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Abstract

In standard property testing, the task is to distinguish between ob-
jects that have a property P and those that are ε-far from P , for some
ε > 0. In this setting, it is perfectly acceptable for the tester to provide
a negative answer for every input object that does not satisfy P . This
implies that property testing in and of itself cannot be expected to
yield any information whatsoever about the distance from the object
to the property. We address this problem in this paper, restricting our
attention to monotonicity testing. A function f : {1, . . . , n} 7→ R is
at distance εf from being monotone if it can (and must) be modified
at εfn places to become monotone. For any fixed δ > 0, we compute,
with probability at least 2/3, an interval [(1/2−δ)ε, ε] that encloses εf .
The running time of our algorithm is O(ε−1

f log log ε−1

f log n), which is

optimal within a factor of log log ε−1

f and represents a substantial im-
provement over previous work. We give a second algorithm with an
expected running time of O(ε−1

f log n log log log n). Finally, we extend
our results to multivariate functions.

1 Introduction

Since the emergence of property testing in the nineties [9,15], great progress
has been made on a long list of combinatorial, algebraic, and geometric
testing problems; see [5,7,14] for surveys. Property testing is a relaxation of
the standard decision problem: Given a property P, instead of determining
exactly whether a given input object satisfies P or not, we only need to
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differentiate between the cases where the object satisfies the property and
it is far from doing so.

This involves a notion of distance: Typically the object is said to be ε-far
from P if at least a fraction ε of its description must be modified in order to
enforce the property. The smallest such ε is called the distance of the object
to P. In this setting, the tester can say “no” for every input object that
does not satisfy P, which precludes the leaking of any information regarding
the distance of the object to the property.

This weakness has led Parnas, Ron, and Rubinfeld [13] to introduce the
concept of tolerant property testing. Given 0 ≤ ε1 < ε2 ≤ 1, a tolerant
tester must accept all inputs that are not ε1-far from P and reject all of
those that are ε2-far (and output anything it pleases otherwise). A related
problem studied in [13] is that of estimating the actual distance of the ob-
ject to the property within prescribed error bounds. A tolerant tester can
be constructed (this construction will be described later) by using an al-
gorithm that estimates distance. In the model considered, all algorithms
are randomized and err with probability at most 1/3 (or equivalently any
arbitrarily small constant).

Testing the monotonicity of functions has been extensively studied [2–4,
6, 8, 10]. In the one-dimensional case, given a function f : {1, . . . , n} 7→ R,
after querying O(log n)/ε function values, we can, with probability at least
2/3, accept f if it is monotone and reject it if it is ε-far from being mono-
tone [4]. These methods do not provide for tolerant property testing, how-
ever. Very recently, Parnas, Ron and Rubinfeld [13] designed sublinear
algorithms for tolerant property testing and distance approximation for two
problems: function monotonicity and clustering. If εf denotes the distance
of f to monotonicity, their algorithm computes an estimate ε̂ for εf that
satisfies (1/2)εf − δ ≤ ε̂ ≤ εf + δ with high probability. The query com-
plexity and running time of their algorithm are both Õ((log n)7/δ4) (the
Õ notation hides a factor of (log log n)O(1)). The algorithm maintains and
queries a data structure called an “index-value tree.” Since the running
time is sublinear, the tree is stored implicitly and only relevant portions are
constructed whenever necessary, using random sampling to make approx-
imate queries on the tree. Their construction is sophisticated and highly
ingenious, but all in all quite involved.

