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10 THE DISCREPANCY METHOD IN
COMPUTATIONAL GEOMETRY

B. Chazelle

INTRODUCTION

Discrepancy theory investigates how uniform nonrandom structures can be. For
example, given n points in the plane, how should we color them red and blue so
as to minimize the difference between the number of red points and the number of
blue ones within any disk? Or, how should we place n points in the unit square
so that the number of points that lie within any given triangle in the square is as
close as possible to n times the area of the triangle? Questions of this nature have
direct relevance to computational geometry for two reasons. One of them is their
close association with the problem of derandomizing probabilistic algorithms. Such
algorithms are often based on random sampling and discrepancy theory provides
tools for carrying out the sampling deterministically. This has led to the intriguing
fact that virtually all of the important problems in low-dimensional computational
geometry can be solved as efficiently deterministically as probabilistically. The
second application of discrepancy theory to computational geometry is in the area
of lower bounds for multidimensional searching. The complexity of these problems
is often tied to spectral properties of geometric set systems, which themselves lie
at the heart of geometric discrepancy theory.

10.1 VC-DIMENSION THEORY

GLOSSARY

Set system: A pair Σ = (X,R), where X is a set and R is a collection of subsets
of X , is called a set system. The terminology geometric set system refers to the
case where X ⊂ R

d and each R ∈ R is of the form X ∩ f(C), where C is a
fixed region of R

d (eg, a simplex) and f is any member of a fixed group F of
transformations (eg, a rotation).

VC-dimension: Given Y ⊆ X , the set system induced by Y is of the form
(Y,R|Y ), where R|Y = { Y ∩ R |R ∈ R}. The VC-dimension of Σ is the max-
imum size of any Y such that S|Y = 2Y . For example, the VC-dimension of
the infinite set system formed by points in R

2 and halfplanes is 3. The shatter
function πR(m) of a (usually infinite) set system Σ = (X,R) is the maximum
number of subsets in the set system (Y,R|Y ) induced by any Y ⊆ X of size m.
If πR(m) is bounded by cmd, for some constants c, d > 0, then the set system is
said to have a shatter function exponent of at most d.
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Dual set system: The set system Σ∗ = (X∗,R∗), where X∗ = R, R∗ =
{ Rx |x ∈ X }, and Rx = { R ∈ R |x ∈ R }, is called the dual set system of Σ.
The shatter function of Σ∗ is called the dual shatter function of Σ.

Discrepancy: The incidence matrix A of a finite set system Σ = (X,R) is the
matrix whose |X | columns (resp. |R| rows) are indexed by the elements of X
(resp. R): Aij is 1 if the i-th set of R contains the j-th element of X , and 0
otherwise. The (red-blue) discrepancy of Σ is minx∈{−1,1}|X| ‖Ax‖∞.

The concept of VC-dimension was introduced by Vapnik and Chervonenkis [VC71].
The relation between VC-dimension and shatter function is a key component of the
theory.

LEMMA 10.1.1 [VC71, Sau72, She72]

If the shatter function exponent is O(1), then so is the VC-dimension. Conversely,
if the VC-dimension is d ≥ 1 then, for any m ≥ d, πR(m) < (em/d)d.

LEMMA 10.1.2 [Ass83]

If a set system has VC-dimension d, then its dual has VC-dimension less than
2d+1.

Any set system of n elements and n sets has discrepancy O(
√

n ), and this bound
is sometimes tight. If the VC-dimension is bounded, the discrepancy falls below
the

√
n barrier. The bounds below are stated in terms of the shatter function

exponent. In view of Lemma 10.1.1, we can replace the exponent by the VC-
dimension if we wish. Matoušek, Welzl, and Wernisch [MWW93] established a
bound of O(n1/2−1/2d(log n)1+1/2d) on the discrepancy of set systems with shatter
function exponent d. This was improved to O(n1/2−1/2d) by Matoušek:

THEOREM 10.1.3 [Mat95b]

The discrepancy of a set system of n elements with shatter function exponent d > 1
is O(n1/2−1/2d), which is optimal for d ≥ 2.

Similar bounds can be obtained in terms of the dual shatter function. Ma-
toušek, Welzl, and Wernisch [MWW93] proved a bound of O(n1/2−1/2d

√
log n )

on the discrepancy of set systems with dual shatter function exponent d. It is
surprising that an extra

√
log n should be needed. Optimality was shown by Ma-

toušek [Mat97] for the cases d = 2, 3, and by Alon, Rónyai, and Szabó [ARS99] for
d > 3.

