
Lower Bounds for Linear Degeneracy Testing

NIR AILON AND BERNARD CHAZELLE

Princeton University, Princeton, New Jersey

Abstract. In the late nineties, Erickson proved a remarkable lower bound on the decision tree com-
plexity of one of the central problems of computational geometry: given n numbers, do any r of
them add up to 0? His lower bound of �(n�r/2�), for any fixed r , is optimal if the polynomials at the
nodes are linear and at most r -variate. We generalize his bound to s-variate polynomials for s > r .
Erickson’s bound decays quickly as r grows and never reaches above pseudo-polynomial: we pro-
vide an exponential improvement. Our arguments are based on three ideas: (i) a geometrization of
Erickson’s proof technique; (ii) the use of error-correcting codes; and (iii) a tensor product construction
for permutation matrices.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]:
General

General Terms: Theory

Additional Key Words and Phrases: Computational geometry, linear decision trees, lower bounds

1. Introduction

Decision trees have often shown to be realistic and effective models for proving
lower bounds on the complexity of fundamental geometric problems [Ben-Or 1983;
Björner et al. 1992; Dobkin and Lipton 1979; Erickson 1999a, 1999b; Erickson
and Seidel 1995; Grigoriev et al. 1996, 1997; Steele and Yao 1982; Yao 1997,
1995]. Testing degeneracy is one such example. The r-variate degeneracy testing
problem is to decide whether, given a sequence of n reals x1, . . . , xn and a real
linear polynomial over r variables f ∈ R[t1, . . . , tr], there exist distinct indices
i1, . . . , ir such that f (xi1, . . . , xir) = 0. Additional constraints might be imposed
on the indices. The terminology owes to the problem formulation’s suitability for
checking the degeneracy of just about any geometric configuration. For example,
general position of N points in Rd can be reduced to d(d + 1)-variate degeneracy
testing with respect to dn numbers; in this case, f is a (d+1)-by-(d+1) determinant
with a row of ones, and constraints on the indices ensure that the entries of the

This work was supported in part by National Science Foundation grants CCR-998817, and CCR-
0306283, ARO Grant DAAH04-96-1-0181, and NEC Research Institute.
Authors’ Address: Princeton University, Department of Computer Science, 35 Olden Street, Princeton,
NJ 08544, e-mail: {nailon,chazelle}@cs.princeton.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0004-5411/05/0300-0157 $5.00

Journal of the ACM, Vol. 52, No. 2, March 2005, pp. 157–171.

158 N. AILON AND B. CHAZELLE

determinant are, indeed, the coordinates of d + 1 distinct points. Similarly, we
can formulate the degeneracy of Voronoi diagrams, power diagrams, algebraic
varieties, real semi-algebraic sets, etc. Classical “bichromatic” problems also fall
in that category: for example, checking incidence between points and hyperplanes
(Hopcroft’s problem), rays and triangles, lines and spheres, etc. The list of problems
studied in the literature that can be reduced to degeneracy testing is nearly endless.

Even the unconstrained version of r -variate linear degeneracy testing (r-LDT)
is ubiquitous in the computational geometry landscape. This is looking among n
numbers for a zero of f (y) = a0 + a1 y1 + · · · + ar yr (ai �= 0 for i > 0). There
is a vast collection of geometric problems known to be 3SUM-hard and 4SUM-
hard, all of which are at least as hard as r -LDT (for r = 3, 4) via subquadratic
reductions [Gajentaan and Overmars 1995]. Classical examples are separating line
segments by a line, testing if a union of triangles is simply connected, checking for
polygon containment under translation, minimizing the Hausdorff distance between
segment sets, computing the Minkowski sum of two polygons, sorting the vertices
of a line arrangment, etc. [Arkin et al. 1998; Barequet and Har-Peled 2001; Barrera
1996; Bose et al. 1993; de Berg et al. 1997; Matousek 1995]. Needless to say, the
importance of elucidating the complexity of r -LDT can hardly be overstated.

While the problem, being a variant of SUBSET SUM, is clearly NP-complete,
its parameterized complexity as a function of r is poorly understood (to put it
charitably). The trivial O(nr) upper bound can be improved to O((2n/r)�r/2�) if r
is odd and O((2n/r)r/2 log(n/r)) if r is even [Erickson 1999a]. The idea for r even
is to write f = g − h, where g ∈ R[t1, . . . , tr/2] and h ∈ R[tr/2+1, . . . , tr]. We sort
all possible values of h and store them in a table. By binary search we look up every
possible value of g. Any successful search corresponding to a match with distinct
indices is a certificate of degeneracy. In a nonuniform decision tree model, the extra
log factor is not needed. In other words, for even n, there exists a linear decision tree
for r -LDT of depth O((2n/r)r/2). For r odd, the algorithm is slightly different: We
write f = g−h +αr tr , where g ∈ R[t1, . . . , t�r/2�] and f ∈ R[t�r/2�, . . . , tr−1]. We
sort all possible values of g and h, which are both �r/2� variate. Then for each xi ,
we look for a value of g and a value of h satisfying g −h +αr xi = 0 (being careful,
again, that we use r distinct coordinates). This can be done by performing a linear
scan of the two sorted lists. The total (uniform) running time is dominated by the
n linear scans, resulting in O(n(2n/r)�r/2�). Both the even and odd versions can be
implemented in a linear decision tree in which each internal node is associated with
a linear polynomial over r variables. What makes this result particularly interesting
is the existence of a matching lower bound.