We propose a simpler, faster, algorithm that is nearly optimal. Given
any fixed δ > 0, it outputs an interval [(1/2 − δ)ε, ε] that encloses εf with
probability at least 2/3. The running time is O(ε−1

f log log ε−1
f log n), which

is optimal within a factor of log log ε−1
f . (A sketch of the optimality proof
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is provided later on.) One thing to note is the different use of δ: in our
algorithm it is part of the multiplicative factor, whereas in [13] it is an
additive term. To achieve the same multiplicative factor as in our algorithm,
the additive term needs to be Θ(δεf ). This makes the running time of Parnas
et al.’s algorithm Õ((log n)7/ε4

f ), for any fixed δ.
The starting point of our algorithm is the property tester of Ergun et

al. [4], which relies on a key fact: There are at least εfn “critical” integers
i ∈ {1, . . . , n}; for i to be critical means that it is the (left or right) endpoint
of an interval at least half of whose elements are in violation with i. Here
i is said to violate j if either i < j and f(i) > f(j) or i > j and f(i) <
f(j). By proving an upper bound on the number of critical integers, we are
able to define a “signature” distribution for f which reflects its distance εf

fairly accurately. Specifically, two functions with distances to monotonicity
off by a factor of 2 (roughly) will have signatures that are distinguishable
in time O(ε−1

f log n). This provides us with a tolerant property tester for
monotonicity. We can turn it into a distance approximator by using a one-
way searching strategy, which we discuss below.

Just as in [13], our algorithm extends to higher dimension We denote
the dimension by d, and consider functions f : {1, . . . , n}d 7→ R. The poset
considered is the d-fold product poset [11] of {1, . . . , n}. In other words, for
x,y ∈ {1, . . . , n}d, x ≤ y if xi ≤ yi for all i = 1, . . . , d. The distance of f
from monotonicity is εf if it can (and must) be changed at εfnd places to
make it monotone.

Theorem 1.1 There exists an algorithm that, given a function f : {1, . . . , n}d 7→
R, computes a value ε in time O(2ddε−1

f log log ε−1
f log n) such that εf ∈

[(1/2 − δ)d−12−d−1ε, ε] with probability at least 2/3.

We also present an improvement of our one-dimensional algorithm for
small enough values of ε. We show how to estimate εf in time O(ε−1

f log n log log log n).
Unlike in our previous algorithm, the number of steps in this one is itself
a random variable; therefore, the running time is to be understood in the
expected sense over the random bits used by the algorithm.

2 Preliminaries

For ease of notation, we let [n] = {1, . . . , n}. Given two functions f, g :
[n] 7→ R, let d(f, g) = Prob[f(x) 6= g(x)] denote the distance between f
and g, where x ∈ [n] is chosen uniformly at random.
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Now fix a function f : [n] 7→ R. We define the distance εf of f to
monotonicity as ming∈M d(f, g), where M is the set of monotone functions
from [n] to R. Let C ⊆ [n] be a subset of εfn integers over which f can
be modified to become monotone. Note that this subset is not necessarily
uniquely determined by f .

Definition 2.1 Given 0 < δ < 1/2, the integer i ∈ [n] is called δ-big if
there exists j > i such that

∣

∣

∣

{

i ≤ k ≤ j | f(k) < f(i)
}

∣

∣

∣
≥ (1/2 − δ)(j − i + 1)

or, similarly, j < i such that
∣

∣

∣

{

j ≤ k ≤ i | f(k) > f(i)
}

∣

∣

∣
≥ (1/2 − δ)(i − j + 1)

Intuitively, integer i is big if f(i) violates monotonicity with an abundance
of witnesses.

Definition 2.2 An integer i ∈ C is called high-critical (resp. low-critical) if
there is j 6∈ C such that j > i and f(j) < f(i) (resp. j < i and f(j) > f(i)).

Note that no i ∈ C can be both high-critical and low-critical, because that
would imply the existence of j, j′ /∈ C such that j < i < j′ and f(j) > f(i) >
f(j′), and therefore at least one of j, j′ must be in C, a contradiction.

In the following we show that when δ is small, the number of δ-big
integers approximates εfn to within a factor of roughly 2.

Lemma 2.3 For any function f : [n] → IR -
(i) At least εfn integers are 0-big; (ii) no more than (2+4δ/(1−2δ))εf n

integers are δ-big.

Proof: Note that, for any i < j such that f(i) > f(j), either i or j (or
both) is 0-big. Therefore, if we were to remove all the 0-big integers from
the domain {1, . . . , n}, the function f would become monotone; hence (i).