THEOREM 10.1.4 [MWW93]

The discrepancy of a set system of n elements with dual shatter function exponent
d > 1 is O(n1/2−1/2d

√
log n ), which is optimal for d ≥ 2.
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10.2 SAMPLING IN BOUNDED VC-DIMENSION

GLOSSARY

ε-Net: Given a finite set system (X,R) and any 0 < ε < 1, a set N ⊆ X is called
an ε-net for (X,R) if N ∩ R 6= ∅, for any R ∈ R with |R|/|X | > ε.

ε-Approximation: Given a finite set system (X,R) and any 0 < ε < 1, a set
A ⊆ X is called an ε-approximation for (X,R) if, for any R ∈ R,

∣∣∣∣
|R|
|X | − |A ∩ R|

|A|

∣∣∣∣ ≤ ε.

Product set system: Given two finite set systems Σ1 = (X1,R1) and Σ2 =
(X2,R2), the product set system Σ1 ⊗ Σ2 is defined as (X1 × X2, T ), where T
consists of all subsets T ⊆ X1 × X2 such that each set of the form T 1

x2
= { x ∈

X1 | (x, x2) ∈ T } belongs to R1 and, similarly, T 2
x1

= { x ∈ X2 | (x1, x) ∈ T }
belongs to R2.

To sample a set system Σ is to extract a (small) subset of the elements whose
intersection with any set R of Σ is a good predictor of the size of R. This is the
idea behing an ε-approximation. A weaker version of sampling, the ε-net, requires
only that large enough sets R be intersected by the sample. The key result in
VC-dimension theory is that if Σ has bounded VC-dimension, then for any given
level of accuracy, the sample size need not depend on the size of the set system.
This is rather counterintuitive. It says, for example, that if we want to estimate
how many people live within 1 mile of a post office and, to go about it, we opt to
pick a sample of the population, solve the problem for the sample, and then scale
up the answer appropriately, then the same sample size works just as well whether
the country is France or India!

LEMMA 10.2.1

Let X1, X2 be disjoint subsets of X of the same size, and let Ai be an ε-approx-
imation for the subsystem induced by Xi. If |A1| = |A2|, then A1 ∪ A2 is an
ε-approximation for the subsystem induced by X1 ∪ X2.

LEMMA 10.2.2

If A is an ε-approximation for (X,R), then any ε′-approximation (resp. -net) for
(A,R|A) is also an (ε + ε′)-approximation (resp. -net) for (X,R).

A greedy approach to sampling yields an effective algorithm for arbitrary set
systems. Writing ε = 1/r, choose some 1 ≤ r ≤ n. First, remove all sets R ∈ R of
size at most n/r. Second, initialize the set N to ∅. Next, find the element x ∈ X
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that belongs to the most sets of R (in case of a tie, any one will do) and add it to
N . Remove from R every set that contains x, discard x, and iterate in this fashion
until R is empty. An elementary analysis shows that this produces a (1/r)-net
for (X,R) of size O(r log |R|). This was proven independently by Johnson [Joh74]
and Lovász [Lov75]. A slightly more complicated, “weigted” version of the greedy
algorithm, due to Chazelle [Cha00], gives an analog result for (1/r)-approximations.

THEOREM 10.2.3

Given a set system (X,R), where |X | = n and |R| = m, for any 1 ≤ r ≤ n, it
is possible to find, in time O(nm), a (1/r)-net for (X,R) of size O(r log m) and a
(1/r)-approximation for (X,R) of size O(r2 log m).

The size of the sample depends (albeit weakly) on the size of the set system. In
the presence of bounded VC-dimension, however, this dependency magically disap-
pears. Again, we will base our results not on the VC-dimension but on the shatter
function exponent d (but the same results hold if d denotes the VC-dimension).
Geometric set systems often are defined implicitly and are accessible via an ora-
cle function that takes any Y ⊆ X as input and returns the list of sets in R|Y
(each set represented explicitly). We assume that the time to complete this task
is O(|Y |d+1), which is linear in the maximum possible size of the oracle’s output.
The existence of such an oracle is quite realistic: For example, in the case of points
and disks in the plane, we have d = 3, and so this assumes that, given n points, we
can enumerate all subsets enclosed by a disk in time O(n4). To do this, enumerate
all k-tuples of points (k ≤ 3) and, for each tuple, find which points lie inside the
smallest disk enclosing the k points.

