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Abstract
An important result from psycholinguistics (Griffiths & Kalish, 2005) states that no language can
be learned iteratively by rational agents in a self-sustaining manner. We show how to modify the
learning process slightly in order to achieve self-sustainability. Our work is in two parts. First, we
characterize iterated learnability in geometric terms and show how a slight, steady increase in the
lengths of the training sessions ensures self-sustainability for any discrete language class. In the
second part, we tackle the nondiscrete case and investigate self-sustainability for iterated linear
regression. We discuss the implications of our findings to issues of non-equilibrium dynamics in
natural algorithms.
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1 Introduction

Consider this hypothetical scenario: A native speaker of Quenya1 sets out to teach the
language to an English speaker; after a year of teaching, the learner considers herself fluent
enough to teach Quenya to some other English speaker, who a year later does the same. In
this form of iterated learning, agents teach each other in sequence: X teaches Y, who then
teaches Z, who then teaches...[2, 8, 7, 15, 12, 9, 14, 16, 18, 11]. By a classic result of Griffiths
and Kalish [7], Quenya will vanish after a finite number of iterations, at which point the
agents, assumed to be rational, will be “teaching" each other plain English. In other words,
after a while, learners will be taught nothing they don’t already know: iterated learning is
not self-sustaining.

Such findings are hard to validate empirically but variants of it are within the reach of
experimental psychology. As early as 1932, in fact, the English psychologist Frederic Bartlett
used iterated learning to expose hidden biases among humans. He presented a picture of an
owl to a person for given period of time and then asked her to draw it from memory. Her
picture was then shown to the next learner for the same amount of time, who then proceeded
to draw it back from memory. After 20 iterations of this process, to Bartlett’s surprise, what
was being drawn was no longer an owl but, quite clearly, a cat! The challenge was to explain
why humans would exhibit a pro-feline bias without falling into the trap of just-so stories.

∗ This work was supported in part by NSF grant CCF-1420112.
1 Quenya is one of J.R.R. Tolkien’s fictional languages.
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Griffiths et al. [11] repeated the same experiment ten years ago, this time trading owls for
lines. The goal was to see if linear regression could be iterated: the answer was a resounding
No. Skipping over logistical details, the experiment presents the first learner with a cloud of
20 points drawn randomly, with noise, from the line Y = 1 −X. The cloud vanishes and
the learner is then asked to reconstruct it from memory. She then becomes the teacher by
passing on her own cloud to the next learner, who likewise, looks at it for a while, and then
tries to reconstruct it from memory, etc. Surprisingly, iterating this process a mere nine
times leads the last learner in the sequence to draw a cloud that regresses to the line Y = X;
in other words, teaching about descending lines iteratively has precisely the opposite effect!
In fact the initial picture is essentially is irrelevant. A random cloud of points will also lead
to Y = X.

Unlike the Quenya scenario, where the bias toward English is not unexpected, the cat
and line experiments both reveal a hidden prior among the participants. Humans seem to
love cats and possess a strong positive correlation bias; it is easy to speculate why.2 It is
noteworthy that the prior should prevail even in the absence of any sort of priming. Indeed,
this experiment fails miserably if you try it yourself by playing the role of all the agents in
sequence. The use of different learners ensures that the training does not acquire long-term
memory. Similar laboratory experiments with human subjects (well, undergraduates) have
confirmed the unstainability of iterated learning [11, 2, 19, 1, 9].

In our first example, Quenya gets “washed out" by English in a way reminiscent of the
fixation of an allele through genetic drift. Indeed, the original impetus for studying iterated
learning in psycholinguistics was to look for a parallel to Kimura’s neutral theory of molecular
evolution in the area of cultural transmission. People learn their native tongue from speakers
who themselves learned it from others. This process introduces variation along the way, some
of which is retained durably. The selectionist view seeks to explain this process by fitness
considerations at the population level. Iterated learning suggests a different explanation.
Language acquisition suffers from a well-documented information bottleneck (the notorious
“poverty of stimulus"), so one might expect languages to evolve so as to be easy to learn:
could complexity theory be the key? This push for simplicit would then trigger the emergence
of linguistic universals (eg, compositionality) that one finds present in all languages [8]. This
view complements—some will argue, contradict—Chomsky’s interpretation of universals as
the product of constraints imposed by an innate genetic endowment.

Following Chomsky and Lasnik’s theory of “Principles and Parameters," Rafferty et
al. [15] model languages by means of a handful of parameters: think of a few knobs whose
settings specify any given language. Language evolution thus entails the trans-generational
update of a probability distribution over that parameter space. Assuming that the learners
are rational Bayesian agents, iterated learning acts as a Gibbs sampler for a joint probability
distribution over languages and their sentences. By converging to a stationary distribution,
iterated learning proves incapable of sustaining itself past the mixing time. In that model,
languages evolve to reflect the priors of the learners while losing all trace of the ancestor
language. While this phenomenon is of central relevance in the study of universal grammars,
it leaves open the possibility that changes in the sampling algorithm might make iterated
learning self-sustaining. Of course, it is easy to think of situations where this feature would
be highly desirable (eg, school teaching, social transmission of norms, legends, jokes, etc.)
We show how keeping the length of the training sessions growing slightly allows iterated

2 Our favorite piece of anecdotal evidence in support of the positive slope bias is that no road sign in the
US features an aircraft on a descending path.
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learning to be sustained in perpetuity.
In the first part of the paper, we characterize iterated learnability in geometric terms

and show how a slight, steady increase in the lengths of the learning sessions ensures self-
sustainability for any discrete language class. In the second part, we tackle the nondiscrete
case and investigate self-sustainability for iterated Bayesian linear regression. In all cases,
self-sustainability requires making the underlying Markov process time-inhomogeneous in
order to stay out of equilibrium. This gives us an opportunity to offer a few thoughts on the
growing importance of non-equilibrium in natural algorithms.

1.0.0.1 Background.

Fig.1: Chained iterated learning.