To prove (ii), we start by assigning to each δ-big i a witness ji to its
bigness (if many witnesses exist, we just choose any one). If ji > i, then i is
called right-big; else it is left-big. (Obviously, the classification depends on
the choice of witnesses.) For clarity, refer to Figure 1. The bold portions of
the function represent are the function values of C. b is low-critical and c
is high critical. a is right-big, with b as its witness. Similarly, d is left-big,
with c as its witness.
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a b c d

f

Figure 1: Definitions

To bound the number of right-bigs, we charge low-criticals with a credit
scheme. (Then we apply a similar procedure to bound the number of left-
bigs.) Initially, each element of C is assigned one unit of credit. For each
right-big i 6∈ C among n, . . . , 1 in this order, spread one credit among all
the low-criticals k such that i ≤ k ≤ ji and f(k) < f(i). We use the word
“spread” because we do not simply drop one unit of credit into one account.
Rather, viewing the accounts as buckets and credit as water, we pour one
unit of water one infinitesimal drop at a time, always pouring the next drop
into the least filled bucket. More precisely, we repeat the following step
until we are left with no more credit to spread: If we currently have z units
of credit, the least filled buckets have an amount of µ units of credit each,
there are t such buckets, and the second-least filled buckets have an amount
of µ′ > µ credit (µ′ = ∞ if there are no second-least filled buckets), then we
add to the least-filled buckets min{z/t, µ′ − µ} units of credit each.

We now show that no low-critical ever receives an excess of 2+4δ/(1−2δ)
units of credit. Suppose by contradiction that this were the case. Let i be the
right-big that causes the low-critical k’s account to reach over 2+4δ/(1−2δ).
By construction i is not low-critical; therefore, the excess occurs while right-
big i is charging the l low-criticals k such that i < k ≤ ji and f(k) <
f(i). Note that, because i 6∈ C, any k satisfying these two conditions is
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a low-critical and thus gets charged. With the uniform charging scheme,
this ensures that all of these l low-criticals have the same amount of credit
by the time they reach the excess value, which gives a total greater than
l(2 + 4δ/(1 − 2δ)). By definition of right-bigness, l ≥ (1/2 − δ)(ji − i + 1).
But none of these accounts could be charged before step ji; therefore,

(1/2 − δ)(ji − i + 1)(2 + 4δ/(1 − 2δ)) < ji − i + 1,

which is a contradiction.
We handle left-bigs in a similar way by running now from left to right,

ie, i = 1, . . . , n. Since no integer can be both low-critical and high-critical,
part (ii) of the lemma follows. 2

3 Estimating Distance to Monotonicity

In this section, we will describe the algorithm that estimates the distance of
function to monotonicity. Our aim is to prove the following theorem.

Theorem 3.1 For any fixed δ > 0, there exists an algorithm DistApprox

that given a function f , calculates a value ε in O(ε−1
f log log ε−1

f log n) time,
such that εf ∈ [(1/2 − δ)ε, ε] with probability at least 2/3.

We will start by first solving the problem of distance separation. The
next two subsections will be devoted to proving the following -

Lemma 3.2 (Existence of a distance separation algorithm) For any
ε > 0 and fixed (arbitrarily small) constant δ > 0, there exists an algo-
rithm DistSeparation that decides, in time O(ε−1 log n) whether εf > ε
or εf < (1/2− δ)ε and with probability at least 2/3. (If (1/2− δ)ε ≤ εf ≤ ε,
the algorithm can report anything.)

3.1 A Separation Oracle

The key to estimating the distance to monotonicity is to approximate the
number of the δ-big integers. To identify a δ-big integer i, we need to find an
interval starting or ending at i such that there are many violations with i in
the interval. This is done through random sampling, to ensure a sublinear
running time.