THEOREM 10.2.4

Given a set system (X,R) of shatter function exponent d, for any any r ≥ 2, a
(1/r)-approximation for (X,R) of size O(dr2 log dr) and a (1/r)-net for (X,R) of
size O(dr log dr) can be computed in time O(d)3d(r2 log dr)d|X |.

A randomized construction of ε-approximations in bounded VC-dimension was
given by Vapnik and Chervonenkis [VC71]. The deterministic construction cited
above is due to Chazelle and Matoušek [CM96]. Earlier influential work can be
found in [CF90, Mat90, Mat91, Mat95a]. The bound on the size of ε-nets was
established by Haussler and Welzl [HW87]. The running time for computing a
(1/r)-net was improved to O(d)3d(r log dr)d|X | by Brönnimann, Chazelle, and Ma-
toušek [BCM99], using the concept of a sensitive ε-approximation.

For fixed d, Komlós, Pach, and Woeginger [KPW92] showed that the bound
of O(r log r) for (1/r)-nets cannot be improved in general (see a nice discussion
in [PA95]). The situation is different with ε-approximations, however, for which
Theorems 10.1.3 and 10.1.4 can be put to use. Matoušek, Welzl, and Wernisch
proved the following:

THEOREM 10.2.5 [MWW93]

Let (X,R) be a set system of VC-dimension d > 1. There exists a (1/r)-approximation
for (X,R) of size O(r2−2/(d+1)(log r)2−1/(d+1)), for any r ≥ 2.

The log factor can be removed by appealing to Theorem 10.1.3.
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THEOREM 10.2.6 [MWW93]

Let (X,R) be a set system with dual shatter function exponent d > 1. There
exists a (1/r)-approximation for (X,R) of size O(r2−2/(d+1)(log r)1−1/(d+1)), for
any r ≥ 2.

Given n lines in the plane, we can use an ε-approximation to estimate how
many lines cut through an arbitrary line segment. Suppose that, instead, we wish
to estimate the number of vertices in the induced arrangement that fall within an
arbitrary triangle. Product set systems allow us to do that. Let Σ1 be the set
system induced by n blue lines in the plane and the set of all line segments: a set of
the system is the subset of blue lines intersected by a given segment. We define Σ2

similarly with n red lines. The product Σ1 ⊗ Σ2 is a set system (Z, T ), where Z is
the set of red-blue vertices of the induced arrangement (assuming general position).
A set of Σ1 ⊗ Σ2 is any subset T of Z such that, along any (blue or red) line `, the
vertices of T incident to ` (if any) appear consecutively among the red-blue vertices
of `. This suggests we can use ε-approximations to, say, estimate how many red-blue
vertices fall in an arbitrary triangle, or even an arbitrary convex region. One must
be careful, however. The product of two set systems with bounded VC-dimension
might not itself have bounded VC-dimension. Indeed, any bichromatic matching
of the lines gives a collection of n vertices, any of whose 2n subsets is a valid set
of T . Although the product does not have bounded VC-dimension, it so happens
that sampling in it is still possible: that is the beauty of product set systems.

LEMMA 10.2.7

Given any 0 ≤ εi ≤ 1, let Ai be an εi-approximation for a set system Σi, for
i = 1, 2. Then, the Cartesian product A1 × A2 is an (ε1 + ε2)-approximation for
Σ1 ⊗ Σ2.

The product operation is associative, and the theorem can be extended to
multiple products of set systems. The notion of product set system was introduced
by Brönnimann, Chazelle, and Matoušek, who also proved:

LEMMA 10.2.8 [BCM99]

Given an ε-approximation A for a set system Σ, the d-fold Cartesian product
A × · · · × A is a (dε)-approximation for the d-fold product Σ ⊗ · · · ⊗ Σ.

One of the most important applications of the theorem above is to counting
vertices in an arrangement of hyperplanes in R

d. We consider the set system
Σ = (H,R) formed by a set H of hyperplanes in R

d, where each R ∈ R is the
subset of H intersected by an arbitrary line segment. Given a convex body σ (not
necessarily full-dimensional), consider the arrangement formed by H within the
affine span of σ, ie, the lowest-dimensional flat that contains σ, and let V (H,σ) be
the set of vertices of this arrangement that lie inside σ.

