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Reading Comprehension

Passage (P) + Question (Q) —— Answer (A)

éAlyssa got to the beach after a long trip. She's from Charlotte.
gShe traveled from Atlanta. She's now in Miami. She went to _
Miami to visit some friends. But she wanted some time to herself
P éat the beach, so she went there first. After going swimming and
élaying out, she went to her friend Ellen's house. Ellen greeted :
éAlyssa and they both had some lemonade to drink. Alyssa called
éher friends Kristin and Rachel to meet at Ellen's house....... :
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Data is a bottleneck

» People have attempted to collect human-labeled
data for reading comprehension:

e MCTest (Richardson et al, 2013): 660 x 4 questions
o ProcessBank (Berant et al, 2014): 585 questions

* Small, expensive

Big Data

e Difficult to learn statistical models
Straight Ahead II




(Hermann et al, 2015)

CNN/Daily Mail Datasets

C' , l Entertainment » 'Star Wars' universe gets its first gay character

‘B8 -] | A

Story highlights (CNN) — If you feel a ripple in the Force today, it may be

the news that the official Star Wars universe is getting its
Official "Star Wars" universe gets its first gay

character, a lesbian governor first gay character.

The character appears in the upcoming novel ~ According to the sci-fi website Big Shiny Robot, the
Lords of the Sith upcoming novel "Lords of the Sith" will feature a capable
Characters in "Star Wars" movies have but flawed Imperial official named Moff Mors who "also

radually become more diverse ' "
9 y happens to be a lesbian.

The character is the first gay figure in the official Star
Wars universe -- the movies, television shows, comics and books approved by Star Wars
franchise owner Disney -- according to Shelly Shapiro, editor of "Star Wars" books at Random
House imprint Del Rey Books.
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(Hermann et al, 2015)

CNN/Daily Mail Datasets

( @entity4 ) it you feel a ripple in the force today , it may be
the news that the official @entityé is getting its first gay
gcharacter . according to the sci-fi website @entity? , the
gupcoming novel " @entity11 " will feature a capable but

P gﬂawed @entity13 official named who " also
ghappens to be a lesbian . " the character is the first gay
gfigure in the official @entityé -- the movies , television shows
gcomics and books approved by @entity6 franchise owner .
g@entityZZ -- according to @entity24 , editor of " @entity6 "

characters in " @placeholder
Q " movies have gradually A  Qentityb

become more diverse

CNN: 380k, Daily Mail: 879k training - free!
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* For each candidate entity e, we build a symbolic teature

vector:
frqle)

 The goal is to learn feature weights such that the correct
answer ranks higher than the other entities (we used
LambdaMart algorithm).



System |: Entity-Centric Classifier

* For each candidate entity e, we build a symbolic teature

frqle)

N

vector:

nether e occurs in P

. W
. Whether e occurs in Q

~requency of ein P

-irst position of e in P

5. Whether e co-occurs with
another Q word in P

6. word distance
/. n-gram exact match

8. dependency parse match
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characters in " @placeholder " movies

have gradually become more diverse

Bidirectional RNNs

P By

( @entity4 ) if you feel a ripple in the force today , it may be

the news that the official @entityé is getting its first gay
character . according to the sci-fi website @entity9 , the
upcoming novel " @entity11 " will feature a capable but
flawed @entity13 official named who " also
happens to be a lesbian . " the character is the first gay
figure in the official @entity6 -- the movies , television shows ,
comics and books approved by @entity6 franchise owner
@entity22 -- according to @entity24 , editor of " @entity6 "
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System ll: End-to-end Neural Network

Pretty standard (popular) architecture in ACL167

Details: GRU, 100d Glove, SGD, Dropout (0.2), batch size
= 32, hidden size = 128 or 256..... No magic!
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Results 7-10% improvement!

 Baselines: (Hermann et al, 2015) (Hill et al, 2016)

CNN Daily Mail
Dev | Test Dev Test
_________ Frame-semanticmodel | 363 402 | 355 355
Word distance model 505 = 50.9 56.4 55.5
___________ NN: Attentive Reader | 616 630 | 705 = 690
NN: Impatient Reader 61.8 63.8 69.0 68.0
___________________________ MemNNs | 634 |« 668 | NA ' NA
MemNNs (ensemble) 66.2 69.4 N/A N/A
____________________ Ours: classifier | 671~ 67.9 | 691 . 683
__________________ Ours:neuralnet | 738 . 736 | 776 . 766
Qurs: neural net (ensemble) 77.2 77.6 80.2 79.2

*updated results / ensemble: 5 models
13
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Results

