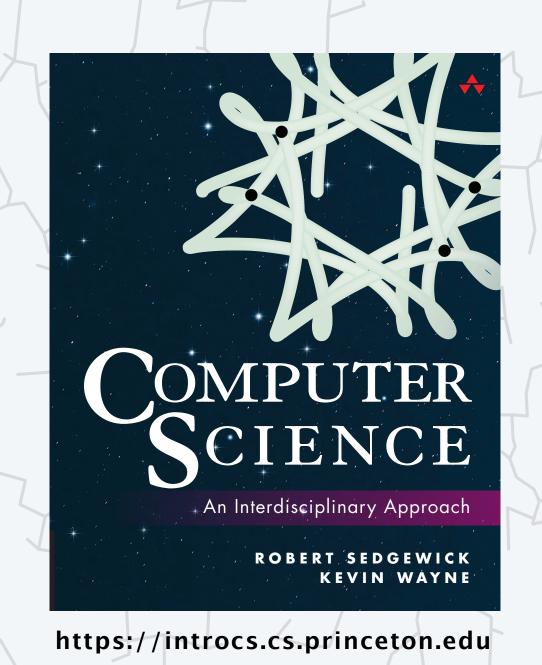
Computer Science



4.1 PERFORMANCE

- intro
- empirical analysis
- mathematical analysis
- notable examples

Performance: quiz 1

Which of the options below best describes "an efficient algorithm" to you?

- A. A. java processes 1MB (10^6 bytes) in 1 second.
- B. B. java processes 1GB (10⁹ bytes) in 10 seconds.
- C. C. java processes x bytes in 10,000x seconds.
- D. D. java processes x bytes in x^2 seconds.
- E. E. java processes x bytes in $\frac{2^x}{100,000}$ seconds.

The runtime function

Suppose Program. java can be executed on inputs of arbitrarily large size.

T(n): time (in seconds) taken to run Program. java on input of n bytes.

$$T(10^6) = 1 \longrightarrow$$
 A. A. java processes 1MB (10⁶ bytes) in 1 second.

 $T(10^9) = 10 \longrightarrow$ B. B. java processes 1GB (10⁹ bytes) in 10 seconds.

 $T(n) = 10,000 \cdot n \longrightarrow$ C. C. java processes x bytes in $10,000x$ seconds.

 $T(n) = n^2 \longrightarrow$ D. D. java processes x bytes in x^2 seconds.

 $T(n) = \frac{2^n}{100,000} \longrightarrow$ E. E. java processes x bytes in $\frac{2^x}{100,000}$ seconds.

4

What performance could mean

Fixed-length input. Input always has length s.

A is better than B if $T_A(s) < T_B(s)$.

Bounded-length input. Input always has length $\leq s$.

A is better than B if $T_A(n) < T_B(n)$ for all $n \le s$.

Unbounded-length input. Input has any length n > 0.

A is better than B if $T_A(n) < T_B(n)$ for all n > 0.

None of these work that well.

Solution. Rate of growth — see next slide!

Many, many more:

space complexity;

- \leftarrow P vs. NP
- polynomial vs. superpolynomial;
- •

Intro: what performance does mean (for us)

Rate of growth: leading-order term of T(n), dropping constants.

Examples.

$$T(n) = 10,000 \cdot n \longrightarrow \mathbf{C}$$
. C. java processes x bytes in $10,000x$ seconds. \longleftarrow Rate of growth: n

$$T(n) = n^2 \longrightarrow \mathbf{D}$$
. D. java processes x bytes in x^2 seconds. \longleftarrow Rate of growth: n^2

$$T(n) = \frac{2^n}{100,000} \longrightarrow \mathbf{E}$$
. E. java processes x bytes in $\frac{2^x}{100,000}$ seconds. \longleftarrow Rate of growth: 2^n