The underlying model is the r -linear decision tree: each internal node v is as-
signed a linear n-variate polynomial qv with at most r nonzero (real) coefficients;
its outgoing edges are labeled <, =, or >. Leaves are labeled yes or no. To test the
degeneracy of an input x = (x1, . . . , xn) ∈ Rn , we evaluate qv (x) beginning at the
root and follow outgoing edges in the obvious way until we reach a leaf, at which
point we output its label: yes if the input is degenerate and no otherwise. Information
theoretic Lower bounds of �(n log n) on the depth of a tree deciding r -LDT in an
unconstrained linear decision tree model (no restriction on the number of nonzero
coefficients) are obtained by Dobkin and Lipton [1979], and under more general
nonlinear models of computation by Steele and Yao [1982] and Ben-Or [1983]. Im-
proving on previous work [Dietzfelbinger 1989; Fredman 1976], Erickson [1999a]
proved that any r -linear decision tree for any r -LDT problem has depth �(n�r/2�).

Lower Bounds for Linear Degeneracy Testing 159

His proof is quite a tour de force. It is packed with ingenious, tightly coupled ar-
guments, and its only downside is to offer little wiggle room to try out new ideas.
In particular, extending the proof to s-linear trees for s > r has long been elusive.
Even the case s = r + 1, mentioned in Yao’s list of major open problems in his
2000 DIMACS lecture [Yao 2000], has resisted all efforts. The contribution of this
article, while far from closing the book on the problem, represents a significant
advance on two fronts: (i) accommodating s > r variables and (ii) allowing for
large values of r .

—We prove a lower bound of �(nr−3)�r/2� on the depth of any r -linear decision tree
for any r -LDT problem. This improves on Erickson’s bound of �(nr−r)�r/2� from
pseudopolynomial to exponential for large values of r . Indeed, if r = r (n) > nε,
Erickson’s bound can never exceed nlog n/ log log n , while ours is of the form 2n�(1)

.
The technical underpinning of this improvement is a new adversarial strategy
based on error-correcting codes.

—By using a tensor product construction based on permutation matrices, we are
able to generalize the lower bound to the s-linear decision tree model for s > r .
We show that, for any instance of r -LDT, the tree depth is at least

�(nr−3)
2r−s

2�(s−r+1)/2� (1−εr)
,

where εr > 0 tends to 0 as r → ∞.

The exponential lower bound still holds for s > r . For any fixed ε > 0, the
depth of an s-linear decision tree is (nr−3)r�(1)

, if s ≤ r + r1−ε. In the case r > nε,
this gives a lower bound of 2n�(1)

. Note that our bounds collapse if s is not O(r).
This is an obvious limitation of our method, but one must note that a dependency
on s is inevitable. Indeed, our lower bound of n�(r) for s = r + O(1) cannot hold
for arbitrary values of s. By a result of Meyer auf der Heide [1984], a decision
tree of depth O(n4 log n) exists for any instance of linear degeneracy testing over
r variables, without a restriction on the number of nonzero coefficient of the tree
polynomials (s = n). The existence of an unconstrainted linear decision tree with
depth poly(n, r) deciding r -LDT is also implied by Meiser [1993].

Another contribution of this paper is methodological. To obtain our bounds re-
quires a whole set of new algebraic arguments, but our starting point is essentially
a geometrization of Erickson’s method. The main benefit is to bypass the compli-
cated machinery of infinitesimals found in Erickson [1999a], obviate the need for
Tarski’s transfer principle, and more generally do away with analytical arguments.

To make the proof more digestible, we begin our discussion with the geometric
framework and then treat the case s = r . Next, we move on to the case s = r + 1,
where we introduce the tensor product construction in its simplest form. Finally,
we cover the general case.

2. A Geometric Framework for Lower Bounds

We consider the r -SUM problem: Given a point x = (x1, . . . xn) ∈ Rn , are there
indices i1 < · · · < ir such that xi1 + · · · + xir = 0? We wish to prove that any
r -linear decision tree used to answer this question is of depth �(n�r/2�). Choosing f
to be the symmetric linear function on r variables simplifies the lower bound proof,
but our results can be extended to any r -variate linear function. The generalization

160 N. AILON AND B. CHAZELLE

is proven in Section 5. Each node v is associated with a polynomial qv whose zeroes
define a hyperplane, called a query. The set of query hyperplanes is denoted by Q.
It is not hard to see that if the decision tree is to be valid, Q must include every one
of the (n

r) canonical hyperplanes xi1 + · · · + xir = 0. Indeed, if such a hyperplane
h∗ is missing in Q, then there exists a pair of points p1 and p2 such that p1 lies
on h∗ (thus degenerate), p2 is nondegenerate, and no hyperplane in the finite set Q
separates between p1 and p2. Therefore, the decision tree cannot decide r -LDT.

The basic idea of the proof is to identify a “large” face C in the arrangement1

A (Q) formed by Q. The face C , called the chamber, may not necessarily be full-
dimensional but

(C1) C must not be contained in any canonical hyperplane.

We also need a set H of critical hyperplanes. These are canonical hyperplanes
tangent to C such that

(C2) each h∗ ∈ H has a designated point ph on the boundary of C ;
(C3) no two points in the collection {ph} lie in the closure of the same face of the

boundary of C .

LEMMA 2.1. Any r-linear decision tree for the r-SUM problem is of depth at
least |H|.

