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COMPLEXITY BOUNDS VIA ROTH’S METHOD
OF ORTHOGONAL FUNCTIONS

BERNARD CHAZELLE

To Klaus F. Roth, with deep gratitude for his beautiful, inspiring work.

1. Introduction
It is the holy grail of theoretical computer science to find algorithms that are provably
optimal with respect to some complexity measure; usually the time they take to run
or the storage they require. While the field has had great success in designing fast
algorithms for all sorts of problems, proving complexity lower bounds has been the weak
link. In 1954, K.F. Roth’s work on the discrepancy of boxes [7] led him to introduce
a proof technique, sometimes referred to as the “method of orthogonal functions”; see
also [1, 4]. Almost half a century later, the method played a key role in the derivation
of a complexity lower bound for a classical computer science problem. We explain this
serendipitous connection.

2. Background
Computational geometry is the branch of theoretical computer science concerned with
the complexity of computing over geometric inputs. A classical problem in the field,
orthogonal range searching, has the following formulation: given n points p1, . . . , pn ∈ R2

and n boxes (i.e. axis-parallel rectangles) R1, . . . , Rn ⊂ R2, count how many points lie
in each box. The problem statement is usually generalized by associating a variable
xi ∈ R, sometimes called a weight, with each point pi. Therefore, the input I to the
problem consists of the three sets {pi}, {xi}, {Ri}, and the desired output O is the set
of numbers

n∑
j=1

pj∈Ri

xj , i = 1, . . . , n.

The algorithms considered for solving this problem obey a specific format. Each one
consists of a list of instructions I1, . . . , I�, where each Ik is of the form zk ← xk, for
1 � k � n; and zk ← αkzi + βkzj , where i, j < k and αk, βk ∈ C, for n < k � �.
In other words, each instruction consists of acquiring a new variable zk and then eit-
her initializing it with the weight xk or assigning it a linear combination of previously
computed variables, with real or complex coefficients. The requirement should be that,
for any choice of weights {xi}, the output O should be a subset of {z1, . . . , z�}. The
complexity of the algorithm is �. This computing model is called a straightline program
in the literature, or a linear circuit. One key point is that a given algorithm must work
for any assignment of weights xi. Different algorithms can be used for different inputs,
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however; in other words, � as well as all of the αk, βk may be functions of the points and
boxes but not of the weights.

It has been a longstanding open question to determine how big � must be, in the worst
case, as a function of n. For each input I, consider the shortest program (i.e. smallest �)
and then the longest such minimal program over all inputs with n points and n boxes.
The corresponding number � = �(n) denotes the complexity of the problem. Let A be
the incidence matrix of the points and boxes, i.e. Aij = 1 if the i-th box contains the
j-th point and Aij = 0 otherwise. The output is the vector Ax, where x = (x1, . . . , xn)T .
Thus the problem can be seen as that of multiplying a square matrix from a particular
family by an arbitrary vector. For this reason, the function � is often called the linear1

complexity of the matrix family.
Obviously, n � �(n) � n2. Unfortunately, no better bounds are known. It is therefore

customary to make the assumption that the moduli of all the coefficients αk, βk are
bounded by an absolute constant. While relaxing this assumption leaves us with one
of the foremost open questions in complexity theory, enforcing it can be justified in a
number of ways – besides the feeble excuse that it allows us to prove something. All of
the algorithms actually used in practice for computing Ax in real-life applications, which
abound, satisfy the bounded-coefficient condition.2 The bounded-coefficient model will
be assumed henceforth.

Most lower bound results relate the linear complexity of a matrix to combinatorial
and algebraic properties such as its rigidity (see [8]) or its spectrum; typically the median
singular value of A (see [2]) or the traces of ATA and ATAATA (see [5]). The simplest
such result, known as the Morgenstern bound [6], was also the first one historically: it
states that � = Ω(log |detA|). The question then is how to design an input set of n
points and n boxes whose incidence matrix has a large determinant. We will exhibit a
set system whose incidence matrix A satisfies

|detA| = Ω(log n)n/2. (1)

By Morgenstern’s bound, this implies the complexity of orthogonal range searching is
Ω(n log log n).