RoG of
$$T(n) = n^2 - 100n$$
 is

RoG of
$$T(n) = 10n^3 - 600n^2 + 20n - 10,000$$
 is

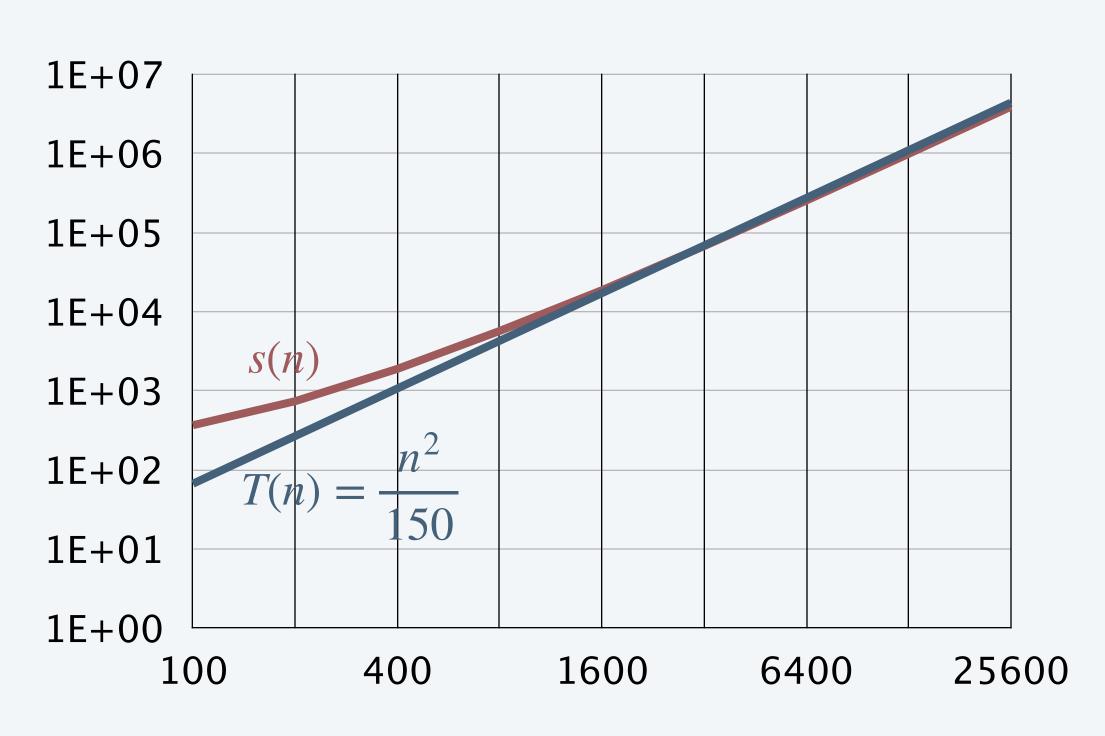
Intro: what performance does mean (for us)

Rate of growth: leading-order term of T(n), dropping constants.

Rate of growth, illustrated. $s(n) = \text{size of } n \times n \text{ PNG image}$

Image dimensions (pixels)	File size (bytes)
100 x 100	366
200 x 200	736
400 x 400	1,886
800 x 800	5,585
1600 x 1600	18,600
3,200 x 3,200	67,136
6,400 x 6,400	252,917
12,800 x 12,800	984,103
25,600 x 25,600	3,878,458

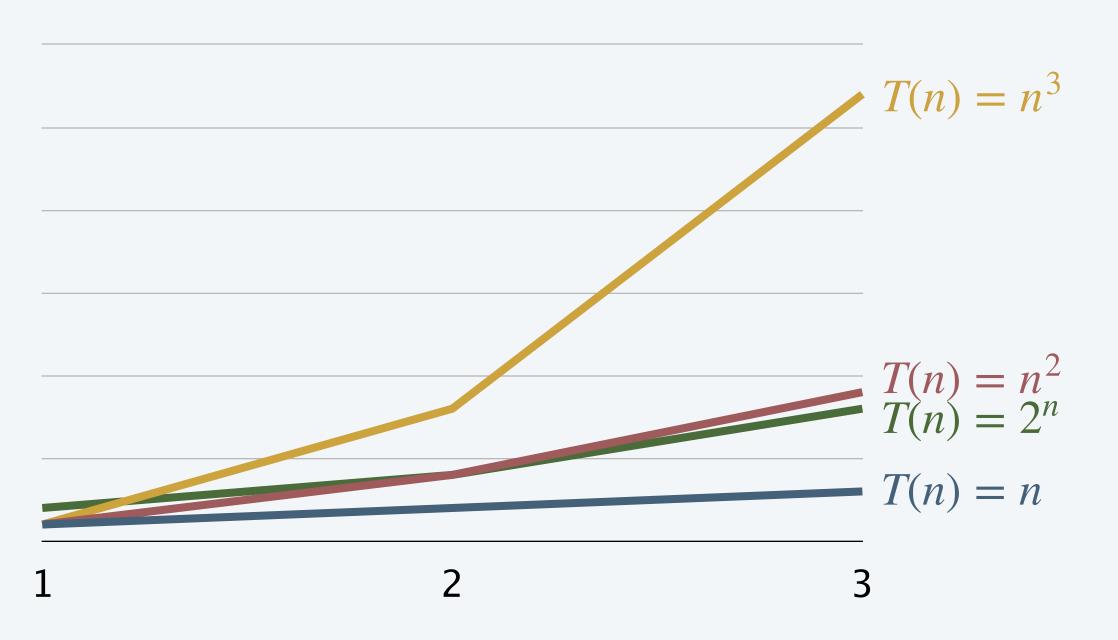
Loglog plot of side (y axis) vs. dimension (x axis)



Remark. Table measures *space*, not time. But often connected, as we'll see soon!