Following [2, 8, 7, 15, 12, 9, 14, 16, 18, 11],
we begin with chained iterated learning: a
learner’s prior is modeled by a distribution
over a hypothesis space H, which is itself
equipped with a likelihood function: P[d|h]
indicates the probability of generating data
d ∈ D given the hypothesis h ∈ H. The
first learner samples m1 items iid from the
initial hypothesis hinit: these items provide
the training data d1 = (d1,1, . . . , d1,m1) with
which the first learner Bayes-updates its
prior. Its posterior is given by setting t = 1 in this formula:

P[h|dt] = P[dt|h]P[h]/P[dt], with P[dt] =
∑
h∈H

P[dt|h]P[h]. (1)

From that point on, each successive learner updates its prior from their predecessor. For
any t > 1, learner t receives mt items sampled from the posterior of agent t − 1 to form
the training set dt. To do that, she picks a random hypothesis h from H with probability
P[h|dt−1] (the posterior of learner t − 1) and then samples mt items iid from h to form
dt ∈ Dmt . The posterior P[h|dt] is derived according to (1). Note that learner t has no direct
access to the posterior of learner t− 1 but only to data drawn from a hypothesis sampled
from the posterior. Our formulation assumes a discrete space H but extends to continuous
settings, as we show in §3.

In the case of linguistic transmission, each hypothesis h ∈ H is a “knob" whose setting
is given by a number between 0 and 1, specifically the prior probability P[h]. All learners
share the same prior. Picking some h from that prior specifies a language (also denoted h
for convenience). In this case, a language is defined as a probability distribution over D,
interpreted here as a set of sentences. In this way, the prior can be viewed as a mixture
over H: by abuse of terminology, we call it a mixed hypothesis, which we distinguish from a
pure hypothesis of the form h ∈ H (corresponding to a single-point distribution). Access to
language h is achieved by random sampling: the sentence d ∈ D is picked with probability
P[d|h].

Iterated learning proceeds as follows. After selecting language h with probability P[h|dt−1],
learner t collects mt independent samples from h. Thus, given a tuple dt = (d1, . . . , dmt

) of
sentences from D, the likelihood P[dt|h] is equal to

∏
1≤k≤mt

P[dk|h]. The learner is now
ready to Bayes-update its prior. Of course, the first one (t = 1) samples directly from the

CVIT 2016
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language hinit chosen for iterated learning. The notation is boldfaced to indicate that hinit

may be a mixed hypothesis or, in other words, a distribution over hypotheses.
Suppose that D = {d1, . . . , ds} and H = {h1, . . . , hn} are both finite. While sampling

from the posterior of learner t − 1, if learner t winds up choosing hi then, by Bayesian
updating, the probability P |tij that its posterior picks hj is given by:

P
|t
ij =

∑
d∈Dmt

P[hj |d]P[d|hi] =
∑

d∈Dmt

P[d|hi]P[d|hj ]P[hj ]∑n
k=1 P[d|hk]P[hk]

. (2)

To our knowledge, the entire literature on the topic assumes a common, fixed sample size
for all the learners: mt = m. Equation (2) can be then interpreted as marginalizing a Gibbs
sampler over the data space, which creates a Markov chain over the hypothesis space H: if
ht denotes the row vector formed by the n probabilities P[hk |dt], then ht = ht−1P t, where
h0 = hinit. Assuming ergodicity (in this case, a fairly inconsequential technical assumption),
the chain can be shown to converge to a unique stationary distribution h. It can be easily
checked that it coincides with the prior: h = (P[h1], . . . ,P[hn]) [7, 13]; see [15, 16] for an
analysis of the mixing time in specific linguistic scenarios. This convergence reveals the
long-term unsustainability of iterated learning. We show how diversifying the sample sizes
mt, hence making the Markov chain time-inhomogeneous, can overcome this weakness.

1.0.0.2 Our results.

In §2, we show how to achieve self-sustainability in the discrete setting [8, 7], using only
a logarithmically increasing sample size; specifically, the new hypothesis to be learned is
acquired by all the (infinitely many) learners with probability at least 1− ε using a sample
size of O(log t

ε ) for the t-th learner. The constant factor depends on the geometry of the
hypothesis space. By relaxing the objective and allowing learners to settle on an arbitrarily
close approximation of the hypothesis to be learned, we can remove all dependency on the
geometry of the hypothesis space.

In §3, we extend the iterated learning model to a Gaussian setting for an infinite hypothesis
space and show that a sample size of O(t)1+o(1) is sufficient to ensure self-sustainability. We
also show that allowing learners to pick their teachers at random cuts down the sample size
to O(log t)1+o(1). The arguments used for the discrete case bump into singularities so we use
a different approach, which allows us to exploit various “stability" properties of the Gaussian
setting.

In §4, we turn our attention to the iterated version of Bayesian linear regression and prove
a high-probability statement about self-sustainability. This requires spectral arguments from
random matrix theory and, in particular, bounds on the lowest singular value of Wishart
matrices.

1.0.0.3 Discussion.

Before moving to the technical part of this work, we add a few thoughts about its larger
context and relevance. For a dynamicist, the loss of Quenya is a byproduct of the memory-
erasing ergodicity implied by mixing. For a physicist, the loss is due to the Second Law of
thermodynamics and the bounded supply of free energy available to each agent: together
these two constraints make it impossible to keep the system out of equilibrium. For a
biologist, this entropic pull toward equilibrium is the hallmark of a dying system. Evolution



B. Chazelle and C. Wang 23:5

is nature’s attempt to optimize the absorption of free energy into work while maximizing
the production of entropy. The first requirement is keeping the system out of equilibrium
over timescales well in excess of the metabolic rate (here, the teaching rate). From that
perspective, our work can be seen as an effort to find out the minimum conditions necessary
to keep a target dynamics active in perpetuity. There are several approaches to this question
and the two we follow are among the simplest: (i) increasing the supply of free energy (eg,
lengthening the training sessions) and (ii) mixing timescales (eg, rewiring the communication
network).