Let D be the joint distribution of m independent 0/1 random variables
x1, . . . , xm, which can be sampled independently. If E[xi] ≤ a for all i, then
D is called a-light; else it is a-heavy. We describe an algorithm LightTest
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LightTest1(D, a, b, k)

For each x ∈ D
Sample it k times and compute the average x̂

Form D′ = {x ∈ D | x̂ > (a + b)/2 }
If |D′| = 0 then

Output “a-light”
If |D′| ≥ |D|/2 then

output “b-heavy”
LightTest1(D

′, k + c0)

Figure 2: LightTest1

which, given any a < b, determines whether a distribution is a-light or
b-heavy. More precisely -

Pr[LightTest outputs “a-light”]











≥ 2/3 if D is a-light

≤ 1/3 if D is b-heavy

not guaranteed otherwise

We will assume that LightTest(D, a, b) = LightTest1(D, a, b, c0),
where c0 will be chosen below. The procedure LightTest1 is described
in Figure 2.

Lemma 3.3 If D is either a-light or b-heavy, for some fixed a < b, then
with probability 2/3 LightTest tells which is the case in O(bm/(b − a)2)
time.

Proof: Choose c0 such that c1
def
= c0(b − a)2/b is a large enough constant.

LightTest runs in time proportional to
∑

r≥0 c0r(m/2r) = O(c0m). To see
why it works, we begin with a simple observation. Suppose that E[xi] > b,
then at the r-th recursive call we sample xi (if at all) exactly c0r times;
therefore, by Chernoff’s bounds,

Prob[x̂i ≤ (a + b)/2] = 2−Ω(c1r)
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The same upper bound holds for the probability that x̂i > (a+ b)/2, assum-
ing that E[xi] ≤ a. Suppose now that :

• D is b-heavy: Let xi be such that E[xi] > b. At the r-th recursion
call, the probability that D′ is empty is 2−Ω(c1r). Summing up over all
r bounds the likelihood of erring by 1/3.

• D is a-light: The probability that any given x̂i exceeds (a+b)/2 is at
most 1/3 (conservatively) and so erring any time before the size of S
is recursively reduced to below c1 is

∑

c1≤r<|S| 2
−Ω(r) = 2−Ω(c1) < 1/6.

After that stage, the probability of reaching a b-heavy verdict is at
most O(c1(log c1)2

−Ω(c1)) < 1/6. 2

3.2 Distance Separation: The Algorithm

We need one piece of terminology before describing the distance separation
algorithm, called DistSeparation(refer to Figure 3). Given an interval in
[u, v], we define two 0/1 random variables α[u, v] and β[u, v]: given random
i ∈ [u, v], α[u, v] = 1 iff f(u) > f(i) (β[u, v] = 1 iff f(v) < f(i)). We prove
below that, with probability at least 2/3, DistSeparation (f, ε, δ) reports
that εf > ε (resp. εf < (1/2 − δ)ε) if it is, indeed the case, and outputs an
arbitrary decision if (1/2 − δ)ε ≤ εf ≤ ε.

The algorithm assumes that both δ and ε/δ are suitably small. The value
of δ can naturally be chosen to be sufficiently small. To make ε small, how-
ever, we use an artifice: using a slightly abusive notation, we assume that the
range of f is [1, n/δ] and that f(i) = +∞ for i = n+1, . . . , O(n/δ). We also
need to assume that LightTest succeeds with probability at least 1 − δ2

(instead of 2/3); to do that it iterates the call to LightTest1 O(log δ−1)
times and take a majority vote.

Proof: [Lemma 3.2] To prove the correctness of the algorithm, it suffices
to show that:

• If εf > ε, then D is (1/2 − δ/4)-heavy with probability 1/2 + Ω(δ):

By Lemma 2.3 (i), more than εn integers are 0-big, so the probability
of hitting at least one of them in the first step (and hence, of ensuring
that D is (1/2)/(1 + δ/4)-heavy) is at least 1− (1− ε)s > 1/2 + Ω(δ).