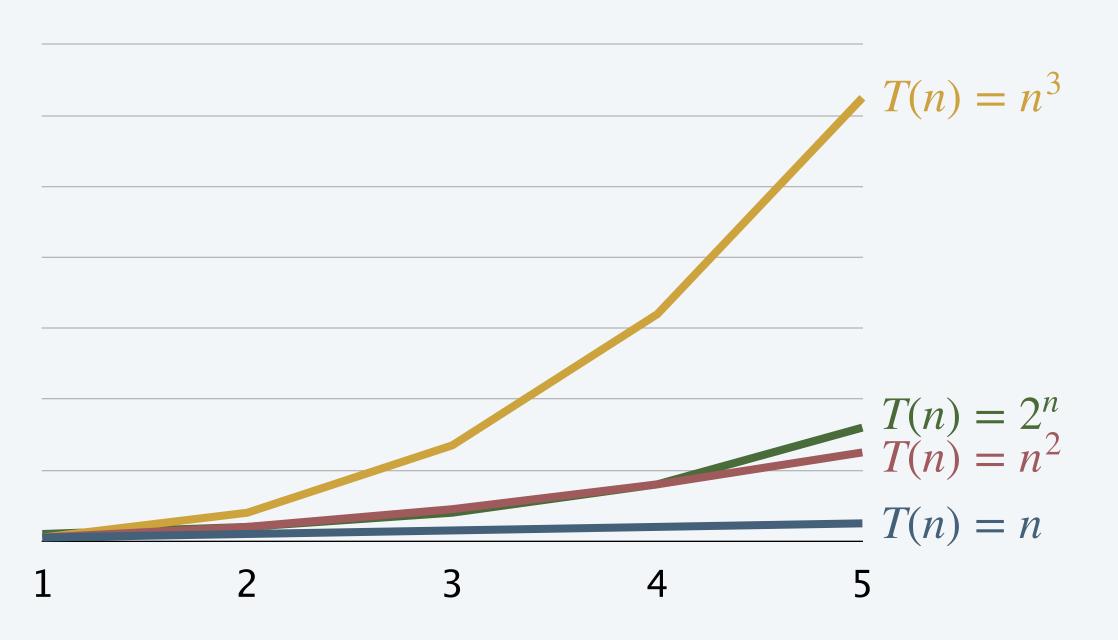
Suppose Program. java can be executed on inputs of arbitrarily large size.

T(n): time taken to run Program. java on input of n bytes.



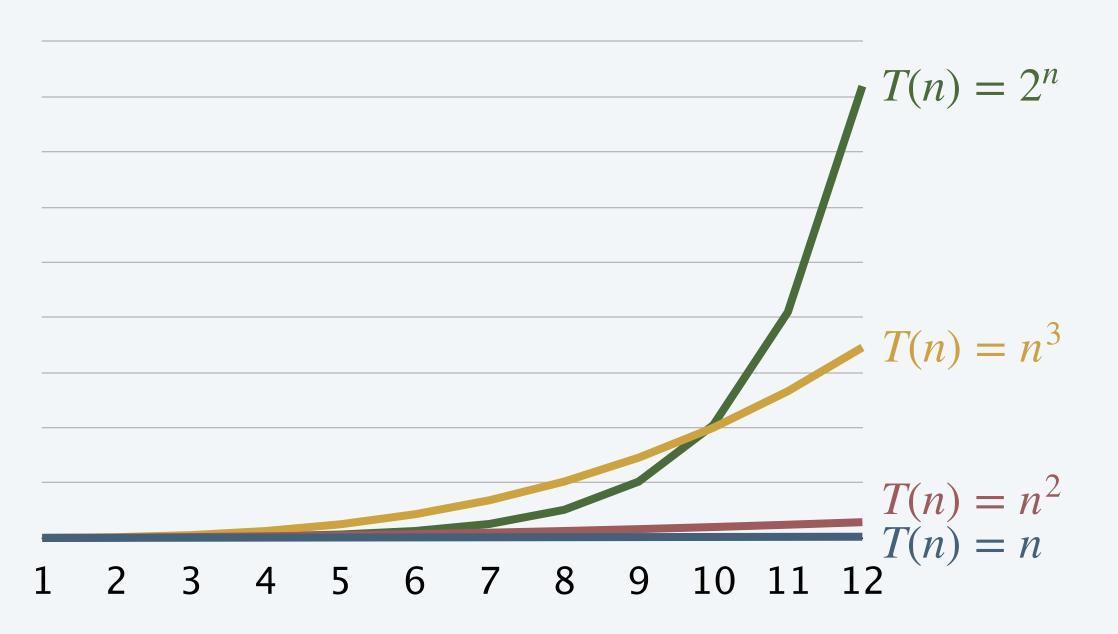
Suppose Program. java can be executed on inputs of arbitrarily large size.

T(n): time taken to run Program. java on input of n bytes.



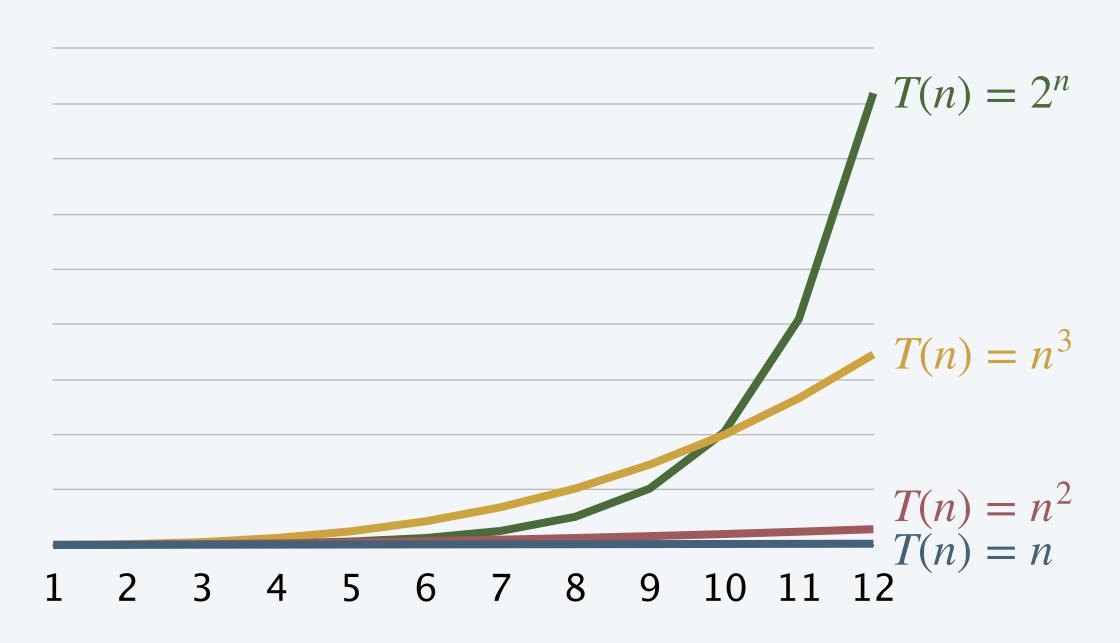
Suppose Program. java can be executed on inputs of arbitrarily large size.