Most of the work on Markov chains in theoretical computer science regards mixing as
a blessing: large spectral gaps are good while small ones are to be avoided. In biology,
however, mixing often means death. In fact, much of life can be seen as nature’s attempt to
keep mixing at bay. This paper explores what can be done to prevent a Markov chain from
reaching equilibrium. We expect this theme to gain prominence in future work on natural
algorithms.

2 Self-Sustainability

We show how to make iterated learning self-sustaining in the presence of a finite hypothesis
space H = {h1, . . . , hn}. This involves specifying a sequence of training session lengths
m1,m2, . . . so that the posterior of any learner ends up differing from hinit by an arbitrarily
small amount. Formally, given any δ, ε ≥ 0, we say that iterated learning is (δ, ε)-self-
sustaining if, with probability at least 1 − ε, a random h ∈ H picked from any learner’s
posterior distribution differs from hinit in total variation by at most δ. We recall a few facts:
the hypothesis h denotes a language modeled as a probability distribution over D; the total
variation distance is half the `1-norm; and the posterior of learner t after the t-th iteration is
defined by marginalizing P[h|dt] over all samples dt drawn from a random h picked from the
posterior of learner t− 1 (or hinit if t = 1). As a shorthand, we speak of ε-self-sustainability
to refer to the case δ = 0.

The parameters δ and ε allow us to distinguish between two metrics: the distance between
two languages over D and the distance between two mixtures over H. The two notions
could differ widely. For example, if all of H corresponds to languages very close to hinit,
to achieve (δ, ε)-self-sustainability might be easy for a tiny δ > 0 but hopelessly difficult for
δ = 0. The complexity of iterated learning depends on the geometry of the languages formed
by the pure hypotheses. This is best captured by introducing a metric that, though more
specialized than the total variation (it works only on the simplex of probability vectors) brings
all sorts of technical benefits: the root-sine distance between two probability distributions
a = (a1, . . . , as) and b = (b1, . . . , bs) over D is defined as

dRS(a, b) =

√√√√1
2

s∑
i,j=1

(√
aibj −

√
ajbi

)2
=

√√√√1−
( s∑
i=1

√
aibi

)2
. (3)

It would be surprising if this distance had not been used before, but we could not find a
reference. We prove that it is indeed a metric in the Appendix and also explain its name.
We show that it is related to the Hellinger, Bhattacharyya and total variation distances, dH ,

CVIT 2016
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dB , dTV by the following relations:


dH =

√
1−

√
1− d2

RS ;

dB = − 1
2 ln(1− d2

RS) ;

dTV ≤
√

2s dRS .

(4)

2.1 The results
We focus on the “pure" case hinit ∈ H, and later briefly discuss how to generalize the
method to mixed hypotheses. Using the shorthand dij for dRS(P[·|hi],P[·|hj ]), we define
di := minj:j 6=i dij . Let p = (p1, p2, . . . , pn) be the prior distribution over H, where pi := P[hi].
We can obviously assume that each pi is positive and that all the pure hypotheses are distinct,
hence di > 0. The two theorems below assume that hinit = h1.

I Theorem 1.. For any positive ε < 1, the following sample size sequence makes iterated
learning ε-self-sustaining:

mt = 4
d2

1
ln nt

ε p1
= 4

d2
1

(
log t

ε
+ C

)
,

for some C > 0 independent of t, ε, d1.

The factor 4 can be reduced to 21+o(1) if we adjust the constant C. It is to be expected
that the lengths of the training sessions should grow to infinity as p1 tends to zero, as the
vanishing prior makes it increasingly difficult for the posteriors to “attach" to h1. The session
lengths are sensitive to the minimum distance between the languages specified by H and the
target language h1. Settling for (δ, ε)-self-sustainability allows us to remove this dependency.

I Theorem 2.. For any positive δ, ε < 1, the following sample size sequence makes iterated
learning (δ, ε)-self-sustaining:

mt = 8sn2

δ2

(
ln t

ε
+ C

)
.

for some C > 0 independent of t, δ, ε.

2.2 The proofs
To establish Theorem 1, we estimate the probability P ∗ that each leaner ends up picking h1.
Recall that ht is the posterior distribution of learner t, by the Markovian property of the
system,

P ∗ = P[h0 = h1]
∏
t≥0

P[ht+1 = h1|ht = h1] =
∏
t≥1

P
|t
11. (5)
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Since the matrix P |t is the transition matrix of a Markov chain, we proceed by bounding its
off-diagonal elements P |tij for i 6= j. By (2) and Young’s inequality,

P
|t
ij ≤

∑
d∈Dmt

P[d|hi]P[d|hj ]pj
P[d|hi]pi + P[d|hj ]pj

= pj
pi

∑
d∈Dmt

(
pi

pj

)
P[d|hi]P[d|hj ](

pi

pj

)
P[d|hi] + P[d|hj ]

≤ 1
2

√
pj
pi

∑
d∈Dmt

√
P[d|hi]P[d|hj ] = 1

2

√
pj
pi

(∑
d∈D

√
P[d|hi]P[d|hj ]

)mt

≤ 1
2

√
pj
pi

exp
{
mt

2

((∑
d∈D

√
P[d|hi]P[d|hj ]

)2
− 1
)}

.

