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Introduction

•A common problem in knowledge representation and related fields is reasoning
over a large joint knowledge graph, represented as triples of a relation between
two entities.

•We introduce a model that can accurately predict additional true facts
using only an existing database.

•We assess the model by considering the problem of predicting additional true re-
lations between entities given a partial knowledge base. Our model outperforms
previous models and can classify unseen relationships in WordNet and FreeBase
with an accuracy of 86.2% and 90.0%, respectively.
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How can we infer that Francesco Guicciardini is an Italian male person?

Neural Models for Reasoning over Relations

Overview

•Each relation is described by a neural network and pairs of entities are given as
input to the model. Each entity has a vector representation, which can be con-
structed by its word vectors.

•The model returns a high score if they are in that relationship and a low one
otherwise. This allows any fact, whether implicitly or explicitly mentioned in the
database to be answered with a certainty score.

Reasoning about Relations Knowledge Base 
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Does a Bengal tiger have a tail? 
 ( Bengal   tiger,  has part,     tail) 
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Neural Tensor Networks

The Neural Tensor Network (NTN) replaces a standard linear neural network layer
with a bilinear tensor layer that directly relates the two entity vectors across multiple
dimensions. The model computes a score of how likely it is that two entities are in
a certain relationship by the following NTN-based function:
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where f = tanh is a standard nonlinearity applied element-wise, W
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The other parameters for relation R are the standard form of a neural network:
VR ∈ Rk×2d and U ∈ Rk, bR ∈ Rk.
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We use minibatched L-BFGS for training.

Entity Representations Revisited

We propose two further improvements:

•We represent each entity as the average of its word vectors, allowing the sharing
of statistical strength between the words describing each entity.

•We can initialize the word vectors with pre-trained unsupervised word vectors,
which in general capture some distributional syntactic and semantic information.

Experiments

Datasets

Dataset #R. # Ent. # Train # Dev # Test
Wordnet 11 38,696 112,581 2,609 10,544
Freebase 13 75,043 316,232 5,908 23,733

Relation Triplets Classification
We randomly switch entities from correct testing triplets resulting in an equal num-
ber of positive and negative examples. We predict the relation (e1, R, e2) holds if
g(e1, R, e2) ≥ TR (we use the development set to find TR).

Model WordNet Freebase
Distance Model [1] 68.3 61.0
Hadamard Model [2] 80.0 68.8
Single Layer Model 76.0 85.3
Bilinear Model [3] 84.1 87.7
Neural Tensor Network 86.2 90.0

Comparison of accuracy of different relations:
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The influence of entity representations (EV: training on entity vectors. WV: training on

randomly initialized word vectors. WV-init: training on word vectors initialized with unsupervised

semantic word vectors [4]):
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Examples of of relationship predictions by our Neural Tensor Network on WordNet:

Entity e1 Relationship R Sorted list of entities likely to be in this relationship
tube type of structure; anatomical structure; device; body; body part; organ
creator type of individual; adult; worker; man; communicator; instrumentalist
dubrovnik subordinate instance of city; town; city district; port; river; region; island
armed
forces

domain region military operation; naval forces; military officier; military court

boldness has instance audaciousness; aggro; abductor; interloper; confession;
hispid similar to rough; haired; divided; hard; free; chromatic; covered;
people type of group; agency; social group; organisation; alphabet; race

Conclusion

We introduced Neural Tensor Networks. Unlike previous models for predicting re-
lationships using entities in knowledge bases, our model allows a direct interaction
of entity vectors via a tensor. The model obtains the highest accuracy in terms
of predicting unseen relationships between entities through reasoning inside a given
knowledge base. We further show that by representing entities through their con-
stituent words and initializing these word representations using unsupervised large
corpora, performance of all models improves substantially.
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