PROOF. The tree must lead to a no (respectively, yes) leaf for any input point
p0 ∈ C (respectively, ph , where h∗ ∈ H). For this reason, the path followed on
input ph must include a query hyperplane qh that intersects, but does not contain,
the segment p0 ph . Indeed, the same path would otherwise be followed for input
p0. Since ph is in the closure of a face of A (Q) that contains p0, the hyperplane qh
passes through ph but does not intersect C . Now the crux is that by (C3) no query
hyperplane can pass through more than one point ph .

2.1. CRITICAL HYPERPLANES VIA ERROR-CORRECTING CODES. By padding the
input if necessary, we can always assume that n = rm, for some integer m. This
allows us to view a vector h ∈ Rn (and hence its hyperplane h∗ through the origin)
as an r × m real matrix Mh , whose rows are filled with the coordinates of h; that
is, Mh

ij = h(i−1)m+ j . A critical hyperplane being of the form xi1 + · · · + xir = 0,
its corresponding matrix has r ones and n − r zeroes. The hyperplanes we will
choose as critical hyperplanes will have a single one per row. Where to put the
ones is dictated by an error-correcting recipe meant to ensure high “independence.”
Throughout this section, we use the shorthand

r0 =
⌈r

2

⌉
. (1)

Let q be the smallest prime greater than r , and let M be a Reed–Solomon
code [MacWilliams and Sloane 1977] of length q − 1 and distance r − r0 + 1

1Terminology and Conventions: Faces of polyhedra and arrangements are disjoint, relatively open sets.
The intersection of the closures of any two faces is either empty or the closure of another face. Faces
of dimension (codimension) 0 and 1 are called vertices and edges (cells, facets), respectively. Convex
polyhedra are assumed to be closed. For h ∈ Rn , the hyperplane h∗ is defined as {x |〈h, x〉 = 0}.
A hyperplane intersecting the boundary of a convex polyhedron but not its interior is tangent to the
convex polyhedron.

Lower Bounds for Linear Degeneracy Testing 161

over the finite field Fq . This means that M is a linear subspace of Fq−1
q with

the following combinatorial property: any nonzero vector in M has at least r −
r0 + 1 nonzero coordinates. A constructive way to do this is to regard Fq−1

q as the
ring of polynomials Fq[X] modulo the polynomial Xq−1 − 1. We then pick some
primitive2 β ∈ Fq and let M be the ideal in this ring generated by the polynomial
(X − β)(X − β2) · · · (X − βr−r0). This ideal has dimension k = q − 1 − r + r0
with the desired distance property (see MacWilliams and Sloane [1977] for details).
Now, define Mr to be the linear subspace of M defined by adding the contraints
{ xi = 0 | r < i ≤ q − 1 }. (Note: This is not the same as chopping off the last
q − 1 − r coordinates.) In this way, we can think of Mr as a linear code of length
r , distance greater than r − r0 and dimension at least k − (q − 1 − r) = r0.
Let v1, . . . , vr0 be an independent set of vectors in Mr . Of course, by permuting
coordinates and performing column operations, we can always assume that the set
is in column echelon form, ie, the r × r0 matrix (v1, . . . , vr0) consists of the r0 × r0
identity matrix on top of some (r − r0) × r0 matrix. Since Fq is a prime field, we
can naturally view the vi ’s as vectors in Rr with coordinates in {0, . . . , q − 1}.
We define L as the set of vectors n1v1 + · · · + nr0vr0 for all nonnegative integers
ni ≤ m/qr0. The upper bound is chosen so that all coordinates lie in {0, . . . , m−1}.
(Throughout this article, the notation span (S) refers to the vector space spanned
by S over the reals.)

LEMMA 2.2. Three facts: (i) the set L consists of at least (n/r3)r0 vectors in
Rr with coordinates in {0, . . . , m − 1}; (ii) the first r0 coordinates of any vector in
L specify it uniquely; (iii) any nonzero vector in span (L) has at least r − r0 + 1
nonzero coordinates.

PROOF. By Nagura’s theorem [Nagura 1952], the interval [x, 6x/5] contains a
prime for any x ≥ 25. This shows that qr0 ≤ r2; therefore,

|L| ≥ (m/qr0)r0 ≥ (n/r3)r0 .

Part (ii) comes from the echelon form of the matrix formed by (v1, . . . , vr0). To
prove (iii), consider a nonzero element

∑r0
i=1 αi vi of span (L). The set of such

vectors with at least r0 zero coordinates can be expressed as a union of linear
subspaces, each one defined by a set of homogeneous equations in the αi ’s with
integer coefficients. Therefore, if the set is nonempty, it must contain a vector v
with all its αi ’s integral and at least one of them not divisible by q. Reducing v
modulo q gives us a nontrivial linear combination of the vi ’s. Since these vectors
are independent over Fq , it then follows that v is a nonzero vector of the code Mr
with at least r0 zero coordinates. This contradicts the fact that Mr has distance
greater than r − r0.

The set H of critical hyperplanes is in bijection with L. The hyperplane h∗
corresponding to � = (�1, . . . , �r) ∈ L is defined by its matrix Mh: the coordinate
�i indicates where to place the 1 in the i th row of the matrix, that is, Mh

ij = 1
(respectively, 0) if j = �i + 1 (respectively, otherwise). By construction,

Mh (0, . . . , m − 1)T ∈ span (L). (2)

2 Meaning that the sequence 1, β, β2, . . . , βq−2 has no repetitions.

162 N. AILON AND B. CHAZELLE

FIG. 1. Output no if the input is p0, but yes if the input is ph or ph′ . Both of these points lie on critical
hyperplanes as well as in the flat p0 + W .