By definition of the root-sine distance, we have

P
|t
ij ≤

1
2

√
pj
pi
e−

1
2 d2

ijmt (i 6= j). (6)

Setting i = 1 in (6) and summing over 2 ≤ j ≤ n, it follows by Cauchy-Schwarz that

n∑
j=2

P
|t
1j ≤

1
2

√
n(1− p1)

p1
e−

1
2 d2

1 mt . (7)

Combining (5) and (7) yields

P ∗ ≥
∏
t≥1

(
1− 1

2

√
n(1− p1)

p1
e−

1
2 d2

1 mt

)
≥ 1− 1

2

√
n(1− p1)

p1

∑
t≥1

e−
1
2 d2

1 mt . (8)

Given 0 < ε < 1, we constrain the sequence (mt) to satisfy:

∑
t≥1

e−
1
2 d2

1mt < ε

√
4p1

n(1− p1) . (9)

For example, we can pick the sequence

mt = 1
d2

1
ln n(1− p1)t4

ε2p1
,

which completes the proof. A closer look at the calculation shows that the factor t4 can be
reduced to Cαt2+α for any small α > 0 and a suitable constant Cα > 0, which makes the
dependency on t arbitrarily close to (2/d2

1) ln t.
�

To prove Theorem 2, we set a target distance ρ := δ/(n
√

2s) and find a subset A ⊆ H
such that (i) d1j ≤ ρn for j ∈ A and (ii) dij ≥ ρ for i ∈ A and j 6∈ A. To see why such a
subset must exist, consider spheres centered at hinit = h1 of radius kρ, for k = 1, . . . , n+ 1
(with respect to dRS). These define n + 1 disjoint (open) regions and, by the pigeonhole
principle, at least one of them must be empty. We set A to include all the points in the
regions preceding the empty one; note that h1 ∈ A. The claim follows from the triangular
inequality. We begin with a straightforward generalization of (7): for any i ∈ A,

∑
j 6∈A

P
|t
ij ≤

1
2

√
n(1− pA)

pA
e−

1
2ρ

2 mt , (10)

CVIT 2016
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where pA := mini∈A pi. Now let P ∗ be the probability that ht ∈ A for each t, then (5) and
(8) are generalized to

P ∗ ≥
∏
t≥1

1−max
i∈A

∑
j /∈A

P
|t
ij

 ≥ 1− 1
2

√
n(1− pA)

pA

∑
t≥1

e−
1
2ρ

2 mt . (11)

Setting

mt = 1
ρ2 ln n(1− pA)t4

ε2pA
(12)

ensures that P ∗ > 1−ε. The root-sine distance between the languages denoted by h1 and any
h ∈ A is at most ρn, so that, by (4), the total variation distance is bounded by

√
2sρn = δ,

which concludes the proof of Theorem 2. �

So far, we have analyzed only the “pure" case hinit ∈ H. The idea of the training is to
prevent the prior to “drag" the posterior mixture all across H. It should be clear that a
similar result obtains if hinit ∈ ∆H is concentrated on a subset A of H. The proof follows
the path charted in Theorem 2 and need not be repeated here. It is crucial to note, however,
that this result is to be understood in a coarse-graining sense: iterated learning cannot ensure
that the original weights in the mixture hinit are retained but only that A contributes most
of the mass in the posteriors. To retain the weights would require changing the stationary
distribution to conform with hinit, as the process unfolds, something that straightforward
Bayesian learning seems unable to do. Learning pure hypotheses bypasses that difficulty.

2.3 Applications
We briefly discuss a direct application of our results to a well-known model of language
acquisition via iterated learning and we mention some natural extensions of the techniques.

2.3.0.1 Language evolution.

Rafferty et al. [15] show how iterated learning fails rapidly in a simple model of language
evolution. Given n hypotheses, iterated learning with fixed-length training sessions ceases to
learn anything new after only O(logn log logn) rounds. The previous theorems show how to
turn this around and achieve self-sustainality. In the model, H = {h1, . . . , hn}, where n = 2k
and hi denotes the language whose sentences are words in {0, 1, ?}k with exactly m question
marks and 0, 1 matching the binary decomposition of i− 1 outside the question marks. For
example, if k = 4 and m = 2, then h3 denotes the language

{ 00??, 0?1?, ?01?, 0??0, ?0?0, ??10 }.

We can assume that m is much smaller than k. Each language has the same length
(
k
m

)
and the total number of sentences is s =

(
k
m

)
2k−m. The prior is given by P[hi] = pi = 1/n.

Given a hypothesis hi, P[d|hi] = 1/
(
k
m

)
if d has m question marks and match the bits of i− 1

elsewhere; else it is 0 (and d, h are called incompatible). Given h ∈ H,

P[d] =
∑
h∈H P[d|h]P[h] = 2m−k/

(
k
m

)
;

P[h|d] = P[d|h]P[h]/P[d] = 2−m (or 0 if d, h are incompatible).

We easily check that d2
1 = 1−

(∑s
i=1
√
aibi

)2 ≥ 1−
(
m
k

)2
> 1

2 ; hence, by Theorem 1, session
lengths mt no larger than O(log t

ε ) are sufficient to maintain ε-self-sustainability.
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2.3.0.2 Meanings and utterances.

In the use of iterated learning for studying language evolution [7, 14], it is common to model
the data d as a joint distribution (x,y) over a product space Xmt × Ymt . The idea is to
distinguish between “meanings" x and “utterances" y. In this setting, P[d|h] = P[y|x, h]µ(x),
where µ(x) is the probability of generating x. The transition matrix of the Markov chain
thus becomes

P
|t
ij =

∑
x∈Xmt

∑
y∈Ymt

P[hj |x,y]P[y|x, hi]µ(x)

=
∑

x∈Xmt

∑
y∈Ymt

P[y|x, hi]P[y|x, hj ]P[hj ]∑m
k=1 P[y|x, hk]P[hk]

µ(x) . (13)

Since the output y now depends on both the hypothesis and the input data, we redefine dij
as the root-sine distance between the two distributions P[y|x, hi]µ(x) and P[y|x, hj ]µ(x):

d′ij := 1−

∑
x∈X

∑
y∈Y

√
P[y|x, hi]P[y|x, hj ]µ(x)

2

(14)

and we define d′i := minj:j 6=i d′ij . Given any i 6= j,

P
|t
ij ≤

∑
x∈Xmt

∑
y∈Ymt

P[y|x, hi]P[y|x, hj ] pj
P[y|x, hi] pi + P[y|x, hj ] pj

µ(x)

≤ 1
2

√
pj
pi

∑
x∈Xmt

∑
y∈Ymt

√
P[y|x, hi]P[y|x, hj ]µ(x)

≤ 1
2

√
pj
pi

(∑
x∈X

∑
y∈Y

√
P[y|hi]P[y|hj ]µ(x)

)mt

≤ 1
2

√
pj
pi

exp
{
mt

2

((∑
x∈X

∑
y∈Y

√
P[y|x, hi]P[y|x, hj ]µ(x)

)2
− 1
)}

.