T(n): time taken to run Program. java on input of n bytes.



Suppose Program. java can be executed on inputs of arbitrarily large size.

T(n): time taken to run Program. java on input of n bytes.



Caveats.

- Input size constrained by hardware & software;
- Runtime varies (a lot) depending on language;
- Time fluctuates across runs on same input;

•

Solution. Mathematical formalism.

Common orders of growth

	order of growth	name
formal notation includes Θ , but we'll drop it for simplicity	$\rightarrow \Theta(1)$	constant
	$\Theta(\log n)$	logarithmic
	$\Theta(n)$	linear
	$\Theta(n \log n)$	linearithmic
	$\Theta(n^2)$	quadratic
	$\Theta(n^3)$	cubic
	$\Theta(n^{\log n})$	quasipolynomial
	$\Theta(1.1^n)$	exponential
	$\Theta(2^n)$	exponential
	$\Theta(n!)$	factorial

Checkerboard generator

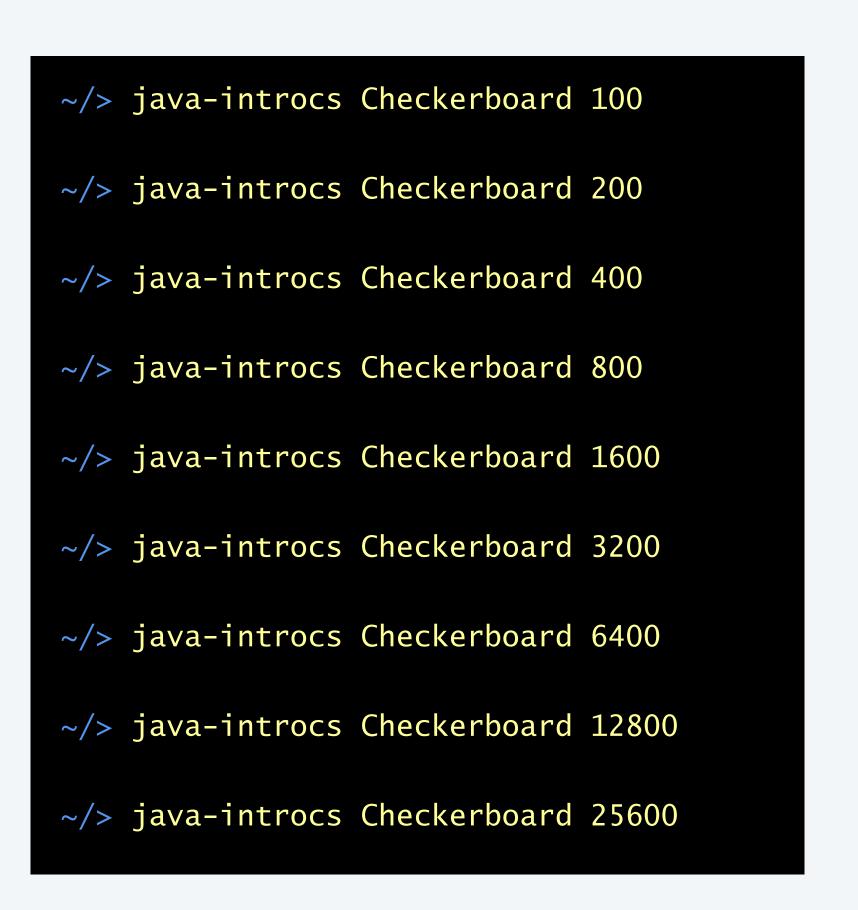
```
public class Checkerboard {
   public static void main(String[] args) {
      int MIN_LEVEL = 0, MAX_LEVEL = 255;
      int side = Integer.parseInt(args[0]);
                                                    picture with width side
      StdPicture.init(side, side); ←
                                                       and height side
      for (int col = 0; col < side; col++) {
                                                           first pixel of even/odd
         boolean black = (col % 2 == 0); ←
                                                           cols set to black/white
         for (int row = 0; row < side; row++) {
            if (black)
                                                                                        - set to black
               StdPicture.setRGB(col, row, MIN_LEVEL, MIN_LEVEL, MIN_LEVEL); ←
            else
               StdPicture.setRGB(col, row, MAX_LEVEL, MAX_LEVEL, MAX_LEVEL); ←
                                                                                         set to white
            black = !black;
      StdPicture.save(side + "x" + side + ".png");
                        save picture to PNG file
```

Checkerboard generator

T(n) = time taken to generate an $n \times n$ PNG checkerboard.