The intersection ∩H of all the hyperplanes h∗ in H is a linear subspace of positive
dimension. Indeed, it contains the vector

(1, . . . , 1︸ ︷︷ ︸
n−n/r

, 1 − r, . . . , 1 − r︸ ︷︷ ︸
n/r

).

Let K denote the set of query hyperplanes that contain ∩H. Note that Q ⊇ K ⊇
H.

LEMMA 2.3. Given any q∗ ∈ K, (i) Mq (1, . . . , 1)T = b (1, . . . , 1)T for some
real b, and (ii) Mq (0, . . . , m − 1)T ∈ span (L).

PROOF. Since (∩H)⊥ is the space spanned by the normals of hyperplanes in
H and q ∈ (∩H)⊥, q = ∑

i λi hi , where h∗
i ∈ H; therefore Mq = ∑

i λi Mhi . But
each Mhi has a single one per row, and so Mhi (1, . . . , 1)T = (1, . . . , 1)T ; hence
(i). Similarly, (ii) follows from (2).

2.2. THE CHAMBER. The query hyperplanes outside ofK intersect∩H in lower-
dimensional subspaces. Therefore, there exist c0 ∈ ∩H and ρ > 0 such that the
ball B(c0, ρ) centered at c0 of radius ρ intersects none of the hyperplanes of Q\K.
By lying on every critical hyperplane the point c0 is highly degenerate. Moving it
by some vector ψ to be specified next changes all of that (Figure 1). We define the
point

p0 = c0 + ψ (3)

to be safely outside of the critical hyperplanes. To do that, we need a positive convex
real function g, meaning one with positive second derivative; eg, x �→ x2 + 1. For
some fixed, small enough γ > 0, we define the vector ψ ∈ Rn by its matrix Mψ :

Mψ
ij =

{
γ g(j) if i ≤ r0;

γ 2g(j) otherwise.
(4)

NOTE: γ is a scaling factor that is absolutely needed. The reason we use γ 2,
however, is in anticipation of the case s > r . We could use γ in this section instead.

Lower Bounds for Linear Degeneracy Testing 163

LEMMA 2.4. The point p0 lies outside of any canonical hyperplane and any
hyperplane of Q\K.

This implies that the decision tree must output no on input p0. Note, however,
that p0 might still lie on a query hyperplane.

PROOF. Recall that a canonical hyperplane h∗ is one with an equation of the
form xi1 + · · · + xir = 0. By choosing γ small enough, we can ensure that ‖ψ‖2 ≤
ρ/2; therefore, the point p0 lies inside B(c0, ρ), safely away from any hyperplane of
Q\K (Figure 1). We have already observed that Q must contain all of the canonical
hyperplanes; therefore, the only danger is that p0 lies on some canonical hyperplane
h∗ in K. But this is impossible. Indeed, c0 ∈ ∩H ⊆ h∗, and so

〈h, p0〉 = 〈h, ψ〉 =
∑
j∈J

γ g(j) +
∑
j∈J ′

γ 2g(j) > 0,

with |J ∪ J ′| = r .

The chamber C is the unique face of A (Q) that contains p0. To define the map
h∗ ∈ H �→ ph ∈ ∂C , we need to introduce the vector space W spanned by the 2r
vectors uk, wk ∈ Rn (k = 1, . . . , r), defined (using the matrix notation)as follows:

Muk
ij =

{
1 i = k

0 otherwise
, Mvk

ij =
{

j i = k

0 otherwise
.

In other words, W consists of vectors w such that Mw
ij = αw

i + βw
i j for all i, j ,

for some real αw
1 , . . . , αw

r , βw
1 , . . . , βw

r . All the points ph will lie on C ∩ (p0 + W).
The reason for this will be made clear in case (A) in the proof of Lemma 2.6. Given
h∗ ∈ H, we define a vector

ϕh ∈ ψ + W (5)

such that Mϕh
ij > 0 (respectively, Mϕh = 0) if Mh

ij = 0 (respectively, Mh
ij > 0).

Note that ψ + W is not necessarily a vector space. One should think of Mϕh as a
mask: Its rows mark with zeroes the positions where Mh is 1 and fill the rest with
positive entries. To see that such a vector ϕh actually exists, consider the i th row of
the matrix Mϕh . Let

γi =
{

γ i ≤ r0

γ 2 i > r0
.

It suffices to show that the row can satisfy constraints in t, u of the form γi g(j) +
t +u j = 0 if j is equal to the one value j0 where Mh

ij0
= 1, and γi g(j)+ t +u j > 0

for any j �= j0. Feasibility is ensured by the fact that

g(j0) − g(j)

j0 − j
<

g(j ′) − g(j0)

j ′ − j0

for any j < j0 < j ′, which itself is a consequence of the mean-value theorem
applied to the convex function g. It is immediate to check that

lim
γ→0+

Mϕh
ij = 0, (6)

164 N. AILON AND B. CHAZELLE

for all i, j . This implies that, by scaling down γ if necessary, we can ensure that
‖ϕh‖2 < ρ/2. We now define

ph = c0 + ϕh. (7)

LEMMA 2.5. The point ph lies inside the critical hyperplane h∗ and outside
any hyperplane of Q\K.

PROOF. The second part follows directly from the fact that ‖ϕh‖2 < ρ/2. Recall
that ϕh has zero coordinates precisely at the positions where h does not; therefore,

〈h, ph〉 = 〈h, (c0 + ϕh)〉 = 〈h, ϕh〉 = 0.

Incidentally, note that the ph’s are not strewn all across the boundary of C :
By (3)–(7), they all live in the low-dimensional flat p0 + W .