THEOREM 10.2.9 [Cha93, BCM99]

Given a set H of hyperplanes in R
d in general position, along with an ε-approximation

A for Σ = (H,R), for any convex body σ of dimension k ≤ d,

∣∣∣∣
|V (H,σ)|

|H|k − |V (A, σ)|
|A|k

∣∣∣∣ ≤ ε.
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10.3 GEOMETRIC ALGORITHMS

GLOSSARY

ε-Cutting: Given a set H of n hyperplanes in R
d and ε > 0, a collection C of

closed full-dimensional simplices (some of them unbounded) is called an ε-cutting
if: (i) their interiors are pairwise disjoint, and together they cover R

d; (ii) the
interior of any simplex of C is intersected by at most εn hyperplanes of H.

Simplicial partition: Given a finite set P ⊂ R
d, a collection {(Pi, Ri)} is a

simplicial partition, if (i) the Pi’s partition P and (ii) each Ri is a relatively
open simplex enclosing Pi. The Ri’s can be of any dimension and need not be
disjoint, and Pi need not be equal to P ∩ Ri. We say that a hyperplane cuts Ri

if it intersects, but does not contain, Ri. The maximum number of Ri’s that a
single hyperplane can cut is the cutting number of the simplicial partition.

Partition tree: Given a finite set P ⊂ R
d, a partition tree for P is a rooted tree

T whose root is associated with the point set P . The set P is partitioned into
subsets P1, . . . , Pm, and each Pi is associated with a distinct child vi of the root.
There is a convex open set Ri, called the region of vi, that contains Pi. The
regions Ri are not necessarily disjoint. If |Pi| > 1, the subtree rooted at vi is
defined recursively with respect to Pi.

Point location: Preprocess an arrangement of n hyperplanes in R
d so that, given

a query point, one can quickly find the face of the arrangement that contains the
point. Note that the face need not be d-dimensional. The complexity of a point
location algorithm is measured by the query time and the amount of storage
needed for the data structure. The time it takes to do the preprocessing is also
of importance.

Simplex range searching: Preprocess a set P of n points in R
d so that, given

a query (closed) simplex σ, the size of P ∩ σ can be quickly evaluated. Simplex
range searching refers to a slight generalization of the problem where weights
in an additive group or semigroup are assigned to the points and the answer
to a query is the sum of all of the weights within σ. This framework allows us
to model both the counting and reporting versions of the problem, the latter
requiring an explicit enumeration of the points in σ.

CUTTINGS

Clarkson [Cla87] and Haussler and Welzl [HW87] were among the first to in-
troduce the notion of sparsely intersected space partitions for divide and conquer.
The definition of an ε-cutting is due to Matoušek [Mat91]. Near-optimal ε-cutting
constructions were given found in two dimensions [Aga90, Aga91] and in arbitrary
dimension [Mat90, Mat91, Mat95a] (in any dimension). The optimal ε-cutting con-
struction cited below is due to Chazelle. It simplified an earlier design by Chazelle
and Friedman to [CF90].



The discrepancy method in computational geometry 7

THEOREM 10.3.1 [Cha93]

Given a set H of n hyperplanes in R
d, for any r > 0, there exists a (1/r)-cutting for

H of size O(rd), which is optimal. The cutting, together with the list of hyperplanes
intersecting the interior of each simplex, can be found deterministically in O(nrd−1)
time.

The standard proof of the theorem is based on a hierarchical construction of
independent interest. Roughly, the cutting sought is the last one in a sequence of
cuttings C0, . . . , Cm such that (i) C0 is of constant size; (ii) for k > 0, each simplex of
Ck is enclosed in a unique simplex of Ck−1, which itself contains at most a constant
number of simplices of Ck; and (iii) for some constant c > 0, Ck is a (1/ck)-cutting
of size O(cdk).

The simplest application of cuttings is point location in an arrangement of
hyperplanes. Consider n hyperplanes in R

d. Given a query point, how fast can
we find the cell (or lower-dimensional face) of the arrangement that contains the
point? Assuming general position for simplicity, we set r = n in the theorem. From
the nesting structure of C0, C1, etc, we can locate the query point in Ck (ie, find the
simplex that contains it) in constant time once we know its location within Ck−1.

THEOREM 10.3.2 [Cha93]

Point location among n hyperplanes can be done in O(log n) query time, using
O(nd) preprocessing.