Image dimensions (pixels)	Elapsed time (sec)
100 x 100	
200 x 200	
400 x 400	
800 x 800	
1600 x 1600	
3,200 x 3,200	
6,400 x 6,400	
12,800 x 12,800	
25,600 x 25,600	

Remark. Here *n* is the input itself, not size; difference can be important, but we'll ignore for now.



The doubling method

Assumption. T(n) is a polynomial (can be written as $a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ for some k).

- 1. Choose an initial input.
- 2. Repeat until it takes too long: ← e.g., 1 or 2min
- Run program on the current input.
- Record the time elapsed in the run.
- Double the input.
- 3. Divide longest by second-longest time, call the result r.
- **4.** Rate of growth is n^k , where 2^k is the power of 2 closest to r.

Variants. Can multiply by another number b instead of 2; then find power of b closest to r.

The math behind it:

$$\frac{T(2n)}{T(n)} = \frac{2^k a_k n^k + \dots + 2a_1 n + a_0}{a_k n^k + \dots + a_1 n + a_0}$$

$$= \frac{2^k a_k + \frac{2^{k-1} a_{k-1}}{n} + \dots + \frac{2a_1}{n^{k-1}} + \frac{a_0}{n^k}}{a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_1}{n^{k-1}} + \frac{a_0}{n^k}}$$

$$\xrightarrow{n \to \infty} \frac{2^k a_k}{a_k} = 2^k$$

n	Elapsed time (nanoseconds)
106	
2 · 106	
4 · 106	
8 - 106	
16 · 106	
32 · 10 ⁶	

```
long start = System.nanoTime();
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        // some code
    }
}
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000;
System.out.println("Elapsed time: " + elapsed + " sec.");</pre>
```

n	Elapsed time (nanoseconds)
2,000	
4,000	
8,000	
16,000	
32,000	
64,000	

```
long start = System.nanoTime();
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        for (int k = 0; k < n; k++) {
            // some code
            }
        }
}

long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000;
System.out.println("Elapsed time: " + elapsed + " sec.");</pre>
```

n	Elapsed time (nanoseconds)
50	
100	
200	
400	
800	
1,600	

n	Elapsed time (nanoseconds)
10	
20	
40	
80	
160	
320	

Performance: quiz 2

As *n* grows, what does ratio converge to?

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 9
- **E.** 16

```
for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++) {
      // some code
   }
}</pre>
```


As n grows, what does ratio converge to?

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 9
- **E.** 16

```
for (int i = 0; i < n; i++) {
    // some code
}
for (int j = 0; j < n; j++) {
    // some code
}</pre>
```


Elementary operations:

not elementary: StdPicture.read(),
StdAudio.play(), etc.

- Declaring/assigning variable;
- Printing fixed-length string;
- Arithmetic operation;
- •

```
for (int i = 0; i < n; i++) {
    // some elementary operations
}</pre>
```

i	# of iterations
0	1
1	2
2	3
3	4
•	• •
n - 1	n

Elementary operations:

- Declaring/assigning variable;
- Printing fixed-length string;
- Arithmetic operation;

•

```
for (int i = 1; i <= n; i *= 2) {
   // some elementary operations
}</pre>
```

i	# of iterations
1	1
2	2
4	3
8	4
•	• •
n	$1 + \log_2 n$

Elementary operations:

- Declaring/assigning variable;
- Printing fixed-length string;
- Arithmetic operation;

•

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        // some elementary operations
    }
}</pre>
```

	i	j	# of iterations
	0	0	1
	0	1	2
n iterations \langle	0	2	3
	0	3	4
	•	•	•
	0	n - 1	n
	1	0	n + 1
n iterations	1	1	n+2
	•	• •	• • •
	1	n - 1	2n
	2	0	2n+1
n iterations \prec	•	• •	• • •
	2	n - 1	3n
	3	0	3n+1
n iterations \prec	•	•	• • •
	3	n - 1	4n
	•	•	• •
	n - 1	0	(n-1)n+1
n iterations \prec	•	•	• •
	n - 1	n - 1	n^2

Elementary operations:

- Declaring/assigning variable;
- Printing fixed-length string;
- Arithmetic operation;

•

Count # of elementary operations. Program tracing!

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        // some elementary operations
    }
}</pre>
```

	i	ig j	# of iterations
	0	0	1
	0	1	2
	0	2	3
	0	3	4
	•	•	• •
	0	n - 1	n
	1	0	n+1
	1	1	n+2
	•	•	• • •
	1	n - 1	2n
	2	0	2n + 1
	•	• •	• • •
	2	n - 1	3n
	3	0	3n + 1
	•	•	• • •
	3	n - 1	4n
	• •	•	• •
	n - 1	0	(n-1)n + 1
	•	•	• • •
\	n - 1	n - 1	n^2

