑐 = {𝜅 (𝑛) | 𝑛 ∈ Φ}. Given an ordered set of e-classes Ψ =

(𝑐1, 𝑐2, . . . , 𝑐𝐿), define its corresponding cycles by 𝜃 (Ψ) =
{Φ | Φ𝑐 = Ψ}. Denote the set of e-nodes involved in the

cycles in some e-class 𝑐𝑖 ∈ Ψ as N𝑐𝑖
Ψ = 𝑐𝑖 ∩

⋃
Φ∈𝜃 (Ψ) Φ.

Denote the set of all class cycles by

A = {Ψ ⊆ 𝐶 | 𝜃 (Ψ) ≠ ∅}.

3 Existing ILP Formulations
Glenside. Glenside [9] is a framework for exploring deep

learning accelerator design by composing general-purpose

tensor-level rewrite rules and customizable hardware-specific

rewrite rules.

Given an e-graph 𝐺 ⟨𝑁,𝐶, 𝐸⟩ and a cost model 𝑀 where

𝑀 (𝑛) = 𝑤𝑛 for all 𝑛 ∈ 𝑁 , Glenside implements the following

formulation,

• Node variables: for each e-node 𝑛, create a binary
variable𝑤𝑛 . If𝑤𝑛 = 1 then𝑛 is selected in the extracted

term, otherwise it is not selected.

• Class variables: for each e-class 𝑐 , create a binary
variable 𝑤𝑐 . If 𝑤𝑐 = 1 then some e-node(s) in 𝑐 are

selected.

• Topological ordering variables: for each e-class 𝑐 , cre-

ate an integral variable 𝑡𝑐 (bounded by a sufficiently

large value).

Let 𝑅 be the root of 𝐺 .

min

∑︁
𝑛∈𝑁

𝑀 (𝑛) ·𝑤𝑛 (ILP-Glenside)

subject to

∑︁
𝑛∈𝑐

𝑤𝑛 ≥ 𝑤𝑐 ∀𝑐 ∈ 𝐶

(Class constraints)

𝑤𝑐′ ≥ 𝑤𝑛 ∀𝑛 ∈ 𝑁,∀𝑐′ ∈ 𝜒 (𝑛)
(Children constraints)

𝑤𝑅 = 1 (Root constraint)

𝑡𝜅 (𝑛) + 𝜎 (1 −𝑤𝑛) ≥ 𝑡𝑐 + 1 ∀𝑛 ∈ 𝑁,∀𝑐 ∈ 𝜒 (𝑛),
(Topological constraints, where 𝜎 is large enough)

𝑤𝑐 ,𝑤𝑛 ∈ {0, 1} ∀𝑐 ∈ 𝐶,∀𝑛 ∈ 𝑁 .
The objective is to minimize the sum of the cost of e-nodes in

the extracted term. Class constraints enforce the requirement

that if an e-class 𝑐 is picked, then at least one e-node 𝑛 ∈ 𝑐
must also be picked. Children constraints say that if an e-

node is picked, all of its children (e-classes) must also be

picked. Root constraint ensures that there is at least 1 e-node
in the root e-class picked. Finally, the Topological constraints
impose a strict topological order on the selected e-classes.

The topological ordering is done on e-classes: when an e-

node 𝑛 in some e-class 𝑝 is chosen, the topological order

variable 𝑡𝑝 must be greater than 𝑡𝑞1 , 𝑡𝑞2 , · · · , 𝑡𝑞𝑚 where 𝑞𝑖
are children of 𝑛. On the other hand, if 𝑛 is not chosen, the

topological ordering constraint should always be satisfiable.

Therefore, an arbitrary offset (large enough) is added to 𝑡𝑝
when 𝑛 is not chosen (𝑤𝑛 = 0). Having these constraints will

ensure the acyclicity of the extracted term.

Tensat. Tensat [15] is a re-implementation of TASO [3] us-

ing equality saturation for tensor algebra super-optimization.

Tensat’s formulation has a similar set of constraints but

optimizes away the class variables and the class constraints

in Glenside’s formulation by representing 𝑤𝑐 as
∑
𝑛∈𝐶 𝑤𝑛 .