• If εf < (1/2 − δ)ε, then D is (1/2 − δ/3)-light with probability 1/2 +
Ω(δ):
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DistSeparation (f, ε, δ)

Pick s = d(1 + δ/2)ε−1 ln 2e random i ∈ [n]
For each 1 ≤ k ≤ (5/δ) ln n

Let x
(i)
2k−1 = α[i, i + (1 + δ/4)k ]

x
(i)
2k = β[i − (1 + δ/4)k , i]

Let D be the distribution of (x
(1)
1 , x

(1)
2 , . . . , x

(2)
1 , x

(2)
2 , . . . , x

(s)
1 , x

(s)
2 , . . .)

Let a = (1/2 − δ/3), b = (1/2 − δ/4)
If LightTest(D, a, b) = “b-heavy” then

output “εf > ε”
Else

output “εf < (1/2 − δ)ε”

Figure 3: DistSeparation

By Lemma 2.3 (ii), the number of δ/3-big integers is less than (1−δ)εn;
therefore, the probability of missing all of them (and hence, of ensuring
that D is (1/2 − δ/3)-light) is at least (1 − (1 − δ)ε)s > 1/2 + Ω(δ).

By running DistSeparation O(1/δ2) times and taking a majority vote,
we can boost the probability of success to 2/3. By Lemma 3.3 (and noting
that m = sk = O(ε−1 log n)), we conclude that the running of DistSepa-

ration (including the majority vote boosting) is O(ε−1 log n). 2

3.3 From Separation to Estimation

It is easy to reduce the problem of estimating the distance to a “distance sep-
aration” decision problem. We have an algorithm DistSeparation(f, ε, δ)
running in time O(ε−1 log n) and returning either “εf > ε” or “εf < (1/2 −
δ)ε” with the following guarantee:

Pr[DistSeparation outputs “εf > ε”]











≥ 2/3 if εf > ε

≤ 1/3 if εf < (1/2 − δ)ε

not guaranteed otherwise
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Consider the following algorithm DistApprox1 in Figure 4. The con-
stant c1 in the algorithm is determined below.

DistApprox1(f)

For k = 1, 2, . . .
Let εk = (1/2 − δ)k

Run DistSeparation(f, εk, δ) c1 log(k + 1) times
Let M be a majority vote on the outputs

If M = "εf > εk"

Return k

Figure 4: DistApprox1

Fix an input f to DistApprox1. Let ` be the random variable returned
by DistApprox1(f). If c1 is adequately chosen, then by Chernoff’s bound,
the probability that ε`+1 ≤ εf ≤ ε`−1 is at least 1 −

∑

k≥0 O(1/k2) >

5/6. In this case, the running time is
∑

1≤k≤` O(log(k + 1))ε−1
k log n =

O(ε−1
f log log ε−1

f log n), as claimed. Moreover, it is also not hard to see that
for c1 chosen above, for any j ≥ 2, the probability that the algorithm returns
ε` such that ε`−j ≤ εf ≤ ε`−j−1 is e−Ω(c1j log j), giving a tight concentration
bound for the claimed running time.

Algorithm DistApprox1 does not quite do the job. Indeed, we are
now left with the knowledge that εf ∈ [ε`+1, ε`−1]. Since we are trying
to find an interval of the form [(1/2 − δ)ε, ε], the present interval is not
good enough. We do know that εf ∈ [ε`−1/5, ε`−1]. To get the desired
interval, we first run DistApprox1(f) to obtain `, and then run another
procedure DistApprox2(f, `). The procedure DistApprox2 described in
Figure 5 is very similar to DistApprox1, except that the sequence {εk} is
an arithmetic sequence, and not a geometric one. The constant c2 > 0 will
be chosen below.