This gives us this new version of inequality (6), which we can use as the basis for a repeat of
the argument of the previous section:

P
|t
ij ≤

1
2

√
pj
pi
e−

1
2 d′2ijmt (i 6= j). (15)

3 Iterated Learning in Continuous Spaces

When iterated learning operates over a hypothesis space H parametrized continuously, say,
in R, the minimum root-sine distance usually vanishes and the previous arguments run into
singularities and collapse. A new approach is needed. To make our discussion concrete, we
assume that the prior distribution of each learner is a Gaussian P[h] ∼ N(µ̄, σ̄2) and that
the likelihood of producing data d given hypothesis h is also normal: P[d|h] = N(h, σ2). The
likelihood can also be understood as a noisy measurement of h: d = h+ φ, where the noise
φ ∼ N(0, σ2). We assume that the data received by the first learner comes from N(µ0, σ

2
0).
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This is the simplest instance of a continuous setting in which the root-sine distance argument
fails. We discuss it in some detail, considering both chained learning and its generalizations;
and then we use the results to treat the case of iterated Bayesian linear regression.

During its training session, the t-th learner receives data dt = (dt,1, . . . , dt,mt) from its
predecessor: it is obtained by first picking a random hypothesis h from the posterior of
learner t− 1 and then collecting mt independent random samples from N(h, σ2). For the
case t = 1, we can treat the original teacher as learner 0 with its posterior equal to N(µ0, σ

2
0).

Learner t Bayes-updates its posterior as follows:

P[h|dt] ∝ P[dt|h]P[h] ∝ exp
(
− 1

2σ2

mt∑
i=1

(dt,i − h)2
)

exp
(
− 1

2σ̄2 (h− µ̄)2
)
,

which is still Gaussian, with mean and variance denoted by µt and σ2
t , respectively. Carrying

out the usual square completion gives up these update rules: for t > 0, µt = 1
τ̄+mtτ

(τ̄ µ̄+ τ(dt,1 + dt,2 + · · ·+ dt,mt
))

τt = τ̄ +mtτ,
(16)

where we define the precisions τ = 1/σ2, τ̄ = 1/σ̄2, and τt = 1/σ2
t . We say that iterated

learning is ε-self-sustaining if |Eµt − µ0| ≤ ε and σ2
t + varµt remains bounded for all t. If

σ2
t + varµt → 0 as t → ∞, we say that iterated learning is strongly ε-self-sustaining. We

consider successively the case of chained iterated learning and the more challenging “hopping"
scenario in which a new learner picks a random teacher from the past (instead of the previous
one).

3.1 Chained learning
In chained iterated learning, the data dt,i is a noisy message drawn from the posterior of
the (t− 1)-th learner; hence dt,i ∼ N(µt−1, σ

2
t−1 + σ2). In view of (16), µt is itself Gaussian.

By taking the expectation and variance of equation (16), we find the following recursive
relations for Eµt and varµt: for t > 0,

Eµt = 1
τ̄+mtτ

(
τ̄ µ̄+mtτ Eµt−1

)
;

varµt = mtτ
2

(τ̄+mtτ)2

(
var µt−1 + σ2

t−1 + σ2). (17)

If we define βt := mtτ/(τ̄ +mtτ), then (17) becomes Eµt = βt Eµt−1 + (1−βt)µ̄. If mt = m

is a constant, then so is βt, and the recursive relation (17) becomes

Eµt − µ̄ = βt1(µ0 − µ̄),

which shows that Eµt converges to µ̄ exponentially fast. As in the discrete case, iterated
learning is not self-sustainable with constant-length training sessions. By letting mt increase
as O(t1+o(1)) order, however, we can achieve self-sustainability:

I Theorem 3. For any 0 < ε < 1, the following sample size sequence makes chained iterated
learning strongly ε-self-sustaining:

mt = |µ0 − µ̄|
ε

(
1 + 1

c

)(σ
σ̄

)2
t1+c,

for an arbitrarily small constant c > 0.
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Proof. We observe that Eµt is a convex combination of µ̄ and Eµs (s < t); specifically,

Eµt =
t∏

s=1
βsµ0 +

(
1−

t∏
s=1

βs

)
µ̄. (18)

Because
∑
s>0(1/s)1+c < 1 +

∫∞
1 x−1−c dx = 1 + 1/c, we have

1 ≥
t∏

s=1
βs =

t∏
s=1

(
1− τ̄

msτ + τ̄

)
≥ 1−

t∑
s=1

τ̄

msτ + τ̄

≥ 1− ε

|µ0 − µ̄|

( c

c+ 1

) ∞∑
s=1

1
s1+c > 1− ε

|µ0 − µ̄|
.

This shows that

|Eµt − µ0| =
(

1−
t∏

s=1
βs

)
|µ̄− µ0| ≤ ε.