We refer to this formulation as ILP-Topo.

Cycle breaking in egg’s ILP extractor. The ILP-based ex-
tractor in egg has been updated to implement an algorithm

that traverses the e-graph and identifies all e-nodes that

create cycles. These nodes are then added to a blacklist to

prevent the extraction of cyclic terms before constraint con-

struction. The extractor uses a similar encoding as ILP-Topo
but employs the blacklist to set the weight (𝑤𝑛) of blacklisted

e-nodes to 0, thus providing an over-approximation to the

extraction problem.

Since this approach assumes a root for a single-root e-

graph, the disabled e-nodes may reside in the root e-class

the user wants to extract a term from. Therefore, it can miss

the true optimal term, particularly if all e-nodes in the root

e-class provided by the user are part of cycles in the e-graph.

In such cases, the constraints become contradictory, leading

to an unsat result even when non-cyclic terms could be

extracted. As an example, consider the e-graph in Figure 1,

where the e-class containing 𝑛1 and 𝑛2 is the root e-class

provided by the user. The Root Constraint yields𝑤𝑛1+𝑤𝑛2 ≥ 1.

However, the algorithm may start with the other two e-

classes, resulting in setting 𝑤𝑛1 = 0 and 𝑤𝑛2 = 0. This will

cause a contradiction with the Root constraints, leading to

an unsat. One may argue that this issue can be fixed by

starting with the root provided by the user. However, fixing

the order of traversal is equivalent to assuming a topological

order of the e-classes, which may not be the correct order.

4 WPMAXSAT and ILP-ACyc Encodings
We propose to encode the Acyclic constraints by identifying

class cycles in the given e-graph. This approach enables us

to formulate term extraction as WPMAXSAT problems and

devise an alternative ILP encoding.

4.1 WPMAXSAT
In WPMAXSAT problems, constraints are divided into two

parts: hard constraints and soft constraints. Hard constraints
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n1 n2

n3 n4 n5 n6

Figure 1. An example e-graph that causes an unsat in egg’s
ILP extractor since both 𝑛1 and and 𝑛2 are creating a cycle if

the algorithm starts from other two e-classes.

are those that must be satisfied by the truth assignments,

while soft constraints could be unsatisfied. Each soft con-

straint is associated with a positive weight and the objective

of solving WPMAXSAT is to find a truth assignment to the

variables that maximizes the sum of the weights of satisfied
soft constraints while satisfying all the hard constraints.

Given an e-graph 𝐺 ⟨𝑁,𝐶, 𝐸⟩, a cost model𝑀 , and a root

e-class 𝑅 to extract, we create a Boolean variable𝑤𝑛 for each

e-node 𝑛 ∈ 𝑁 . Then the WPMAXSAT constraints for term

extraction problems are defined such that𝑤𝑛 is assigned to

true if 𝑛 is in the extracted term.

Hard Constraints.
• Root constraint: ∨

𝑛∈𝑅
𝑤𝑛

• Children constraints:

𝑤𝑛 →
∨
𝑛′∈𝑐

𝑤𝑛′ ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝜒 (𝑛)

• Acyclic constraints:∨
𝑐∈Φ𝑐

∧
𝑛∈N𝑐

Ψ

¬𝑤𝑛 ∀Ψ ∈ A

Soft Constraints. ¬𝑤𝑛 for each 𝑛 ∈ 𝑁 . The weight of

¬𝑤𝑛 is set to𝑀 (𝑛) given by the cost model.

As in Hard Constraints, the Root constraint and Children con-
straints are naturally translated from the ILP-Topo. Acyclic
constraints are added using class cycles in the e-graph. We

rely on existing algorithms (e.g. Johnson’s algorithm [4])

to detect class cycles. For each class cycle Ψ, we encode

Acyclic constraints to eliminate cycles in 𝜃 (Ψ). An Acyclic

constraint is a disjunction of conjunctions of negated e-node

variables corresponding to the e-nodes involved in any cycle.

This simply disallows the solver from extracting all of the

e-nodes in some cycle at the same time. To efficiently encode

the Acyclic constraints, we apply Algorithm 1.