Using similar analysis as that of DistApprox1, we conclude that by
choosing c2 large enough we can now pinpoint εf to within an interval of the
form [(1/2−O(δ))ε, ε] with probability at least 5/6. Therefore, the algorithm
DistApprox(f) will simply output DistApprox2(f,DistApprox1(f)). Run-
ning DistApprox(f) gives us (up to rescaling of δ) the desired result
claimed in Theorem 3.1. Note that the dependence of the running time
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DistApprox2(f, `)

Let ε0 = (1/2 − δ)`−1

/* Assumption: εf ∈ [ε0/5, ε0] */

For k = 1, 2, . . . , d4ε0/(5δ)e
Let εk = (1 − kδ)ε0

Run DistSeparation(f, εk, δ) c2 log(k + 1) times
Let M be a majority vote on the outputs

If M = "εf > εk"

Return εk

Figure 5: DistApprox2

on δ (which we consider to be a constant in Theorem 3.1) is a multiplicative
factor of poly(1/δ).

Note that amplifying the probability of success cannot be achieved by
simply repeating the algorithm enough times and taking a majority vote on
the returned interval: a correct interval is not even uniquely determined.
The final probability of success is actually boosted by choosing larger val-
ues for c1, c2. Replacing the constants c1, c2 with αc1, αc2 for some α > 0
decreases the probability of failure by a factor of e−Ω(α) and increases the
running time by a factor of at most α.

3.4 A Faster Algorithm for Small Distances

We show in this section how to slightly improve the query complexity of the
algorithm to

O(min{log log ε−1
f , log log log n} ε−1

f log n).

The running time is now expected (over the random bits used by the algo-
rithm). To do this, we need the following theorem:

Theorem 3.4 There exists an algorithm that computes a value ε such that
εf ∈ [Ω(ε/ log n), ε] with probability at least 2/3. The expected running time
of the algorithm is O(ε−1

f log n).
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Using this theorem, it is clear that the factor log log ε−1
f in the distance

estimation algorithm can be replaced by min{log log ε−1
f , log log log n}. In-

deed, instead of taking k = 1, 2, 3, . . . , and running the separation oracle for
each value of εk a number of times (ie, c log(k + 1) times), we redefine εk to
be (1/2−δ)kε, where ε is the estimate returned by Theorem 3.4. Because the
maximum value of k is now O(log log n), the expected running time drops
to O(min{log log ε−1

f , log log log n}ε−1
f log n).

To prove Theorem 3.4, we turn to a construction introduced by Goldreich
et al. [8]. Define a subset P of pairs of integers: (i, j) ∈ P if j > i, and j − i
is at most t, where t is the largest power of 2 that divides either i or j. This
set has the following two properties:

1. |P | = Θ(n log n).

2. For any i < j, there exists k (i < k < j) such that both (i, k) ∈ P and
(k, j) ∈ P . This means, in particular, that for any violation (i, j) of
f , there exists a “witness” (i, k) or (k, j) of the violation in the subset
P .

Now, for a function f , let M be a maximum matching in the violation
graph (the undirected graph whose vertex set is {1, . . . , n} and where i is
connected to j if i < j and f(i) > f(j)). It is known [8] that |M | = Θ(εfn);
to be precise, 1

2εfn ≤ |M | ≤ εfn. Let Q ⊆ P be the set of violations of
f in P . Consider the bipartite graph G = (V1, V2, E) defined as follows :
Let V1 = M and V2 = Q, and let the set of edges E join (i, j) ∈ V1 with
(a, b) ∈ V2 if {i, j} ∩ {a, b} 6= ∅.

By the second property above, and from the definition of a maximum
matching, every vertex in V2 has degree either 1 or 2, and every vertex
in V1 has degree at least 1; therefore, |V2| = Ω(|M |). We would like to
show that it is O(|M | log n). If we could do that, then by sampling from P
and checking for violations, we could then estimate the size of Q and get
the desired approximation. Unfortunately, it is not quite the case that the
cardinality of the right side is always O(|M | log n). To fix this problem, we
need to introduce some more randomness.