A nice application of cuttings is to the problem of deciding whether there exists
any point/line incidence among n lines and n points in the plane. This is often called
Hopcroft’s problem. A well known construction of Erdős provides an arrangement
of n lines such that at least n of its vertices are each incident to Ω(n1/3) edges.
Choosing these n lines as input to Hopcroft’s problem and placing the n points
very near the high-degree vertices suggests that to solve the problem should require
checking each point against the Ω(n1/3) lines incident to the nearby vertex, for
a total of Ω(n4/3) time. This argument can be made rigorous [Eri96]; it offers a
strong hint that to beat Ω(n4/3) might not be easy. The bound itself has not been
achieved, although an algorithm by Matoušek, based on a subtle use of cuttings,
comes near.

THEOREM 10.3.3 [Mat93]

To decide whether n points and n lines in the plane are free of any incidence can
be done in time n4/3 2O(log∗ n).

SIMPLEX RANGE SEARCHING

Two essential tools in designing data structures for simplex range searching
are the spanning paths and simplicial partitions. We mention the key results about
these constructions. As a matter of terminology, we say that a hyperplane cuts a
line segment if it intersects it but neither of its endpoints. The n points of a square
grid can easily be connected by a path so that no line cuts more than roughly

√
n

edges. The optimal low-cutting spanning path construction of Chazelle and Welzl
generalizes this result to any set of points in any dimension.
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LEMMA 10.3.4 [CW89]

Any set of n points in R
d can be ordered as p1, . . . , pn, in such a way that no

hyperplane cuts more than cn1−1/d segments of the form pipi+1, for some constant
c > 0.

Simplicial partitions generalize the notion of a spanning path by considering
not just edges, ie, pairs of points, but larger subsets of them. Again, we wish to
minimize the cutting number, ie, the number of subsets a hyperplane can “cut
through.” An optimal construction based on cuttings was discovered by Matoušek.

LEMMA 10.3.5 [Mat92]

Given a set P of n points in R
d (d > 1), for any integer 1 < r ≤ n/2, there exists

a simplicial partition of cutting number O(r1−1/d) such that n/r ≤ |Pi| < 2n/r for
each (Pi, Ri) in the partition.

The partition tree offers a simple solution to simplex range searching. At each
node, store the sum of the weights of the points associated with the corresponding
region. Given a query simplex σ, we proceed to explore all children vi of the root
and check whether σ intersects the region Ri of vi: (i) if the answer is yes, but σ
does not completely enclose the region Ri of vi, then we visit vi and recurse; (ii)
if the answer is yes, but σ completely encloses Ri, we simply add to our current
weight count the sum of the weights within Pi, which happens to be stored at vi;
(iii) if the answer is no, we do not recurse at vi.

Applying Lemma 10.3.5 for a large enough constant r yields a partition tree
construction which allows us to perform simplex range searching in O(n1−1/d+ε)
query time, for any fixed ε > 0, and O(n) storage. A more complex argument by
Matoušek gets rid of the ε term in the exponent.

THEOREM 10.3.6 [Mat92]

Given n points in R
d, there exists a linar size data structure with which simplex

range searching can be performed in time O(n1−1/d) per query.

If superlinear storage is available, then space-time tradeoffs are possible. Chazelle,
Sharir, and Welzl [CSW92] proved that simplex range searching with respect to n
points in R

d can be done in O(n1+ε/m1/d) query time, using a data structure of
size m, for any n ≤ m ≤ nd. Matoušek [Mat93] slightly improved the query time
to O(n(log m/n)d+1/m1/d), for m/n large enough.

POLYHEDRAL ALGORITHMS

We discuss applications of the discrepancy method to convex hulls, Voronoi
diagrams, halfspace intersection, linear programming, and other forms of convex
programming.

The problem of computing the convex hull of n points in R
d reduces by duality

to that of computing the intersection of n halfspaces. In addition, to compute the
Voronoi diagram (or, equivalently, the Delaunay triangulation) of a finite set of
points in Euclidean d-space can be reduced in linear time to a convex hull problem
in (d + 1)-space. An optimal halfspace intersection algorithm can then be used
for both the convex hull and the Voronoi diagram problems. The intersection of n
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halfspaces is a convex polyhedron with O(nbd/2c) faces (and possibly as many as
that).