CNN Daily Mail
Dev | Test Dev Test
___________ NN: Attentive Reader | 616 630 | 705 690
Ours: neural net 73.8 | 73.6 77.6  76.6

o Differences from Attentive Reader (Hermann et al, 2015):

 Bilinear attention
e Remove a redundant layer before prediction

e Predict among entities only, not all words

Maybe we did better at hyper-parameter tuning? @ _ 9
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Results until 2016/8

CNN Daily Mail

Dev | Test Dev = Test

(Hermann et al, 2015) NIPS'15 61.8 63.8 69.0 68.0
"""""""""" Hilletal, 2016) | ICLR16 | 634 = 668 | N/A = NA
__________ (Kobayashi et al, 2016) | NAACL16| 713 | 729 | N/A =~ NA
_(Kadlecetal, 2016) | | ACL16 | 686 = 695 | 750 739
_____________ (Dhingra etal, 2016) | 2016/6/5 | 73.0 = /3.8 | 767 ' 757
(Sodornietal, 2016) | 2016/6/7 | 72.6 ~ 733 | N/A ~ N/A
(Tischleretal, 2016) | 2016/6/7 | 734 740 | N/A = NA
_____________ (Weissenborn, 2016) | 2016/7/12| N/A . 73.6 | N/A = 77.2

(Cui et al, 2016) 2016/7/15| 731 = 744 | N/A = N/A
Qurs: neural net ACL16 73.8 /3.6 77.6 | 7 66 _________

‘Ours: neural net (ensemble) | ACL16 = 77.2 | 77.6 & 80.2 = 79.2




What is this paper about!?

System Lower Bound

Our simple models work quite well.

Analysis Upper Bound

The task might be not that hard.
We are almost done.

Discussion: what’s next?
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Our Classifier:
Ablating individual features

Accuracy

Full model 67 .1

- whether e is in the passage -0%
-whether e is in the question | 01%
- frequency of e -3.4%

- position of e -1.2%

""" whether e co-occurs with Qwordin P | _1.1%
-n-grammatch | 6.6%
""" word distance | 17%
- dependency parse match | 15%

*on CNN dev set

17



Breakdown of the Examples

Exact match

Paraphrasing

Partial clue
Multiple sentences
Coreference errors

Ambiguous / hard



Exact Match

P ... it's clear @entityO is leaning toward @entity40 ...

Q " it's clear @entityO is leaning toward @placeholder,

" says an expert who monitors @entity0

A  @entity60

19



P

Paraphrasing

@entityO called me personally to let me know that he
-would n't be playing here at @entity23 , " @entity3 said

@placeholder says he understands why @entityO wo n't
play at his tournament

@entity3

20



Partial Clue

- @entity12 " @entity2 professed that his * @entity11 " is not a
greligious book . ... ;

Q 3w movie based on @entity2 ‘s book “ @placeholder ” casts a
@entity/6 actor as @entity5

A  @entityl1

21



Multiple sentences

... " we got some groundbreaking performances , here too ,

P étonight , " @entity6b said . " we got @entity1/ , who will be
. doing some musical performances . he 's doing a his - and -
gher duet all by himself . “...

() ' he'sdoing a his - and - her duet all by himself , *
@entity6 said of @placeholder

A  @entityl7

22



Coreference Error

hip - hop star @entity246 saying on @entity247 that he
-was canceling an upcoming show for the @entity249 ...

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

rapper @placeholder " disgusted , "

cancels upcoming show for @entity280

@entity280 = @entity249 = SAEs

@entity246

23



P

Q

A

Ambiguous / Hard

... asmall aircraft carrying @entity5 , @entity6 and @entity7
" the @entity12 " @entity3 crashed ...

pilot error and snow were reasons stated for

@placeholder plane crash

@entityS

24



Breakdown of the Examples

Exact match

Paraphrasing

Partial clue
Multiple sentences
Coreference errors

Ambiguous / hard

CNN: 100 samples

41

13
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Breakdown of the Examples

CNN: 100 |
Exact match samples

Paraphrasing
| 41 10
Partial clue
Multiple sentences 13
Coreference errors
___________________ neuralnet | 73.8 736 |
Ambiguous / hard neural net (ensemble) 77.2 | 77.6
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Conclusions

Reminder: Simple models sometimes just work; neural
nets are great for learning semantic matches.

The CNN/Daily Mail task: large but still noisy, and we
almost have hit the capacity; not hard enough for
reasoning and inference.

Future:

» Leverage these datasets to solve more realistic RC tasks!

o Complex models?
e More datasets coming up: WikiReading, LAMBADA, SQuUAD..

It is an exciting time for reading comprehension!
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Code available at

https://github.com/dangi/rc-cnn-dailymail

Thanks!
Questions!

28


https://github.com/danqi/rc-cnn-dailymail