We slightly change the definition of P : for an integer r ∈ [1, n] let Pr

denote the subset of pairs defined as follows: (i, j) ∈ Pr if j − i is at most t,
where t is the largest power of 2 that divides either i + r or j + r. The set
Pr still has the two properties above. In addition, if r is chosen uniformly
at random then, for any i, the expected number of j such that (i, j) ∈ Pr

and j′ such that (j′, i) ∈ Pr is O(log n).
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Consider the graph Gr, defined exactly as G using Pr instead of P .
The expected number of edges of the corresponding bipartite graph Gr,
therefore, is O(|M | log n). So the expected cardinality of the right side is
α|Pr|, where α ∈ [Ω(εf/ log n), O(εf )]. We sample Pr to form an estimation
α̂ for α and return ε = Cα̂ log n, for some large enough constant C, to prove
Theorem 3.4. The estimation follows the predictable scheme:

1. Pick a random r ∈ {1, . . . , n}.

2. Pick a pair (i, j) uniformly1 at random from Pr.

3. if (i, j) is a violation of f , output success, otherwise failure.

The success probability is precisely α, so repeating the sampling enough
times sharpens our estimation to the desired accuracy, as indicated by the
following fact.

Lemma 3.5 Given a 0/1 random variable with expectation α > 0, with
probability at least 2/3, the value of 1/α can be approximated with a relative
constant error by sampling it O(1/α) times on average. Therefore, α can be
approximated within the same error and the same expected running time.

Proof: Run Bernoulli trials on the random variable and define Y to be
the number of trials until (and including) the first 1. It is a geometric
random variable with E[Y ] = 1/α, and var (Y ) = (1−α)/α2 ≤ (E[Y ])2. By

taking several samples of Y and averaging we get an estimate ˆ1/α of 1/α.
Using Chebyshev’s inequality, a constant number of samples suffices to get
a constant factor approximation.

2

4 Lower Bounds

We now show that the running time of our tolerant property tester (DistAp-

prox) is almost optimal.

Lemma 4.1 Any property tester for monotonicity requires Ω(ε−1
f log(εfn))

queries to f .

1Refer to [8] for a method to approximately pick a pair uniformly, which suffices for
our needs.
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Proof: Choose the values εf , n such that εfn = 2t for some t ∈ N (where
c is some small absolute constant). We will show that any randomized
algorithm, that given a function f : [n] → IR εf -far from being monotone,
outputs a violation to monotonicity (outputs two integers i < j such that
f(i) > f(j)) with probability > 2/3, requires expected Ω(ε−1

f log εfn) time.
We will construct a distribution F of εf -far functions, and show that any
deterministic algorithm that finds with probability > 1/3 a violation on an
input drawn from F runs in expected time of at least Ω(ε−1

f log εfn). By
Yao’s minimax lemma [12], the lemma is proved.

We construct F . Given 1 ≤ r ≤ log(εf n) and 0 ≤ k ≤ (2εf )−1 − 1, we
define2 a function fk

r as follows: Divide the interval [2kεf n, (2k + 2)εfn− 1]
into 2r subintervals of length `r = 2εfn/2r, each of the form Ij = [2kεf n +
j`r, 2kεf n + (j + 1)`r − 1] ∀ 0 ≤ j ≤ 2r − 1. Let I =

⋃

j odd Ij. Then, (refer
to Figure 6)-

fk
r (i) =

{

i − `r if i ∈ I

i otherwise

The input distribution F is formed by choosing one of the fk
r ’s uniformly

at random. It is not hard to see that all of these functions are εf -far from
being monotone. Associate with each function f ∈ F its set of violating pairs
Sf . Note that all the Sf ’s are disjoint. Let us focus on the comparison model.
The problem of determining a violating pair is essentially that of finding
an element from a universe of size Ω(ε−1

f log εfn), from which the element
is chosen uniformly at random. Since the deterministic algorithm succeeds
with probability > 1/3 in finding the needle in haystack, it requires expected
Ω(ε−1

f log εfn) comparisons between paris of f -values. Note however that

any t queries to f could give rise to as many as
(

t
2

)

comparisons, weakening
our lower bound. The structure of the functions in F does not allow this:
indeed, any t queries to f give rise to comparisons between pairs belonging
to at most O(t) sets Sf for f ∈ F . Therefore, the lower bound holds also
with respect to the number of queries to f . This concludes the proof.