LEMMA 2.6. Given any q∗ ∈ Q and h∗ ∈ H, if sgn(〈q, p0〉) �= sgn(〈q, ph〉),
then 〈q, ph〉 = 0 and sgn〈q, px〉 = sgn〈q, p0〉 for any x∗ ∈ H distinct from h∗.
(In our notation, sgn(y) = 1, 0 or −1 if y > 0, y = 0 or y < 0, respectively.) In
other words, collapsing p0 to any ph changes at most a single query from nonzero
to zero, and leaves the sign of every other query unchanged.

PROOF. Obviously we can assume that q∗ ∈ K, since otherwise q∗ would miss
B(c0, ρ) entirely and so 〈q, p0〉 and 〈q, ph〉 would be nonzero and have the same
sign. We distinguish between two cases.

(A) Each row of Mq has at least one nonzero element: Then, since s = r , each
row has exactly one and, by Lemma 2.3(i), all the nonzero elements are equal
to the same number, which without loss of generality we may assume to be 1.
Therefore,

〈q, p0〉 = 〈q, (c0 + ψ)〉 = 〈q, ψ〉

=
r0∑

i=1

γ g(ji) +
r∑

i=r0+1

γ 2g(ji) > 0.
(8)

By the lemma’s assumption, it follows that 〈q, ph〉 ≤ 0. For any x∗ ∈ H,
〈q, px〉 = 〈q, (c0 + ϕx)〉 = 〈q, ϕx〉 ≥ 0; therefore, 〈q, ph〉 = 0. Can any
other x∗ ∈ H also satisfy 〈q, px〉 = 0? The answer is no. We will show that
the equality 〈q, px〉 = 0 characterizes exactly one hyperplane x∗ ∈ H, which
therefore has to be h. To see why, recall that Mϕx acts as a mask for the 1s in
Mx . If Mx does not match Mq in each one of the first r0 rows then, by (6),
〈q, px〉 = 〈q, ϕx〉 = tr Mq(Mϕx)T , is of the form Cγ + O(γ 2), for some
C > 0, and hence can never be 0 as long as we choose γ small enough. On
the other hand, by Lemma 2.2(ii), if Mx matches Mq in each one of the first
r0 rows, then x is unique, as required. This completes the proof for case (A).
Note that we never used the fact that each row i > r0 of Mq has exactly one
nonzero element. This will allow us to use the same proof verbatim in the next
section, even though the only assurance we will then have on the matrix Mq

is each of its first r0 rows has a single 1.
(B) Some row of Mq is null: By Lemma 2.3(i),

Mq (1, . . . , 1)T = 0,

and each row of Mq must then have at least two nonzero elements or none at all.
It follows that the number of null rows is at least r0, and so, by Lemmas 2.2(iii)

Lower Bounds for Linear Degeneracy Testing 165

and 2.3(ii), Mq (0, . . . , m − 1)T = 0. (This is where error correction kicks in.)
As a result, 〈q, w〉 = 0 for any w ∈ W . But, by (3)–(7), ph− p0 = ϕh−ψ ∈ W ;
therefore, 〈q, ph〉 = 〈q, p0〉, which contradicts the lemma’s assumption.

It is immediate to verify that the chamber C and the points ph satisfy the require-
ments C1–C3. If the chamber C lay within a canonical hyperplane, then so would
p0, which would contradict Lemma 2.4; hence C1. Consider a query hyperplane
q∗ ∈ Q and a critical hyperplane h∗ ∈ H. By Lemma 2.6, there are only three
possibilities: p0 ph ⊂ q∗, p0 ph ∩ q∗ = ∅, or ph ∈ q∗ and px �∈ q∗ for any distinct
x∗ ∈ H. This proves that ph lies in the closure of C . Combined with the fact that
ph ∈ h∗ (Lemma 2.5), this establishes condition C2. Finally, if two distinct points
ph and px lay in the same face of the closure of C , then some q∗ ∈ Q would
contradict the three possibilities above; hence C3. In view of Lemmas 2.1 and 2.2,
we have proven.

THEOREM 2.7. The depth of any r-linear decision tree for r-SUM is

�(nr−3)�r/2�.

3. The Case s = r + 1

What can go wrong with the previous proof if s = r + 1? The only place where the
number s actually plays a role is in the proof of Lemma 2.6. Case (B) survives almost
verbatim. The only problem is that the number of null rows is at least r − �s/2�,
which can be less than r0. We fix this by redefining r0 so that it satisfies

1 ≤ r0 ≤ r − �s/2�. (9)

In the present case, the setting r0 = �r/2� will do.
Case (A) is far more difficult to fix. All the rows of Mq have exactly one nonzero

element, except for one of them, i0, which has two nonzeroes (the case of one
nonzero in every row having already been handled). Again we can assume that all
the nonzero elements are 1, except in row i0, where the elements are α and 1 − α,
for some real α /∈ {0, 1}. Let

γ ′ =
{

γ i0 ≤ r0

γ 2 i0 > r0
.

Taking row i0 into account, we can rewrite (8) as

〈q, p0〉 = 〈q, ψ〉

= γ ′αg(ji0) + γ ′(1 − α)g(j ′
i0

) +
r0∑
i=1

i �=i0

γ g(ji) +
r∑

i=r0+1

i �=i0

γ 2g(ji).