Algorithm 1 Encoding of Acyclic Constraints

Input: e-classes that form a cycle in the egraph

1: procedure EncodeCycle(𝑃 : a list of e-classes that forms

a cycle)

2: 𝐾 ← []
3: for 𝐶 ∈ 𝑃 do
4: 𝐾 ′ ← []
5: for 𝑛 ∈ 𝐶 do
6: if 𝜒 (𝑛) ∩ 𝑃 ≠ ∅ then
7: 𝐾 ′ .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑤𝑛)
8: end if
9: end for
10: 𝐾.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (∧𝑐∈𝐾 ′ ¬𝑐)
11: end for
12: return TseitinTransform(∨𝑐∈𝐾 𝑐)
13: end procedure

Note that when we detect a cycle of e-classes, if we naively

encode all cycles from 𝜃 (Ψ), the number of constraints could

increase exponentially. Therefore, as shown on Line 12 of

Algorithm 1, we apply Tseitin transformation [13] of the

Acyclic constraints. Specifically, for each e-class 𝑐 in some

class cycle Ψ, we create an auxiliary variable 𝑣𝑐Ψ. Taking 𝑣
𝑐
Ψ

as boolean variables, by Tseitin transformation,

𝑣𝑐Ψ ↔
∧
𝑛∈N𝑐

Ψ

¬𝑤𝑛

If direction:

𝑣𝑐Ψ →
∧
𝑛∈N𝑐

Ψ

¬𝑤𝑛 ⇔
∧
𝑛∈N𝑐

Ψ

¬𝑣𝑐Ψ ∨ ¬𝑤𝑛 (1)

Only if direction:∧
𝑛∈N𝑐

Ψ

¬𝑤𝑛 → 𝑣𝑐Ψ ⇔
∨
𝑛∈N𝑐

Ψ

𝑤𝑛 ∨ 𝑣𝑐Ψ (2)

Then the Acyclic constraints for Ψ simply become∨
𝑐∈Ψ

𝑣𝑐Ψ (3)

The objective of WPMAXSAT formulation is intuitive: the

soft constraints naturally encode the objective of extracting

the lowest-cost term by maximizing the weight of negated
node variables, which is equivalent to minimizing the weight

of extracted e-nodes hence optimizing the extracted term.

4.2 ILP-ACyc
A benefit of usingA to encode constraints is that we are able

to get rid of the topological sorting constraints introduced

by the formulations in Section 3. We could instead encode

the Acyclic constraints, for all cycles {Φ | Φ ∈ Ψ,Ψ ∈ A} in
the given e-graph, as∑︁

𝑛∈Φ
𝑤𝑛 ≤ |Φ| − 1

3
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These constraints restrict the solver to extract at most
|Φ| − 1 e-nodes from a cycle Φ hence breaking cycles but not

filtering out all e-nodes in the cycles. However, as discussed

in Section 4.1, the naive encoding may introduce exponen-

tially many constraints if we simply pick an e-node per e-

class in the cycle. To reduce the number of constraints, we

convert the encoding of Acyclic constraints in WPMAXSAT

into equivalent ILP constraints by treating 𝑣𝑐Ψ as binary vari-

ables.

To translate Formula (1), we encode the following con-

straint for each e-node 𝑛 ∈ N𝑐
Ψ,

(1 − 𝑣𝑐Ψ) + (1 −𝑤𝑛) ≥ 1. (4)

Formula (2) simply becomes the ILP constraint

𝑣𝑐Ψ +
∑︁
𝑛∈N𝑐

Ψ

𝑤𝑛 ≥ 1. (5)

Finally, we encode the Acyclic constraint (3) for Ψ using

these auxiliary variables:∑︁
𝑐∈Ψ

𝑣𝑐Ψ ≥ 1 (6)

We modify the constraints from ILP-Topo and call this

alternative form of formulation ILP-ACyc.