By (16), σ2
t = 1/τt < 1/mtτ → 0. Since σ2

t−1 ≤ σ̄2 for t > 1, it follows from (17)
that varµt ≤ (varµt−1 + σ2 + σ̄2)/mt for t > 1, and varµ1 ≤ (σ2

0 + σ2)/m1. Writing
Mt := mtmt−1 . . .m1, we have

Mtvarµt ≤Mt−1varµt−1 +Mt−1(σ2 + σ̄2)
≤ tMt−1(σ2

0 + σ2 + σ̄2),

and thus varµt ≤ (σ2
0 + σ2 + σ̄2)t/mt → 0 since mt = Ω(t1+c). �

3.2 Hopped learning
We consider the “hopped learning" scenario in which learner t hops back to pick a teacher
from {0, 1, . . . , t− 1} at random, and then samples mt bits of data from her posterior. The
recursive relation for µt becomes

µt = βt
mt

t−1∑
s=0

χt,s

mt∑
i=1

dt,s,i + (1− βt)µ̄, (19)

where, given t, the random variable χt,s is 1 for a value of s picked at random between 0
and s− 1, and is zero elsewhere; recall that βt := mtτ/(τ̄ +mtτ). Hopped iterated learning
provides access to earlier data, so one would expect the lengths of the training sessions to
grow more slowly than in chained learning. The change is indeed quite dramatic:

I Theorem 4. For any positive ε < |µ0 − µ̄|, the following sample size sequence makes
hopped iterating learning ε-self-sustaining:

mt = Bc
|µ0 − µ̄|

ε

(σ
σ̄

)2
(1 + log t)1+c,

for an arbitrarily small c > 0 and a constant Bc that depends only on c.

Proof. By taking expectation on both sides of (19), for any t > 0,

Eµt = βt
t

t−1∑
s=0

Eµs + (1− βt)µ̄,
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We define γ1 = β1 and, for t > 1,

γt := (1 + β1)
(

1 + β2

2

)
· · ·
(

1 + βt−1

t− 1

)
βt
t
.

We verify easily that Eµt = γtµ0 +(1−γt)µ̄, for t > 0; therefore, the first part in establishing
ε-self-sustainability consists of proving that

1 ≥ γt ≥ 1− ε

|µ0 − µ̄|
, (20)

which will show that |Eµt − µ0| ≤ ε. Note that

γt ≤
1
t

t−1∏
s=1

(
1 + 1

s

)
= 1.

Now define
αs = ε

Bc|µ0 − µ̄|s(1 + log s)1+c .

for s > 0. We pick a constant Bc large enough so that αs is small enough to carry out
first-order Taylor approximations around 1 + αs. We find that

1 + βs
s

= 1 + 1
s

(
1− 1

1 +mtτ/τ̄

)
≥
(

1 + 1
s

)(
1− 1

(s+ 1)mtτ/τ̄

)
≥
(

1 + 1
s

)(
1− sαs

s+ 1

)
≥
(

1 + 1
s

)
(1− αs) ≥

(
1 + 1

s

)
e−2αs .

Thus,

γt ≥
βt
t

t−1∏
s=1

(
1 + 1

s

)
e−2

∑t−1
s=1

αs = βte
−2
∑t−1

s=1
αs ≥ 1− ε

|µ0 − µ̄|
,

which establishes (20). Our derivation relies on the fact that

βt ≥ 1− ε

Bc|µ0 − µ̄|(1 + log t)1+c ≥ 1− ε

2|µ0 − µ̄|

and
t−1∑
s=1

1
s(1 + log s)1+c ≤ 1 + 1

(log e)1+c

∫ t−1

2

1
x(ln x)1+c dx = O

(1
c

)
;

hence,
e−2

∑t−1
s=1

αs ≥ e−O(ε/(cBc|µ0−µ̄|)) ≥ 1− ε

2|µ0 − µ̄|
.

Having shown that |Eµt−µ0| ≤ ε for all t, it now suffices to prove that σ2
t +varµt remains

bounded. We note that τt > mtτ →∞, hence σ2
t = 1/τt → 0, so the remainder of the proof

needs to establish that the variance of µt stays bounded. Writing Dt,s := dt,s,1 + · · ·+dt,s,mt
,

we have varDt,s = mtvar dt,s,1 = mt(σ2
s + σ2 + varµs); hence

ED2
t,s = varDt,s + (EDt,s)2 = mt(σ2

s + σ2 + varµs) +m2
t (Eµs)2.

In (19), the variables χt,s and Dt,s are independent, for 0 ≤ s ≤ t − 1; furthermore,
Eχt,s = Eχ2

t,s = 1/t, and Eχt,s1χt,s2 = 0 if s1 6= s2; therefore,

var [χt,sDt,s] = Eχ2
t,s ED2

t,s − (Eχt,s)2(EDt,s)2 =
ED2

t,s

t
− (EDt,s)2

t2

=
(mt

t

)(
σ2
s + σ2 + varµs +mt(Eµs)2)− (mt

t

)2
(Eµs)2 (21)
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and, for s1 6= s2,

cov [χt,s1Dt,s1 , χt,s2Dt,s2 ] = E [χt,s1χt,s2Dt,s1 , Dt,s2 ]− E [χt,s1Dt,s1 ]E [χt,s2Dt,s2 ]
= E [χt,s1χt,s2 ]E [Dt,s1Dt,s2 ]− Eχt,s1EDt,s1Eχt,s2EDt,s2

= − 1
t2

EDt,s1EDt,s2 = −
(mt

t

)2
Eµs1Eµs2 . (22)

Then, by taking the variance on both sides of (19), we have

varµt =
( βt
mt

)2
var

t−1∑
s=0

χt,sDt,s

=
( βt
mt

)2
(t−1∑
s=0

var [χt,sDt,s] +
∑

0≤s1 6=s2≤t−1
cov [χt,s1Dt,s1 , χt,s2Dt,s2 ]

)

=
( βt
mt

)2
(t−1∑
s=0

(mt

t

)(
σ2
s + σ2 + varµs +mt(Eµs)2)− (mt

t

)2(t−1∑
s=0

Eµs
)2
)

≤ 1
tmt

t−1∑
s=0

(
σ2
s + σ2 + varµs +mt(Eµs)2).