If i0 > r0, then all is well. Indeed, by making γ small enough

〈q, p0〉 =
r0∑

i=1

γ g(ji) + Oq(γ 2) > 0. (10)

(This is the reason we needed to use both γ and γ 2 in (4).) The remainder of the
proof involves only the first r0 rows of Mq , which happen to be as in case (A), and
so it can be repeated verbatim.

166 N. AILON AND B. CHAZELLE

The case i0 ≤ r0 is a tougher nut to crack. In fact we have not found a way of
tackling it directly. Consequently, our strategy is simply to modify H so that this
case cannot happen. Recall that, for the purpose of Lemma 2.6, we can assume that
q∗ ∈ K. As we observed in the proof of Lemma 2.3, this implies that q ∈ span (H∗),
where H∗ = { h | h∗ ∈ H }. Thus, our goal is to redefine3 a large set H of critical
hyperplanes so that, in addition to all the properties we expect of H, the following
should hold: If q is a vector of Rn such that (i) with the exception of one row i0 ≤ r0
each of the first r0 rows of Mq consists of a single 1 with 0’s everywhere else, and
(ii) the exceptional row, i0, is null everywhere except for two entries summing up
to 1, then q cannot be in the span of H∗.

Recall from the construction of H that the first r0 rows of any Mh (h∗ ∈ H)
completely determine the remaining rows. Furthermore, each one of the first r0 rows
can be chosen by placing a 1 arbitrarily between positions 1 and m0 = �m/qr0�
and filling the rest of the row with 0’s. So it suffices to concentrate on the first r0
rows. Once we have the top r0 rows, we use our Reed–Solomon code to fill in the
bottom r − r0 rows just as we did in the previous section.

An r0 × a matrix is called defective if, with the exception of one row (called
anomalous), each one consists of a single 1 with 0’s everywhere else; furthermore
the exceptional row is null everywhere except at two places. We postpone the proof
of the next result.

LEMMA 3.1. There exists a set P of r0 ×m 0/1 matrices with exactly one 1 per
row between positions 1 and m0 such that no defective r0 × m matrix belongs to
spanP and, for n large enough and any fixed ε > 0,

|P| ≥ (nr−3)�r/2�(1−1/ ln�r/2�)(1−ε).

In view of our previous discussion, this automatically implies a lower bound on
the depth of (r +1)-linear trees. The theorem below does not indicate what happens
for small values of r . A careful examination shows that we obtain nontrivial lower
bounds for any r ≥ 6.

THEOREM 3.2. The depth of any (r + 1)-linear decision tree for r-SUM is at
least (nr−3)�r/2�−o(r).

3.1. THE TENSOR PRODUCT CONSTRUCTION. The problem fits into a general
class of questions related to codes and combinatorial designs: How to build a large
vector space that does not contain a family of forbidden vectors? In the case at hand,
we start by building a “core” square matrix that satisfies the desired property and
then show how to scale it up into an arbitrarily large rectangular matrix by using a
suitable tensor product.

Let A (respectively, B) be an r0 × a (respectively, r0 × b) real matrix. Following
standard tensor notation, we write the element Ai, j as Ai

j instead. We define a tensor
product matrix operator

⊗ : Rr0×a × Rr0×b �→ Rr0×ab

as follows: If P = A ⊗ B, then Pi
j,k = Ai

j Bi
k . It is a mixed third-order tensor with

two covariant indices and a single contravariant one.

3 Although we are redefining (actually, only shrinking) H, we are not choosing a different chamber.

Lower Bounds for Linear Degeneracy Testing 167

This product extends to sets naturally. If A (respectively, B) is a set of r0 × a
(respectively, r0 × b) real matrices, then

A ⊗ B = { A ⊗ B | A ∈ A, B ∈ B }.
Tensor exponentiation for sets is defined by

A⊗k = A ⊗ · · · ⊗ A︸ ︷︷ ︸
k times

.

The elements of A⊗k belong to the vector space Vk of mixed (k + 1)st-order ten-
sors with k covariant indices and 1 contravariant one. By fixing an ordering (say,
lexicographic) of the covariant indices, we can interpret the tensors of Vk as r0 ×ak

matrices, and vice-versa.
For our “core,” we choose permutation matrices. Let � denote the set of r0 × r0

0/1 matrices with exactly one 1 per row and column. The lemma below gives our
tensor product its raison d’être.

LEMMA 3.3. No defective r0 × rk
0 matrix can belong to the span of �⊗k , for

any k ≥ 1.

PROOF. In any matrix of span (�) each row and each column sum up to the
same number, which can be assumed to be 1. Therefore, the anomalous row of a
defective r0 ×r0 matrix consists of two entries, α, α′ �= 0 summing up to 1. Suppose
that the column with the α also includes a set of � ones for � > 0 (note that these
can only be ones). Since the column sum is 1, we have α + � = 1. This implies that
α must be an integer and, since it is nonzero, α′ = 1 − α = � ≥ 2. But then the
column with α′ sums up to more than 1, which gives a contradiction. This implies
that neither of the columns with α, α′ has any other nonzero element. But then the
r0 − 2 other columns sum up to r0 − 1, which exceeds the required count by one.
This proves the lemma for k = 1.

For k > 1, we define the tensor homomorphism hl : Vk �→ Vk−1, where

hl(P)i
j1,..., jl−1, jl+1,..., jk =

r0∑
j=1

Pi
j1,..., jl−1, j, jl+1,..., jk .

Let M be a defective r0×rk
0 matrix. By definition, its anomalous row i0 contains two

nonzero elements: the two corresponding covariant k-tuple indices, being distinct,
differ in at least one index l. Since k > 1, there exists at least one covariant index
l ′ �= l. We easily verify that hl ′(M) is a defective r0 × rk−1

0 matrix and

hl ′(�
⊗k) = �⊗(k−1).