A simple approach to the halfspace intersection problem is to insert each half-
space one after the other and maintain the current intersection as we go. A simple
data structure consisting of a triangulation of the current intersection polyhedron,
together with a bipartite graph indicating which hyperplane intersects which cell of
the triangulation, is sufficient to make this process efficient. In fact, if the order of
insertion is random, then it follows from the work of Clarkson and Shor [CS89] that,
with the right supporting data structure, the expected complexity of the algorithm
can be made to be optimal. By combining the use of ε-nets, ε-approximations,
ε-cuttings, and product set systems, Chazelle [Cha93] showed how to compute the
intersection deterministically in optimal time (Theorem 10.3.7); his algorithm was
subsequently simplified by Brönnimann, Chazelle, and Matoušek [BCM99].

THEOREM 10.3.7

The polyhedron formed by the intersection of n halfspaces in R
d can be computed

in O(n log n + nbd/2c) time.

As indicated earlier, this result has two important consequences: optimal algo-
rithms for convex hulls and Voronoi diagrams.

THEOREM 10.3.8

The convex hull of a set of n points in R
d can be computed deterministically in

O(n log n + nbd/2c) time.

THEOREM 10.3.9

The Voronoi diagram (or Delaunay triangulation) of a set of n points in E
d can

be computed deterministically in O(n log n + ndd/2e) time.

Linear programming is the problem of minimizing a linear function cT x, subject
to the constraints Ax ≤ b and x ≥ 0, where b is a column vector in R

n and c, x ∈ R
d.

The discrepancy method can be used to derive a deterministic algorithm for linear
programming that is linear in n and singly exponential in d.

The best route to this result is via an abstract formalism, called LP-type pro-
gramming, due to Sharir and Welzl [SW92] (see also [MSW96]) that places the
method in a much more general context and allows for even more surprising appli-
cations. For example, it can be used to prove that, given n points in, say, R

99, the
smallest enclosing ellipsoid can be found in O(n) time.

An LP-type problem is specified by a pair (H,w), where H is a finite set, whose
elements are the “constraints” of the problem, and w is a function mapping certain
subsets of H to a totally ordered universe (W,≤). An element h ∈ H is said to
violate a subset G ⊆ H if w(G) < w(G ∪ {h}). A basis B of G ⊆ H is a minimal
set of constraints with the same cost as G, ie, w(B) = w(G) and w(C) < w(B) for
any C ⊂ B. The combinatorial dimension of (H,w), denoted by δ, is the maximum
size of any basis (of any subset of H). To solve the problem (H,w) is to find a
basis of H. We need a few specific assumptions to make computational sense of
this framework.

1. Monotonicity. Given any F ⊆ G ⊆ H, w(F ) ≤ w(G).

2. Locality. If h ∈ H violates G ⊆ H, then it violates any basis of G.
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3. Oracle. Given a basis B of some subset of H, let V (B) denote the set
of violating constraints. Consider the set system (H,R), where R is the
collection of sets V (B), for all bases B. It is assumed that (H,R) has bounded
VC-dimension, and let γ be its shatter function exponent. In practice, γ is
either equal or larger than δ. Given any subset Y ⊆ H, the oracle computes
the set R|Y in time O(|Y |γ+1).

How does linear programming fit into the LP-type framework? For simplicity of
explanation, we assume that the optimization function is of the form (1, 0, . . . , 0)T x,
and that the system is feasible: (i) H is the set of n closed halfspaces formed by
the inequalities Ax ≤ b; (ii) W = R

d, ordered lexicographically; (iii) given G ⊆ H,
w(G) is the unique (lexicographically) minimal point with nonnegative coordinates
in the halfspaces of G. A halfspace h ∈ H violates G ⊆ H if w(G) < w(G ∪ {h}),
which means that adding h to G would strictly increase the cost of the optimal so-
lution: Geometrically, the hyperplane corresponding to h cuts off the old solution
from the new feasible set. A basis consists of at most d halfspaces, and its combina-
torial dimension is d. Monotonicity says that throwing in additional constraints
cannot improve the optimal solution. Locality means that the violation of a set
of constraints can always be witnessed locally by focusing on any one of its bases.
The oracle can be implemented easily so as to run in time O(|Y |d+1).

Solving an LP-Type Problem

Step 1. Let D = max{δ, γ}. If |H| ≤ cD4 log D, for some suitably
large constant c, compute a basis of H by checking all possible j-tuples
of constraints in the order j = 1, . . . , δ, and picking the first one that is
not violated by any constraint of H.

Step 2. Compute a (1/4D2)-net N for (H,R).

Step 3. Find a basis B of N recursively. Let V be the set of constraints
of H that violate B. If V = ∅, then return B and stop; else add all of
the violating constraints to the set N and repeat Step 3.