2

5 The Higher Dimensional Case

We consider the generalization of monotonicity testing and distance estima-
tion to functions on the d-dimensional hypercube. More precisely, our input

2For clarity, we shall assume that the domain is {0, 1, · · · , n − 1}.
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Figure 6: Lower Bound for Testing: The function f2
2

is now a function f : [n]d → IR. The function f is monotone if f(x) ≤ f(y)
for every x,y ∈ [n]d such that x ≤ y, where the partial order ≤ denotes the
d-fold product of the linear order on [n] (x ≤ y if xi ≤ yi for i = 1, . . . , d).
The distance εf of f from monotonicity is the minimal fraction of values
that need to be changed in order to make it monotone with respect to ≤.
This generalization has been well studied [9, 10, 13]. We will use a simple
technique to transfer the one dimensional result to the higher dimension
case, and obtain Theorem 1.1.

We start with some definitions. For j = 1, . . . , d, we let ≤j denote
the projected partial order on [n]d: x ≤j y if xj ≤ yj and xj′ = yj′ for
j′ ∈ [d] \ {j}. It is not hard to see that f is monotone w.r.t. ≤ if and
only if it is monotone with respect to ≤j for j = 1, . . . , d. Let εf ;j denote
the distance of f from monotonicity w.r.t. ≤j. Interestingly, up to a factor
of O(2d), εf can be bounded by a linear combination of the εf ;j’s. More
precisely, we have the following inequalities:

Lemma 5.1

dεf ≥
d

∑

j=1

εf ;j ≥ εf/2d+1 .

The left side of the inequality is trivial, because εf ≥ εf ;j for all j. The
right side was proven by Ailon et al. in [1], slightly improving an indepen-
dent result by Halevy et al. in [11].
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We now generalize the notion of δ-big: Let x ∈ [n]d and j ∈ [d]. We say
that the point-direction pair (x, j) is δ-big if there exists y >j x such that

∣

∣

∣

{

x ≤j z ≤j y | f(z) < f(x)
}∣

∣

∣
≥ (1/2 − δ)(yj − xj + 1)

or, similarly, y <j x such that
∣

∣

∣

{

y ≤j z ≤j x | f(z) > f(x)
}

∣

∣

∣
≥ (1/2 − δ)(xj − yj + 1).

By Lemma 2.3 summed over all directions, we have

Lemma 5.2 (i) At least
∑d

j=1 εf ;jn
d point-direction pairs are 0-big; (ii) No

more than (2 + 4δ/(1 − 2δ))
∑d

j=1 εf ;jn
d point-direction pairs are δ-big.

Combining this with Lemma 5.1, we have:

Lemma 5.3 (i) At least εfnd/2d+1 point-direction pairs are 0-big; (ii) No
more than (2 + 4δ/(1 − 2δ))dεf nd point-direction pairs are δ-big.

Proof: [Theorem 1.1] For k = 0, 1, . . . , run DistSeparationc log(k+2)
times with f , ε = ((1/2 − δ)d−12−d−1)k and δ, until the algorithm reports
εf > εl. We now know that εf is enclosed in an interval of the form
[εl+1, εl−1], which we shrink in the same manner as we did for the one-
dimensional case. The total running time is O(2ddε−1

f log log ε−1
f log n), as

required. There is one additional detail that must be defined: how do we
redefine DistSeparationfor a d-dimensional function? Instead of picking
s random i ∈ [n], we pick s random point-direction pairs (y, j) ∈ [n]d × [d].
We define

x
(y,j)
2k−1 = α[y,y + (1 + δ/4)ke(j)]

x
(y,j)
2k = β[y − (1 + δ/4)ke(j),y] ,

where e(j) ∈ {0, 1}d is 0 everywhere except for a single 1 in coordinate j.
The random variable α[y,y′] for y′ ≥j y is now defined by picking a random
z between (inclusive) y and y′ and returning 1 if f(y) > f(z), otherwise 0.
The random variable β is defined similarly for the other direction. 2
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