Notice that σ2
s → 0 and (Eµs)2 is bounded since |Eµt−µ0| ≤ ε. We conclude that σ2

t +varµt
remains bounded for all t. �

4 Iterated Bayesian Linear Regression

The iterated version of Bayesian linear regression has been the subject of extensive study
in the field of psychology [11, 2, 19, 1, 9]. The work has involved experimentation with
human subjects but little in the way of theoretical analysis. This section is a first step
toward filling this void. The task at hand is to estimate a hypothesis h ∈ H := Rd given a
noisy measurements on the hyperplane y = hTx, where x ∈ Rd. In the Bayesian setting, we
assume a Gaussian prior on the hypothesis space: P[h] ∼ N(µ̄, σ̄2Id). The data is given by
(x, y), where x ∼ N(0, Id) and y = hTx+ φ, for φ ∼ N(0, σ2) (with x, φ independent). Since
we typically make several measurements, we write this (likelihood) relation in matrix form:
y = Xh+ φ, where y ∈ Rm (with m the number of measurements); φ ∼ N(0, σ2Im); and X
is an m-by-d matrix each of whose rows denotes a random vector x ∼ N(0, Id). This means
that the matrix X is random (a fact of key importance in our discussion below). We have:


P[φ] ∼ exp

{
− 1

2σ2 ‖φ‖22
}

(noise)

P[h] ∼ exp
{
− 1

2σ̄2 ‖h− µ̄‖22
}

(prior)

P[y|X,h] ∼ exp
{
− 1

2σ2 ‖y −Xh‖22
}

(likelihood)

In iterated Bayesian linear regression, the t-th learner receives her data from learner t− 1.
Here, learner 0 is treated just like any other agent, except that his prior P[h] ∼ N(µ0, σ̄

2Id)
is the distribution to be learned iteratively. Since sampling from the prior is independent of
X, Bayesian updating gives the posterior N(µt,Σt), where

P[h|X, y] = P[h]P[y|X,h]/P[y|X] ∼ exp
{
− 1

2σ̄2 ‖h− µ̄‖
2
2 −

1
2σ2 ‖y −Xh‖

2
2

}
.
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Completing the square in the usual fashion shows that the posterior of learner t is given by: Σt =
(
σ̄−2Id + σ−2XT

t Xt

)−1 ;

µt = Σt
(
σ̄−2µ̄+ σ−2XT

t yt
)
,

(23)

where (Xt, yt) is the data gathered by learner t from her predecessor: specifically, yt = Xth+φt,
where h is collected from the (t − 1)-th learner by sampling his posterior distribution
N(µt−1,Σt−1).

I Theorem 5. Given any small enough δ, ε > 0, the following sample size sequence for
iterated Bayesian linear regression ensures that ‖Eµt − µ0‖2 ≤ δ with probability greater than
1− ε:

mt = Dc
‖µ0 − µ̄‖2

δ

(σ
σ̄

)2
t1+c +Dc d log t+ 1

ε
,

for an arbitrarily small c > 0 and a constant Dc that depends only on c.

Proof. We proceed in two steps: first, we show that to keep Eµt arbitrarily close to µ0 for
all t hinges on spectral properties of certain random matrices; second, we call on known facts
about the singular values of random Gaussian matrices to translate the spectral condition
into a high-probability event. The proof unfolds as a series of simple relations, which we
state first and then demonstrate. The first one follows directly from (23):

Eµt = (Id +Mt)−1 (µ̄+Mt Eµt−1) , where Mt :=
(
σ̄

σ

)2
XT
t Xt. (24)

Note that (24) is a randomized recursive relation since the data points X1, X2, . . . are
themselves random. We note that all the matrices whose inverses are taken are positive
definite, hence nonsingular. To move on to our second relation, we define the matrix

Qt := (Id +Mt)−1Mt(Id +Mt−1)−1Mt−1 · · · (Id +M1)−1M1,

for t > 0, with Q0 = Id, and prove by induction that

Eµt = Qtµ0 + (Id −Qt)µ̄. (25)

The base case is obvious so we assume that t > 0: by (24),

Eµt = (Id +Mt)−1(µ̄+Mt Eµt−1)
= (Id +Mt)−1(µ̄+MtQt−1µ0 +Mt(Id −Qt−1)µ̄)
= (Id +Mt)−1MtQt−1µ0 + (Id +Mt)−1(Id +Mt(Id −Qt−1))µ̄
= Qt µ0 + (Id − (Id +Mt)−1MtQt−1)µ̄,

which proves (25). Our next goal is to bound the information decay ‖Eµt−µ0‖2. To do that,
we investigate the spectral norm of the matrix Id −Qt, which leads to our third relation. We
prove by induction that, for t > 0,

‖Id −Qt‖2 ≤
t∑

s=1
‖As‖2, (26)
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where As := (Id + Ms)−1. For t = 1, Q1 = (Id + M1)−1M1 = Id − (Id + M1)−1 and the
claim follows. If t > 1, then

‖Id −Qt‖2 = ‖(Id −Qt−1) + (Qt−1 −Qt)‖2

≤ ‖Id −Qt−1‖2 + ‖Qt −Qt−1‖2 ≤
t−1∑
s=1
‖As‖2 + ‖Ψ‖2,

where Ψ := (AtMt − Id)Qt−1. Since At(Id + Mt) = Id, we have Ψ = −AtQt−1. Each
matrix Ms is positive semidefinite, so the eigenvalues of (Id + Ms)−1Ms are of the form
λ/(1 + λ), where λ ≥ 0. This shows that all the eigenvalues of Qs are between 0 and 1;
therefore ‖Qs‖2 ≤ 1. The eigenvalues of Id −AtMt are the same as those of At; hence, by
submultiplicativity, ‖Ψ‖2 ≤ ‖At‖2‖Qt−1‖2 ≤ ‖At‖2, which establishes (26).