Assuming that, given any basis B and a constraint h ∈ H, to test whether h
violates B or not can be done in time DO(D), which is the case in typical applica-
tions, LP-type problems can be solved in time linear in the number of constraints
and exponential in the number of variables. Chazelle and Matoušek proved the
following:

THEOREM 10.3.10 [CM96]

An LP-type problem (H,w) can be solved in time |H|·O(D7 log D)D, where D is the
combinatorial dimension or the exponent in the complexity of the oracle, whichever
is larger.

We mention two applications of this result, also taken from [CM96]. The first
one is a linear deterministic algorithm for linear programming with any fixed num-
ber of variables. The second one addresses the complexity of finding the Löwner-
John ellipsoid of n points in d-space, ie, the smallest ellipsoid enclosing the n points
(which is known to be unique).
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THEOREM 10.3.11

Linear programming with n constraints and d variables can be solved in dO(d)n
time.

THEOREM 10.3.12

The ellipsoid of minimum volume that encloses a set of n points in R
d can be

computed in time dO(d2)n.

LOWER BOUNDS FOR RANGE SEARCHING

An off-line range searching problem is specified by n points and m regions in R
d.

Each point pi is assigned a weight xi chosen in an additive group or semigroup. The
output should be the sum of the weights of the points within each of the m regions.
In the on-line version of the problem, the points and weights are preprocessed into
a data structure and a query is a region whose weight sum constitutes the output.

From the algebraic perspective of adding weights, off-line range searching can
be regarded as the problem of multiplying a fixed matrix by an arbitrary vector.
The n points and m ranges form a set system Σ, whose incidence matrix we denote
by A. The problem is to compute the map x ∈ R

n 7→ Ax ∈ R
m. We use a linear

circuit model with bounded coefficients. This is a directed acyclic graph whose
nodes, the gates, have indegree 2. With each gate g is associated two complex
numbers αg, βg of modulus O(1). The gate g takes two complex numbers a, b as
input and outputs αga + βgb. The size of the circuit is the number of edges. The
complexity of the matrix A is the size of the smallest circuit for computing x 7→ Ax.
We note that the circuit depends only on A and must “work” for any input x ∈ R

n.
It is not hard to prove that the size of the circuit is Ω(log |detB|), where B is

the square submatrix of A whose determinant is largest in absolute value: this is
the classical Morgenstern bound [Mor73]. A stronger result, due to Chazelle, relates
the size of the circuit to the singular values of the matrix A.

SPECTRAL LEMMA [Cha98]
Given an n-by-n 0/1 matrix A, any circuit for computing Ax has size at least

Ω(k log λk), where λk is the k-th largest eigenvalue of AT A.

A slightly weaker formulation of the spectral bound was given by Chazelle and
Lvov [CL00]. It involves only the traces of AT A and its square. This has the
huge advantage that every component of the formula as a simple combinatorial
interpretation: the trace of AT A (of its square) counts the number of ones (resp.
rectangles of ones) in A.

TRACE LEMMA [CL00]
Given an n-by-n 0/1 matrix A, any circuit for computing Ax has size

Ωε

(
n log

(
tr M/n − ε

√
trM2/n

))
,

where M = AT A and ε > 0 is an arbitrarily small constant.

The bounds can be made more general to accommodate a few “help” gates, ie,
gates that can compute any function whatsoever [Cha98]. The spectral and trace
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lemmas have been used to derive bounds for a number of classical range searching
problems. The monotone model of computation, where essentially subtractions
are disallowed, has also been investigated. We mention the main results below
and explain their meaning. The proofs rely heavily on tools from discrepancy
theory; in particular, constructions of low-discrepancy point sets and techniques
from harmonic analysis to analyze the spectrum of geometric incidence matrices.

TABLE 10.3.1 Circuit lower bounds for range searching.

TYPE GENERAL MONOTONE

axis parallel boxes Ω(n log log n) Ω(n(log n/ log log n)d−1)

simplices Ω(n log n) Ω̃(n2−2/(d+1))

lines Ω(n log n) Ω(n4/3)

The table indicates some of the lower bounds known to date. In all cases, the
problem consists of n points in R

d and n regions whose type is indicated in the
first column. The general column refers to the circuit model discussed above.
The proofs were given for αg, βg ∈ {−1, 0, 1} but extend trivially to any complex
numbers with bounded modulus. The bounds for axis-parallel boxes [Cha97] and
simplices [Cha98] were proven in dimension 2 and, hence, in any higher dimension.
In the case of axis-parallel boxes, the lower bound jumps to Ω(n log n) in dimension
Θ(log n) [CL01]. The bound for lines was proven in [CL00].