3. The Proof
The points p1, . . . , pn are defined by using the standard Halton–Hammersley (bit rever-
sal) construction. We define a slightly bigger set S from which we extract the points pi.
Assume without loss of generality that n is a large power of 2. Let m = 8n and

S =
{(

1
2m

+ c(k),
1
2m

+
k

m

)
: 0 � k < m

}
,

where

c(k) =
∑
i�0

b(i)
2i+1

1The algorithm involves only linear functions.
2One of the most common examples is the FFT algorithm, which is used to compute the Fourier

transform over one’s favourite abelian group.
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and {b(i)} is the binary expression for the running index k, i.e.

k =
∑
i�0

b(i)2i.

For any 1 � k � logm, let Gk be the grid obtained by dividing [0, 1]2 into m axis-parallel
rectangles of size 2−k × (2k/m). Figure 1 illustrates the point set S and the grids for
m = 8.

One can easily verify that each cell σ of Gk is a rectangle of area 1/m that contains
precisely one point p of S. We say that p is well-centred for Gk if it lies near the centre cσ

of σ; specifically, within the box (σ + cσ)/2. A simple examination reveals that at least
a quarter of the points in S are well centred for Gk; therefore, at least n = m/8 of them
are each well-centred for at least 1

8 logm grids Gk. This defines the set {p1, . . . , pn}.

Figure 1. Halton–Hammersley points and the grids Gk

Let G be the (
√
N − 1)× (

√
N − 1) square grid covering [0, 1]2, where N = (m2+1)2.

We define an N ×n matrix B as follows: each column corresponds to a distinct point pi;
each row is associated with the southwest quadrant cornered at a distinct grid point.
For each grid point (u, v) there is a distinct row in B that forms the characteristic vector
of the set

{p1, . . . , pn} ∩ ((−∞, u]× (−∞, v]).
In this way, the N rows are not all distinct. Our next result rather “oddly” relates the
L2 norm of Bx to the L1 norm of x. We postpone its proof, which is where Roth’s
method of orthogonal functions kicks in and therefore deserves special treatment.

Lemma 3.1. For any x ∈ Rn, ‖Bx‖2 = Ω(n−1√N log n ‖x‖1).
Let λ1 � · · · � λn be the eigenvalues of BTB. We establish a lower bound for the

eigenvalues λi and then for the determinant of BTB.

Lemma 3.2. For any k, the k-th largest eigenvalue λk of BTB satisfies

λk = Ω(n−2(n− k + 1)N log n).

Proof. Let {vi} be an orthonormal eigenbasis for BTB, where vi is a unit eigenvector
associated with λi. If Q = (qij) denotes the orthonormal matrix whose rows are the
eigenvectors vi, then the column vector ξ obtained by expressing x in the basis {vi}
satisfies ξ = Qx. What makes the use of Lemma 3.1 a little awkward is that the L2

norm of Bx is bounded as a function of the L1 norm of x. To get around this difficulty,
we show that the invariant subspace spanned by {vk, . . . , vn} contains a unit vector x
whose L1 norm is as large as

√
n− k + 1. The lower bound will then follow from the

variational characterization of eigenvalues.
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We use an Erdős-style probabilistic argument. Let R = (rij) be the matrix obtained
by replacing each of the first k − 1 rows of Q by a row of zeros, and let y = (y1, . . . , yn)
be a random vector chosen uniformly in {−1, 1}n. Then

E‖Ry‖22 =
n∑

i=1

E


 n∑

j=1

rijyj




2

=
∑
i�k

n∑
j=1

q2ijEy2j +
∑
i�k

∑
j �=j′

qijqij′Eyjyj′

=
∑
i�k

n∑
j=1

q2ij = n− k + 1.