min

∑︁
𝑛∈𝜏

𝑀 (𝑛) ·𝑤𝑛 (ILP-ACyc)

subject to

∑︁
𝑛′∈𝑐

𝑤𝑛′ ≥ 𝑤𝑛 ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝜒 (𝑛)∑︁
𝑛∈𝑅

𝑤𝑅 = 1

(1 − 𝑣𝑐Ψ) + (1 −𝑤𝑛) ≥ 1 ∀Ψ ∈ A, 𝑐 ∈ Ψ, 𝑛 ∈ N𝑐
Ψ

𝑣𝑐Ψ +
∑︁
𝑛∈N𝑐

Ψ

𝑤𝑛 ≥ 1 ∀Ψ ∈ A, 𝑐 ∈ Ψ∑︁
𝑐∈Ψ

𝑣𝑐Ψ ≥ 1 ∀Ψ ∈ A, 𝑐 ∈ Ψ

𝑤𝑛, 𝑣
𝑐
Ψ ∈ {0, 1} ∀Ψ ∈ A, 𝑐 ∈ Ψ, 𝑛 ∈ 𝑁 .

5 Analysis
We briefly analyze our formulations and compare them with

those in Section 3.We say an e-graph𝐺 ⟨𝑁,𝐶, 𝐸⟩ is (𝑛,𝑚,𝑑, 𝑘)-
bounded if |𝑁 | ≤ 𝑛, |𝐶 | ≤ 𝑚, the maximal congruent de-

gree max𝑐∈𝐶 |𝑐 | ≤ 𝑑 , and the maximal number of operands

max𝑛∈𝑁 |𝜒 (𝑛) | ≤ 𝑘 .

Analysis of WPMAXSAT and ILP-ACyc. First, we ana-
lyze the number of acyclicity constraints used inMPMAXSAT

and ILP-ACyc. Given a class cycle Ψ of length 𝑘 with each

class containing at most𝑑 nodes, a straightforward algorithm

would restrict all corresponding node cycles 𝜃 (Ψ), which
would add 𝑂 (𝑑𝑛) constraints. However, In MPMAXSAT and

ILP-ACyc, Tseitin encoding is applied and only polynomial

constraints are required.

Lemma5.1. For an (𝑛,𝑚,𝑑, 𝑘)-bounded e-graph𝐺 , the acyclic-
ity constraints for a class cycle Ψ = (𝑐1, 𝑐2, · · · , 𝑐𝑙 ) will add
𝑂 (𝑙) variables and 𝑂 (𝑑𝑙) hard clauses (or constraints) to WP-
MAXSAT (or ILP-ACyc).

Proof Sketch. Let Ψ′ = {𝑐 ∈ Ψ : |N𝑐
Ψ | > 1} be the e-classes

in Ψ with more than one corresponding e-node. According

to Tseitin encoding, |Ψ′ | variables will be created. The con-
straints for conditions (1), (2) and (3) can be counted as∑︁

𝑐∈Ψ′
|N𝑐

Ψ | +
∑︁
𝑐∈Ψ′

1 + 1 ≤ (𝑑 + 1) |Ψ′ | + 1 = 𝑂 (𝑑𝑙)

□

Definition 5.2. Cycle complexity of 𝐺 is defined by

𝛼 (𝐺) =
∑︁
Ψ

|{𝑐 ∈ Ψ : |N𝑐
Ψ | > 1}|.

Corollary 5.3. For an (𝑛,𝑚,𝑑, 𝑘)-bounded e-graph𝐺 , let A
to be the set of all class cycles, WPMAXSAT and ILP-ACyc use
𝑂 (𝑛 + 𝛼 (𝐺)) variables and 𝑂 (𝑛𝑘 + 𝑑𝛼 (𝐺))) constraints.

Worst-case Analysis. In ILP-Glenside and ILP-Tensat,

there are 𝑂 (𝑛𝑘) constraints, while, due to the acyclic con-

straints, the number of constraints in WPMAXSAT and ILP-

ACyc is 𝑂 (𝑛𝑘 + 𝑑𝛼 (𝐺))).
Lemma 5.4. For an (𝑛,𝑚,𝑑, 𝑘)-bounded e-graph𝐺 , the num-
ber of class cycles 𝛼 (𝐺) ≤ 𝑂 (𝑚2

𝑚).
Proof Sketch. In the worst case, each e-nodes has all the e-

class as their children, and picking any set of e-nodes such

that they are from different e-classes will result in a cycle.