The monotone column assumes that αg, βg ∈ {0, 1} at each gate of the cir-

cuit. The notation Ω̃(f(n)) refers to Ω(f(n)/(log n)O(1)). The bounds for axis-
parallel boxes and simplices were given in [Cha97]. The bound for lines is mentioned
in [Cha00]. All three bounds are essentially optimal in that model.

It is a fascinating open question how the wide gap between general and non-
monotone complexity is to be resolved. For example, is line range searching in
O(n log n) or O(n4/3)? Most of the lower bounds for the monotone case have
nearly matching upper bounds; in other words, to make effective use of nonmono-
tone computation seems very difficult. This has led to the widely held belief that
the monotone bounds are the true answers. Recent work by Chazelle [Cha01] casts
doubt on this conjecture. Using grid points and line queries that bounce off the
grid boundary, the general complexity of the problem is shown to be Θ(n logn),
while the monotone complexity is Θ(n3/2).

In the on-line version of range searching, the n points are preprocessed so
that, given a query region, the sum of the weights of the points in the region
can be computed quickly. The following bounds, established by Chazelle in the
monotone model, are essentially optimal. Both of them make heavy use of low-
discrepancy constructions for point sets in bounded-dimensional space, as well as
related constructions arising from Heilbronn’s problem [Rot51].

THEOREM 10.3.13 [Cha89]

Given n points in R
d, on-line simplex range searching requires Ω̃(n/m1/d) query

time, using a data structure of size m.
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THEOREM 10.3.14 [Cha90]

Given n points in R
d, on-line range searching with axis-parallel box queries requires

Ω(log n/ log(2m/n))d−1 per query, using a data structure of size m.

FURTHER READING

Many aspects of the discrepancy method, including nongeometric ones, are covered
in [Cha00]. The related topic of derandomization is surveyed in [Mat96]. The
main texts on discrepancy theory are [BC87, Nie92, DT97, Mat99]; see also the
survey [BS95].

RELATED CHAPTERS

Chapter 11: Geometric discrepancy theory and uniform distribution
Chapter 21: Convex hull computations
Chapter 22: Voronoi diagrams and Delaunay triangulations
Chapter 35: Range searching
Chapter 38: Randomized algorithms
Chapter 39: Derandomization
Chapter 44: Linear programming in low dimensions
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[BCM99] Brönnimann, H., Chazelle, B., Matoušek, J. Product range spaces, sensitive sampling,
and derandomization, SIAM J. Comput. 28 (1999), 1552–1575.

[Cha89] Chazelle, B. Lower bounds on the complexity of polytope range searching, J. Amer.

Math. Soc. 2 (1989), 637–666.

[Cha90] Chazelle, B. Lower bounds for orthogonal range searching: II. The arithmetic model,
J. ACM 37 (1990), 439–463.

[Cha93] Chazelle, B. Cutting hyperplanes for divide-and-conquer, Disc. Comput. Geom. 9
(1993), 145–158.



14 B. Chazelle

[Cha93] Chazelle, B. An optimal convex hull algorithm in any fixed dimension, Disc. Comput.

Geom. 10 (1993), 377–409.

[Cha97] Chazelle, B. Lower bounds for off-line range searching, Disc. Comput. Geom. 17 (1997),
53–65.

[Cha98] Chazelle, B. A spectral approach to lower bounds with applications to geometric
searching, SIAM J. Comput. 27 (1998), 545–556.

[Cha00] Chazelle, B. The Discrepancy Method: Randomness and Complexity, Cambridge Uni-
versity Press, hardcover 2000, paperback 2001.

[Cha01] Chazelle, B. The power of nonmonotonicity in geometric searching, Proc. 18th Annual

ACM Symp. Comput. Geom. (2002), 88–93. To appear in Disc. Comput. Geom.

[CF90] Chazelle, B., Friedman, J. A deterministic view of random sampling and its use in
geometry, Combinatorica 10 (1990), 229–249.

[CL00] Chazelle, B., Lvov, A. A trace bound for the hereditary discrepancy, Disc. Comput.

Geom. 26 (2001), 221–231.

[CL01] Chazelle, B., Lvov, A. The discrepancy of boxes in higher dimension, Disc. Comput.

Geom. 25 (2001), 519–524.
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