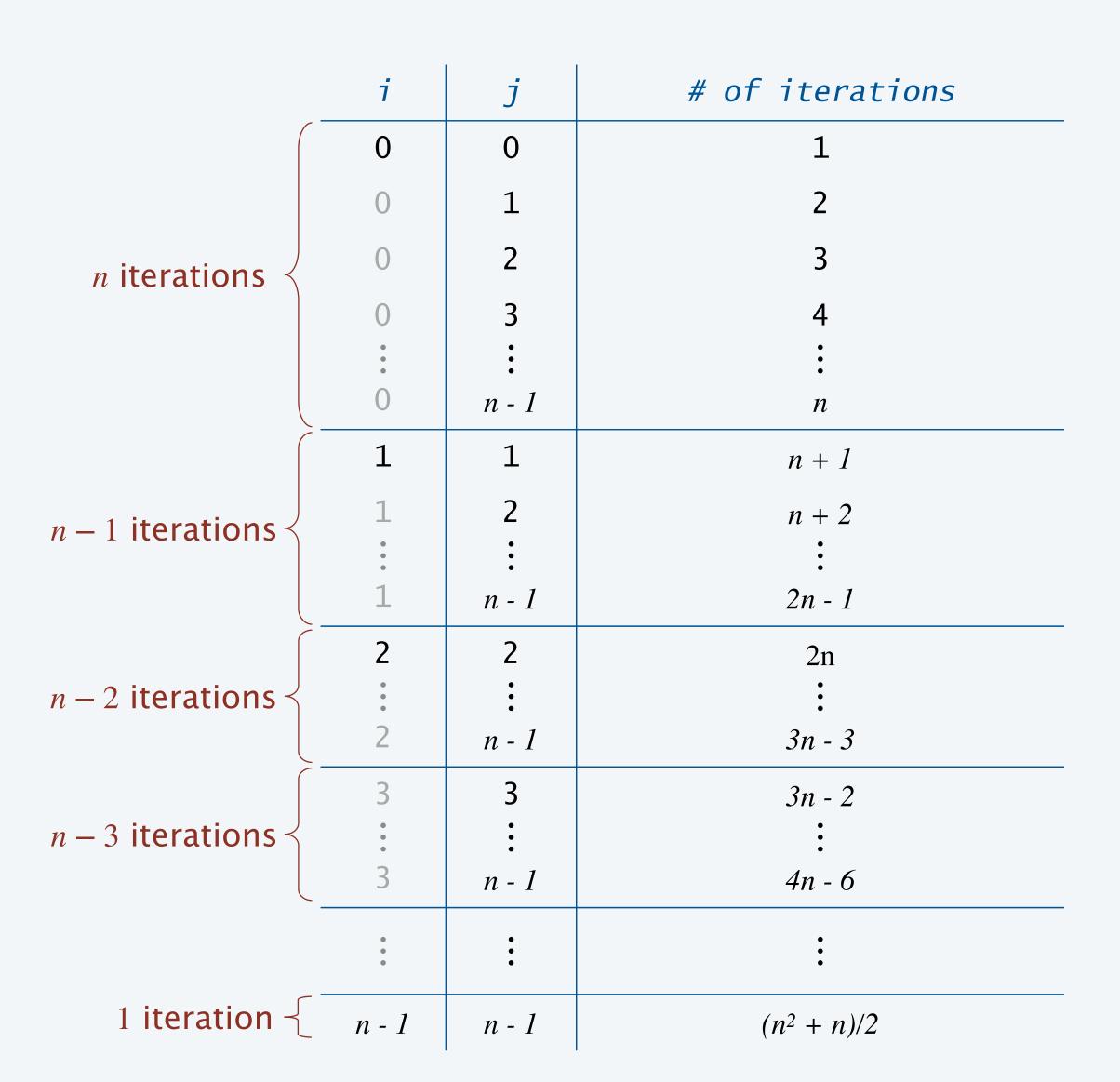
27

Elementary operations:

- Declaring/assigning variable;
- Printing fixed-length string;
- Arithmetic operation;

•

```
for (int i = 0; i < n; i++) {
   for (int j = i; j < n; j++) {
      // some elementary operations
   }
}
initialized to i</pre>
```



The math behind it:

Call
$$N = n + (n - 1) + \dots + 2 + 1$$
.

Then
$$2N = \begin{pmatrix} n & + & n-1 & + & \cdots & + & 2 & + & 1 \\ + & 1 & + & 2 & + & \cdots & + & n-1 & + & n \end{pmatrix} = n \cdot (n+1).$$

Therefore,
$$N = \frac{n \cdot (n+1)}{2}$$
.

$$\frac{n^2}{2} + \frac{n}{2}$$
 iterations

i	j	# of iterations
0	0	1
0	1	2
0	2	3
0	3	4
•	•	• •
0	n - 1	n
1	1	n+1
1	2	n+2
•	•	• • •
1	n - 1	2n - 1
2	2	2n
•	•	• •
2	n - 1	3n - 3
3	3	3n - 2
•	•	• • •
3	n - 1	4n - 6
•	•	•
n - 1	n - 1	$(n^2+n)/2$

for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
// some elementary operations
}
}

Integer factorization

Goal. Given a positive integer n, find its prime factorization.

$$98 = 2 \times 7 \times 7$$

$$98 = 2 \times 7 \times 7$$
 $3,757,208 = 2 \times 2 \times 2 \times 7 \times 13 \times 13 \times 397$

$$11,111,111,111,111,111 = 2,071,723 \times 5,363,222,357$$

Grade-school factoring algorithm.