This proves the existence of a vector y ∈ {−1, 1}n such that ‖Ry‖22 � n − k + 1; and
therefore, the (n− k)-flat defined by the equations{

ξi = 0, 1 � i � k − 1,
(Qy)T ξ =

√
n− k + 1,

intersects the ball of unit radius centred at the origin. If x is a point of the intersection,
then it follows from ξ = Qx that ‖x‖1 � yTx = (Qy)T ξ =

√
n− k + 1, and, from

Lemma 3.1,

λk = λk‖x‖22 �
n∑

i=1

λiξ
2
i = ‖Bx‖22 = Ω(n−2‖x‖21N log n)

= Ω(n−2(n− k + 1)N log n). �
By Binet–Cauchy,

detBTB =
∑

1�j1<...<jn�N

∣∣∣∣detB
(

j1 j2 . . . jn

1 2 . . . n

)∣∣∣∣
2

;

therefore, there exists an n× n submatrix A of B such that

detATA =
∣∣∣∣detB

(
j∗
1 j∗

2 . . . j∗
n

1 2 . . . n

)∣∣∣∣
2

�
(
N

n

)−1

detBTB.

By Lemma 3.2,

detBTB =
n∏

i=1

λi = Ω(n−2N log n)nn!

and so

detATA = Ω(1)n
( n

eN

)n (n

e

)n
(
N log n

n2

)n

= Ω(log n)n,

which establishes (1).

4. Roth’s Method of Orthogonal Functions
We prove Lemma 3.1 by using (a discrete version of) Roth’s method of orthogonal
functions [7]. The idea is simple but very clever: it consists of manufacturing a custom-
made family of orthogonal functions and use its sum as an auxiliary function3 whose
inner product with Bx can be bounded from below. We can then apply Cauchy–Schwarz
to derive the desired lower bound.

3Here we consider vector rather than function, since we discretize everything.
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By reversing signs if necessary, we can always assume that

‖x‖1 � 2
∑
xi>0

xi. (2)

Fix 1 � k � logm; a cell σ of Gk is called k-heavy if it contains a well-centred point pi

such that xi > 0. We assign a weight to each grid point q of the (
√
N − 1)× (

√
N − 1)

square grid G as follows: Let σ be any cell of Gk that contains q.
• If σ is not uniquely defined because q lies on its boundary, or if σ is not k-heavy,

then assign q a weight of 0.
• Otherwise, subdivide σ into four equal-size quadrants similar to σ. Assign q a

weight of 1 if it lies in the interior of the northeast or southwest quadrant; assign
a weight of −1 if it lies in the interior of the northwest or southeast quadrant.
If q lies elsewhere, assign it a weight of 0.

i

+1

+1 –1

–1

x

q

qq
3

q
4 1

2

Figure 2. Cancellation at work

Using the same ordering as the rows of B, let gk ∈ RN be the column vector of
weights. It is easy to see that the logm vectors gk form an orthogonal family. Let G
be the matrix (g1, . . . , glogm) and let u be the column vector made of logm entries of 1.
By the orthogonality of G,

‖Gu‖22 =
logm∑
k=1

‖gk‖22 � N logm. (3)

Now, if we sum separately over each k-heavy cell σ, we obtain

gT
k Bx = Ω


N

m

n∑
i=1

pi∈ some k-heavy cell of Gk

xi


 . (4)

Figure 2 illustrates how, in a k-heavy cell, the weights of 1 at q1, q3 and −1 at q2, q4
produce the cancellations that contribute xi to gT

k Bx, for any q1 higher and to the right
of xi. Since the cell in question is k-heavy, the set of such q1’s covers at least a fraction
of the cell, hence the N/m factor in (4). Now since each pi is well centred for at least a
fraction of the grids Gk, we know from (2) and m = 8n that

(Gu)TBx = Ω(n−1‖x‖1N log n).

Finally, by Cauchy–Schwarz and (3),
N log n

n
‖x‖1 = O((Gu)TBx) = O(‖Gu‖2‖Bx‖2) = O(

√
N log n ‖Bx‖2).

This completes the proof of Lemma 3.1.
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