The proof follows by simple linear algebra and induction.

To maximize its size, we choose the set P = �⊗k for the largest k such that
rk

0 ≤ m0 = �m/qr0�. Using Stirling’s approximation, we find that

|P| = |�|k = (r0!)k ≥ (nr−3)�r/2�(1−1/ ln�r/2�)(1−ε),

for any fixed ε > 0. Filling up each row with 0’s to get the proper of length m
concludes the proof of Lemma 3.1.

168 N. AILON AND B. CHAZELLE

4. The Case s = r + 1

We need a new idea to generalize the tensor product construction to higher values
of s. We exploit the fact that the (hard part of the) lower bound involves only query
hyperplanes whose normal vectors q are spanned by the normals h of the critical
hyperplanes h∗ ∈ H. We use this to add combinatorial structure to the matrices Mq

by redesigning the set ∩H. We need to redefine r0 so that the first r0 rows of Mh

can be grouped in equal-sized blocks. Of course, r0 still needs to satisfy (9). The
choice of r0 = λρ0 will do, where

λ =
⌊s − r

2

⌋
+ 1 and ρ0 =

⌊r − �s/2�
λ

⌋
.

Note that this requires that s be not too large, say s < �3r/2�. Divide up the first
r0 rows of Mh into λ blocks of consecutive rows of ρ0 rows each. To build up a
matrix Mh of H, we proceed as follows:

—Step 1. Use the tensor construction of the previous section (the case s = r + 1)
to produce the top ρ0 rows of Mh . In carrying out the construction, of course,
use permutation matrices of size ρ0 ×ρ0 instead of r0 × r0. This gives us a set P
of matrices with the same properties as those of Lemma 3.1, except for the size
of P and the size of the matrices, now ρ0 × m.

—Step 2. For each matrix of P , make λ copies of it and stack them on top of one
another to produce an r0 × m matrix.

—Step 3. Complete the bottom r − r0 rows via Reed–Solomon as before.

LEMMA 4.1. For any q∗ ∈ K, the top r0 rows of Mq form an r0 × m matrix
made up of λ copies of the same ρ0 × m matrix.

PROOF. This is a simple consequence of the fact that q ∈ span { h | h∗ ∈H }.
There is no need to revisit Lemma 2.6 in detail. Again, only case (A) is worth

discussing: Each row of Mq has at least one nonzero element. By analogy with the
case s = r + 1, if all the rows with more than one nonzero have indices greater
than r0 then inequality (10) holds and we are done.

Suppose now that at least one row i0 ≤ r0 contains two or more nonzeroes. By
Lemma 4.1, the λ blocks that make up the top r0 rows of Mq are identical. This
shows that no block can have more than ρ0 + 1 nonzeroes. Indeed, any one of them
did, then so would all of the others, and their combined contribution of nonzeroes
would be at least (ρ0 + 2)λ. Added to the (at least) r − r0 nonzeroes of the bottom
rows, this would give us a total of at least (ρ0+2)λ+r −r0 > s nonzero coordinates
in q, which is ruled out. So, the only possibility left is for each block to have exactly
ρ0 or ρ0 +1 nonzeroes: the first case was handled in the proof of Lemma 2.6, while
the second one was shown to be impossible in the last section because of the tensor
product contruction.

The new set P is of size at least (ρ0!)k , where k is the largest integer such that
ρk

0 ≤ m/qr0. Elementary calculations show that

|P| ≥ (nr−3)
2r−s

2�(s−r)/2�+1 (1−εr)
,

where εr > 0 tends to 0 as r → ∞.

Lower Bounds for Linear Degeneracy Testing 169

THEOREM 4.2. The depth of any s-linear decision tree for r-SUM is at least

(nr−3)
2r−s

2�(s−r+1)/2� −o(r)
.

Note that for any s ≤ r + r1−ε, where ε > 0 is arbitrarily small constant, the
depth is (nr−3)r�(1)

.

5. Generalization to Other Linear Degeneracy Tests

We define the following linear degeneracy problems:

r -SUM′: Given a point x ∈ Rr×m , do there exit indices i1, . . . , ir ≤ m such that
r∑

k=1

xkik = 0 ?

Let f be a fixed r -variate linear polynomial of the form f = α1t1 + · · · + αr tr ,
where αk �= 0 for all k = 1, . . . , r .

f -SUM′: Given a point x ∈ Rr×m , do there exist indices i1, . . . , ir ≤ m such that
r∑

k=1

αk xkik = 0 ?

Now fix some c ∈ R.

(f, c)-SUM′: Given a point x ∈ Rr×m , do there exist indices i1, . . . , ir ≤ m such
that

r∑
k=1

αk xkik = c ?

Finally, the most general version of the linear degeneracy test we are considering,
is

(f, c)-SUM: Given a point x ∈ Rn , do there exist r distinct indices i1, . . . , ir such
that

r∑
k=1

αk xik = c ?

OBSERVATION 5.1. Theorems 2.7, 3.2 and 4.2 apply to r-SUM′, because the
critical hyperplanes have a single one in each row.

CLAIM 5.2. Let T be a linear decision tree deciding f -SUM′ for some fixed
n. If for all queries q of the tree we apply the following transformation, then
T transforms into a tree deciding r-SUM′: Assuming q is a query comparing∑

i, j βijxij to a constant z, replace βij with βij/αi , for all i, j .