FACTOR(n)

Consider each potential divisor *d* between 2 and *n*:

- *while d* is a divisor of *n*:
 - print d
 - $-n \leftarrow n/d$

Critical application. Cryptography.

security of internet commerce relies on difficulty of factoring very large integers

Integer factorization

```
public class Factors {
   public static void main(String[] args) {
      long n = Long.parseLong(args[0]);
                                                    try all possible
      for (long d = 2; d \ll n; d++) {
                                                       divisors d
         while (n \% d == 0) {
             System.out.print(d + " ");
             n = n / d;
                               if d is a divisor,
                                 factor it out
      System.out.println();
```

```
~/cos126/loops> java Factors 98
2 7 7

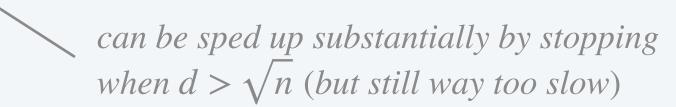
~/cos126/loops> java Factors 3757208
2 2 2 7 13 13 397

~/cos126/loops> java Factors 97
97

~/cos126/loops> java Factors 1111111111111
2071723 536322235

takes a few seconds
```

Remark. Way too slow to break cryptography. (Input size is # of digits, so exponential runtime!)



How difficult can it be?

Imagine a galactic computer...

- With as many processors as electrons in the universe.
- Each processor having the power of today's supercomputers.
- Each processor working for the lifetime of the universe.

quantity	estimate
electrons in universe	10^{79}
instructions per second	10^{18}
age of universe in seconds	10^{17}

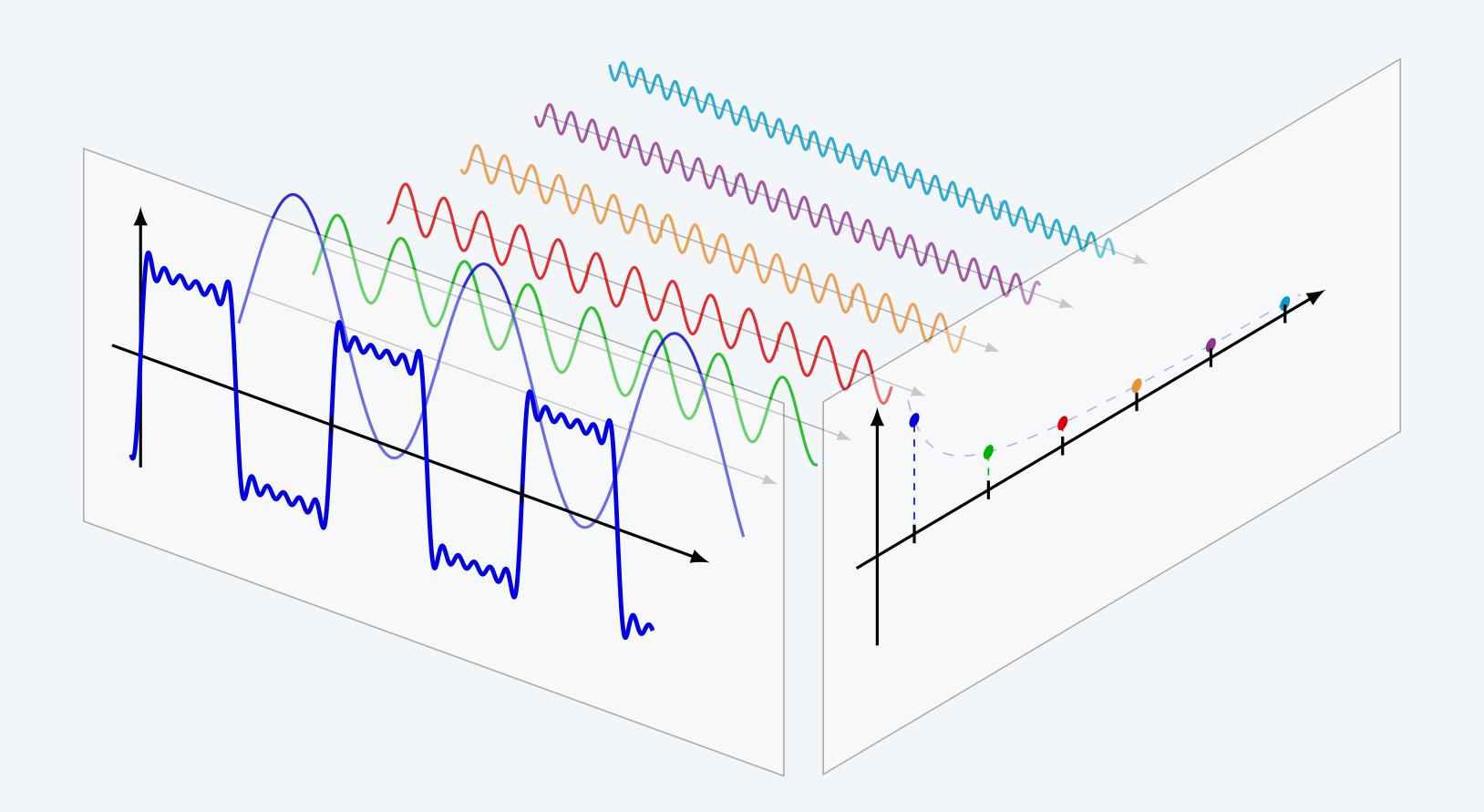
- Q. Could galactic computer run Factors. java on a 1,000-digit (prime) number?
- A. Not even close: $10^{1000} >> 10^{79} \cdot 10^{18} \cdot 10^{17} = 10^{114}$.