Thus the number of class cycles is 2
|𝐶 | = 𝑂 (2𝑚). Also, ev-

ery class cycle contains at most 𝑂 (𝑚) e-nodes. Therefore,
𝛼 (𝐺) ≤ 𝑂 (𝑚2

𝑚). □

This means there could be exponentially many constraints

in WPMAXSAT and ILP-ACyc (we will discuss some opti-

mization on the number of constraints and variables in Sec-

tion 7). This is not because of the encoding, but because

there can be exponentially many cycles of e-classes in an

e-graph.

6 Evaluation
We have implemented both ILP-Topo, WPMAXSAT and ILP-

ACyc as language-agnostic extractors (∼900 LoC of Rust)

in egg and evaluated on Glenside [9] evaluations. For ILP-

Topo and ILP-ACyc, we offload the constraints to the CPLEX

ILP solver, and for WPMAXSAT, we feed the constraints to

MaxHS [1]. The experiments are conducted on a platform

with an Intel i9 processor and 64 GB memory.

6.1 Setup and Workloads
For Glenside [9] we limit the maximum number of e-nodes
in the e-graph to 100,000 and set a 5-second time-out for

equality saturation. We pick 5 real-world DL applications for

computer vision, including MobileNetV2 [7], ResMLP [12],

4
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EfficientNet [10], ResNet-18 and ResNet-50 [2]. We choose

these applications since Glenside converts coarse-grained

operators to fine-grained tensor-level expressions, which

can give us e-graphs large enough for evaluating different

extraction formulations. We make the set of rewrites applied

to the e-graph configurable and performed experiments on

2 sets of rewrites:

• im2col: a set of rewrites that performs im2col trans-

formation

• im2col+simpl: im2col transformation plus a set of

simplification rules, which includes collapsing mul-

tiple reshapes, transposes and tensor accesses to the

most recent one, bubble reshape operators through

computations, etc.

We choose a simple cost model that assigns 1 to each e-

node, which minimizes the size of the extracted term. We set

a 5-minute (300 seconds) time-out for term extraction and

measure the time spent for extraction (broken down to time

spent by the solvers and the overhead of constructing the

constraints).

6.2 Preliminary Results
We performed 5 independent runs for each set of the rewrite

rules and computed the average time taken for term extrac-

tion. Figure 2 illustrates a comparison of the time required

for term extraction using different formulations. Our WP-

MAXSAT and the improved ILA-ACyc formulations resulted

in faster term extraction time: the solver yielded solutions

within ≤ 5 seconds in all cases whereas the implementa-

tion using ILP-Topo takes more than 6 seconds on certain

workloads. Notably, applying the WPMAXSAT formulation

to term extraction after applying the im2col rewrite rules

on ResMLP and ResNet-18 provided an ∼3x speedup com-

pared to the current Tensat implementation [15]. Moreover,

the solver timeouts on solving the ILP-Topo formulation for

ResNet-50 after including simpl rewrites, but all of our new

formulations could be solved within a few seconds.

We also record the statistics of e-graphs after running

equality saturation on the workloads described above, shown

in Figure 3 and Table 1. There are significantly more e-classes

and e-nodes in the e-graph after running im2col without

simplification rewrites, but the solver does not time out on all

the formulations. After we put in simpl rewrites, the solver is

not able to finish solving ILP-Topo formulation of ResNet-50.

This is because simpl rewrites introduce complex cycle

structures to the e-graph, which makes the topological order-

ing constraints too complicated to be solved efficiently. On

the other hand, the encoding of ILP-ACyc and WPMAXSAT

is much simpler since we have already identified the cycles

explicitly before emitting the constraints. As shown in Fig-

ure 2, the solver is able to find the optimal solution within
a second using the ILP-ACyc formulation in the case where

using ILP-Topo timeouts.
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Figure 2. The comparison between the term extraction time

(including time for constructing the constraints displayed as

Overhead) of three different formulations. The upper figure

displays the term extraction time for different formulations

after running equality saturation with im2ol rewrites. The

lower figure shows the term extraction time after running

equality saturation with im2col and a set of simplification

rewrites (simpl). The overhead time (encoding constraints,

building extracted term, etc.) is indicated at the bottom of

each bar.