We are now ready to express the information decay in spectral terms. Pick an arbitrarily
small constant c > 0 and assume that

‖As‖2 ≤
δ

‖µ̄− µ0‖2

( c

1 + c

)(1
s

)1+c
. (27)

By (25), Eµt − µ0 = (Id −Qt)(µ̄− µ0); therefore, by (26),

‖Eµt − µ0‖2 ≤ ‖µ̄− µ0‖2
t∑

s=1
‖As‖2 ≤

δc

1 + c

t∑
s=1

s−1−c

≤ δc

1 + c

(
1 +

∫ ∞
1

x−1−c dx
)

= δ, (28)

The relation says that, on average, the means of any of the agents’ posteriors can be brought
as close to the original mean to be learned as we want. We can turn this into a high-
probability event by using some basic random matrix theory. Recall that Eµt is itself a
random variable whose stochasticity comes from the matrices Xs, which are all drawn from
Gaussians. Because Ms is positive semidefinite,

‖As‖2 ≤ ‖M−1
s ‖2 ≤

(σ/σ̄)2

λmin(XT
t Xt)

≤
( σ/σ̄

σ1(Xt)

)2
, (29)

which gives us a relation between the spectral norm of (Is +Ms)−1 and the smallest singular
value σ1(Xt) of an mt-by-d matrix Xt whose elements are drawn iid from N(0, 1). The
asymptotic behavior of σ1(Xt) for large values of mt has been extensively studied within the
field of random matrix theory [5, 6, 17]. Following Theorem II.13 in (Davidson & Szarek [5]),
for any γt > 0,

P[σ1(Xt) <
√
mt −

√
d− γt] ≤ e−γ

2
t /2.

We use C below as a generic constant large enough to satisfy the inequalities where it
appears. Setting γt = C

√
log((t+ 1)/ε) ensures that

∑
t>0 e

−γ2
t /2 < ε, hence that σ1(Xt) <√

mt −
√
d − γt holds for all t with probability less than ε. With our setting of mt, this

means that, for all t > 0,

P
[
σ1(Xt) ≥

√
mt

2

]
> 1− ε. (30)

Assuming the event in (30), it follows from (29) and our setting of mt that

‖At‖2 ≤
4
mt

(σ
σ̄

)2
≤ δ

‖µ̄− µ0‖2

( 4
Dc

)(1
t

)1+c
;

hence (27) for Dc large enough. By (28, 30), this proves that, with probability greater than
1− ε, ‖Eµt − µ0‖2 ≤ δ for all t > 0, which completes the proof. �
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Appendix

The two forms of the function dRS in (3) make it clear that 0 ≤ dRS(a, b) ≤ 1 and
dRS(a, b) = 0 if and only if a and b are identical. We easily check that dRS makes the simplex
S of distributions over D into a metric space. Indeed, dRS(·, ·) is obviously symmetric, and
dRS(a, b) = 0 implies that a = b. To check the triangular inequality, notice that

dRS(a, b) =

√√√√1−
( s∑
i=1

√
aibi

)2
= sin〈

√
a,
√

b 〉, (31)

where 〈
√

a,
√

b 〉 is the angle between the unit vectors
√

a and
√

b, using the notation√
v = (√v1, . . . ,

√
vs). To prove that dRS(a, b) + dRS(b, c) ≥ dRS(a, c) for any a, b, c ∈

S, we denote by α, β, γ the corresponding angles in that order, ie, α = 〈
√

a,
√

b 〉, etc.
The coordinates in a, b, c are nonnegative; therefore 0 ≤ α, β, γ ≤ π/2. These form the
three angles at the origin of a tetrahedron with a vertex at the origin; therefore, by the
triangular inequality in spherical geometry, α+ β ≥ γ. If α+ β ≤ π

2 , then sinα+ sin β ≥
sinα cosβ + cosα sin β = sin(α + β) ≥ sin γ. On the other hand, if α + β > π/2, then
sinα+ sin β = 2 sin α+β

2 cos α−β2 ≥ 2 sin π
4 cos π4 = 1 ≥ sin γ, which establishes the triangular

inequality.

4.0.0.1 Relation to the Euclidean distance.

Shrinking the simplex S by a tiny amount, we define Sε := {a ∈ S : ε ≤ ai ≤ 1− ε} and
note that

dE(a, b) := ‖a− b‖2 =

√√√√ s∑
i=1

(
√
ai −

√
bi)2(
√
ai +

√
bi)2.

It follows that, for a, b ∈ Sε,

1
2dE(a, b) ≤ dE(

√
a,
√

b ) ≤ 1
2
√
ε
dE(a, b). (32)

On the other hand, ‖
√

a‖2 = ‖
√

b‖2 = 1, so the vectors
√

a and
√

b form an isosceles triangle;
hence

dE(
√

a,
√

b ) = 2 sin 1
2 〈
√

a,
√

b〉 = sin〈
√

a,
√

b〉
cos 1

2 〈
√

a,
√

b〉
= dRS(a, b)

cos 1
2 〈
√

a,
√

b〉
.

Since 0 ≤ 〈
√

a,
√

b 〉 ≤ π
2 ,

dRS(a, b) ≤ dE(
√

a,
√

b ) ≤
√

2 dRS(a, b).

Together with (32) this shows that, for any a, b ∈ Sε,

1
2
√

2
dE(a, b) ≤ dRS(a, b) ≤ 1

2
√
ε
dE(a, b), (33)

which shows that the Euclidean distance and the metric dRS are equivalent in Sε.
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4.0.0.2 Relation to other distances.

The metric dRS is related to the Hellinger and Bhattacharyya distances. Writing C(a, b) =∑s
i=1
√
aibi [4], then dRS(a, b) =

√
1− C(a, b)2. The Hellinger distance is defined as

dH(a, b) =
√

1− C(a, b) [10], while the Bhattacharyya distance is defined as dB(a, b) =
− lnC(a, b) [3]. The total variation distance dTV is half the `1-norm; therefore dTV (a, b) ≤
1
2
√
s dE(a, b). Combining these observations with (33) establishes (4):


dH =

√
1−

√
1− d2

RS ;

dB = − 1
2 ln(1− d2

RS) ;

dTV ≤
√

2s dRS .
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