Lesson. Exponential growth dwarfs technological change.

Fast Fourier Transform

Critical application. Signal processing. ← including Wi-Fi, 5G, JPEG, MP3...

"the most important numerical algorithm of our lifetime" — Gilbert Strang



Fast Fourier Transform

Critical application. Signal processing.

In computational math: Multiplying n-digit numbers.

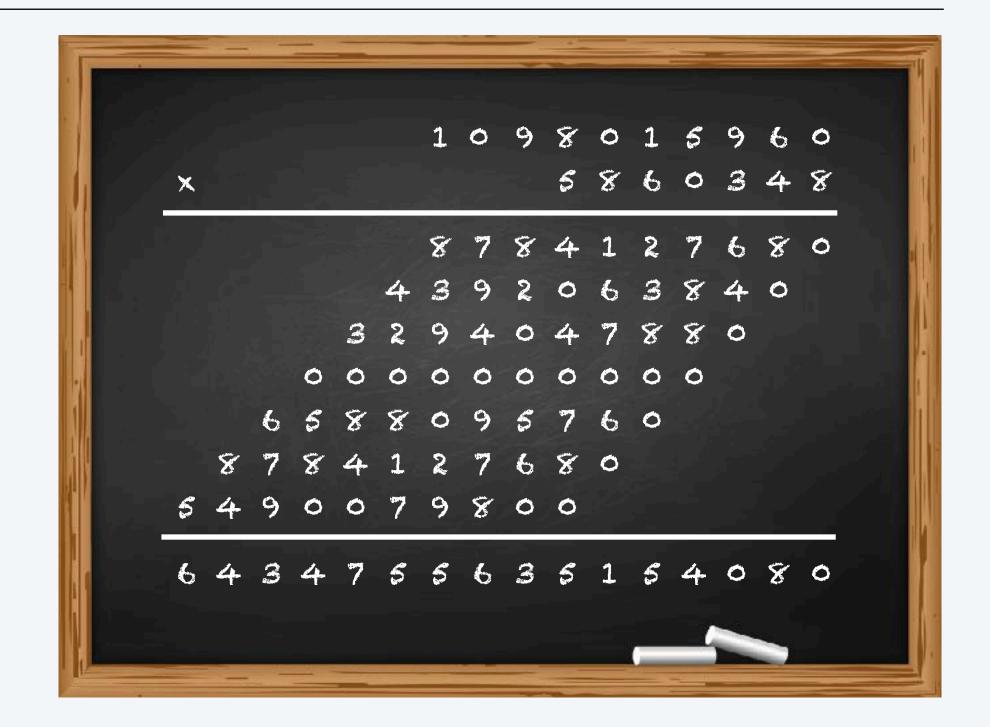
- Grade-school algorithm: n^2 time.
- Schönhage–Strassen (SS) algorithm: $n \cdot \log n \cdot \log \log n$ time!

Implemented in scientific computing libraries.

Faster starting at 10,000–100,000 digits.

 γ -cruncher: computed 202 trillion (!) digits of π

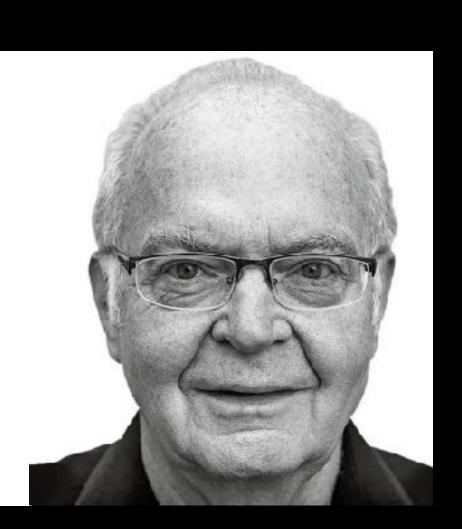
Java's BigInteger uses efficient multiplication (but not SS). Lots and lots of clever algorithms!



Algorithm	Runtime
Grade school	n^2
Karatsuba	$n^{1.59}$
Toom-Cooke	$n^{1.46}$
Schönhage-Strassen	n log n loglog n
Harvey-van der Hoeven	$n \log n$

"The real problem is that programmers have spent far too much time worrying about efficiency in the wrong places and at the wrong times; premature optimization is the root of all evil (or at least most of it) in programming."

Donald Knuth



Credits

media	source	license
Router	Adobe Stock	Education License
Fourier Transform Diagram	<u>TikZ.net</u>	
Blackboard	Adobe Stock	Education License
Donald Knuth	IEEE Computer Society	