7 Discussion and Ongoing Study
7.1 Linear Programming Approximation
Wehavemade some efforts on devising rounding schemes for

the relaxed ILP-Topo problem. Specifically, we relax all the

ILP variables to fractional variables. After solving the relaxed

problem, we get “fractional extraction solutions” where𝑤𝑛
for each e-node is a fractional between 0 and 1. Our round-

ing scheme is straightforward: we normalize the fractional

solutions for e-nodes in each e-class. When choosing a child

5
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MobileNet ResMLP ResNet-18 EfficientNet ResNet-50

im2col 17266 15819 14754 21016 16305

im2col + simpl 17320 4247 4466 10978 20294

Table 1. Class cycle count after equality saturation
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Figure 3. The number of e-classes and e-nodes result from

equality saturation applied to different sets of rewrites. The

upper figure shows the number of e-classes and e-nodes

after applying im2col rewrites; the lower figure shows the

corresponding numbers after applying im2col rewrites in

conjunction with simplification rewrites (simpl).

for some operators, we take the normalized solution as the

probability of choosing an e-node within the child e-class.

There are several challenges left to solve: first, in the relax-

ation, cycles are harder to handle because neither topological

sorting nor Acyclic constraints work. Solving these formu-

lations depends on whether an e-node is extracted in the

ILP/WPMAXSAT solutions. However, if we relax the solu-

tions to fractionals, then whether an e-node is extracted can-

not be determined until we actually construct the extracted

term from the fractional solutions. A more significant issue

is that the approximation can be seriously bad. The ILP-Topo

introduced in Section 3 only requires

∑
𝑛′∈𝑐 𝑤𝑛′ ≥ 𝑤𝑛 for

each child 𝑐 of an e-node. Since𝑀 will always give a positive

weight,

∑
𝑛′∈𝑐 𝑤𝑛′ is at most𝑤𝑛 . Therefore, weights can be

divided up and decrease exponentially with respect to the

depth of the e-graph since some rewrite rules always bring

terms with equal weights (e.g. commutativity). This can po-

tentially lead to bad approximations with an arbitrarily large

ratio
1
. To address this problem, we are trying to apply the

Sherali-Adam Lift and Project Method [8] to strengthen the

LP constraints. In addition to considering the probability of

extracting a single e-node, this approach encodes variables

that can represent the probability of extracting some e-nodes

at the same time.

7.2 Optimizing number of constraints for
WPMAXSAT and ILP-ACyc

By Lemma 5.4, 𝛼 (𝐺) can be exponential, which may intro-

duce exponentially many constraints and variables (though

unlikely in practice). However, we can reduce the number

of constraints by encoding for cycle bases (fundamental cy-

cles) [6] instead of all cycles since there are linearly depen-

dent cycles. Given a graphwith𝑛 nodes and 𝑒 edges, there are

𝑒 − 𝑛 + 1 fundamental cycles, and the number of constraints

for a cycle base is linear with respect to the number of unique
edges

2
. Moreover, in practice, the degree of e-nodes in an

e-graph is a constant and the lengths of cycles are almost

constant. If these properties hold, the number of additional

constraints will decrease to 𝑂̃ ( |𝐶 |) where |𝐶 | is the number

of e-classes.

8 Conclusion
This paper proposes to improve the efficiency of constraint-

solving-based term extraction for egg by using Acyclic con-
straints to avoid extracting cyclic terms. This approach en-

ables the encoding of term extraction problems in terms

of weighted partial MAXSAT problems and dramatically

improves the solving speed of the ILP formulation. Our eval-

uation shows significant speed-ups, even enabling extraction

within a few seconds where the solver could not finish solv-

ing in 5 minutes using the encoding introduced in prior

works. We are taking additional steps to reduce the number

of constraints in WPMAXSAT and ILP-ACyc formulations

and enhance the practicality of the LP relaxation method.
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1
We have proved this result but we will omit it here due to the space

constraint

2
The edges from e-nodes in the same e-class pointing to the same child are

merged into a single edge, counted once.
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