CLAIM 5.3. Let T be a linear decision tree deciding (f, c)-SUM′. If for all
queries q of the tree we apply the following transformation, then T transforms into
a tree deciding f -SUM′: Assuming q is a query comparing

∑
i, j βijxij to a constant

z, replace z with z − c
r

∑
ij(βij/αi).

170 N. AILON AND B. CHAZELLE

Observation 5.1 together with Claims 5.2 and 5.3 imply that our lower bounds ap-
ply for (f, c)-SUM′, which is not harder that the most general problem we consider,
(f, c)-SUM.

6. Open Problems

The techniques used in this paper break down when r = n1/3 or when s = �(r).
Unfortunately, even the cases r < 6, s > r give trivial lower bounds, which are
subsumed by the general �(n log n). These cases are important, and we hope that
the new techniques introduced here will return the focus to them. Also, it would
be interesting to know if the lower bounds we get for s > r (and especially for
s > r + 1) are tight for big r .

ACKNOWLEDGMENTS. We wish to thank Jeff Erickson for enlightening discussions
about his lower bound proof, and the referees for their helpful comments.

REFERENCES

ARKIN, E., CHIANG, Y.-J., HELD, M., MITCHELL, J., SACRISTAN, V., SKIENA, S., AND YANG, T.-C. 1998.
On minimum-area hulls. Algorithmica 21, 119–136.

BAREQUET, G., AND HAR-PELED, S. 2001. Polygon containment and translational min-hausdorff-
distance between segment sets are 3sum-hard. Int. J. Comput. Geom. App. 11, 465–474.

BARRERA, A. 1996. Finding an o(n2 log n) algorithm is sometimes hard. In Proceedigs of the 8th Cana-
dian Conference on Computational Geometry (Ottawa, Ont., Canada). 289–294.

BEN-OR, M. 1983. Lower bounds for algebraic computation trees. In Proceedings of the 15th Annual
ACM Symposium on Theory of Computing. ACM, New York, 80–86.

BJÖRNER, A., LOVÀSZ, L., AND YAO, A. 1992. Linear decision trees: volume estimates and topological
bounds. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing. ACM, New York,
170–177.

BOSE, P., VAN KREVELD, M., AND TOUSSAINT, G. 1993. Filling polyhedral molds. In Proceedings of
the 3rd Workshop on Algorithms in Data Structures. Lecture Notes in Computer Science, vol. 709.
Springer-Verlag, New York, 210–221.

DE BERG, M., DE GROOT, M., AND OVERMARS, M. 1997. Perfect binary space partitions. Comput. Geom.
Theory Appl. 7, 81–91.

DIETZFELBINGER, M. 1989. Lower bounds for sorting of sums. Theoret. Comput. Sci. 66, 137–155.
DOBKIN, D., AND LIPTON, R. 1979. On the complexity of computations under varying set of primitives.

J. Comput. Syst. Sci. 18, 86–91.
ERICKSON, J. 1999a. Lower bounds for linear satisfiability problems. Chi. J. Theoret. Comput. Sci. 8.
ERICKSON, J. 1999b. New lower bounds for convex hull problems in odd dimensions. SIAM J. Comput. 28,

1198–1214.
ERICKSON, J., AND SEIDEL, R. 1995. Better lower bounds on detecting affine and spherical degeneracies.

Disc. Comput. Geom. 13, 41–57.
FREDMAN, M. 1976. How good is the information theory bound in sorting. Theoret. Comput. Sci. 1,

355–361.
GAJENTAAN, A., AND OVERMARS, M. 1995. On a class of o(n2) problems in computational geometry.

Comput. Geom. Theory Appl. 5, 165–185.
GRIGORIEV, D., KARPINSKI, M., MEYER AUF DER HEIDE, F., AND SMOLENSKY, R. 1996. A lower bound

for randomized algebraic decision trees. In Proceedings of the 28th Annual ACM Symposium on Theory
of Computing. ACM, New York, 612–619.

GRIGORIEV, D., KARPINSKI, M., AND VOROBJOV, N. 1997. Lower bound on testing membership to a
polyhedron by algebraic decision and computation trees. Disc. Comput. Geom. 17, 191–215.

MACWILLIAMS, F., AND SLOANE, N. 1977. The Theory of Error Correcting Codes. North Holland.
MATOUSEK, J. 1995. On geometric optimization with few violated constraints. Disc. Comput. Geom. 14,

365–384.
MEISER, S. 1993. Point location in arrangements of hyperplanes. Inf. Comput. 106, 286–303.

Lower Bounds for Linear Degeneracy Testing 171

MEYER AUF DER HEIDE, F. 1984. A polynomial linear search algorithm for the n-dimensional knapsack
problem. J. ACM 31, 668–676.

NAGURA, J. 1952. On the interval containing at least one prime number. Proc. Japan Acad. 28, 177–181.
STEELE, M., AND YAO, A. 1982. Lower bounds for algebraic decision trees. J. Alg. 3, 1–8.
YAO, A. 1995. Algebraic decision trees and euler characteristics. Theoret. Comput. Sci. 141, 133–150.
YAO, A. 1997. Decision tree complexity and betti numbers. J. Comput. System Sci. 55, 36–43.
YAO, A. 2000. Why I’m an optimist. In DIMACS Workshop on Intrinsic Complexity of Computation.

10–13.

RECEIVED MARCH 2004; REVISED DECEMBER 2004; ACCEPTED DECEMBER 2004

Journal of the ACM, Vol. 52, No. 2, March 2005.

