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Abstract. We recently developed a general bifurcation analysis framework for
establishing the periodicity of certain time-varying random walks. In this work,
we look at the special case of lazy uniform-inflow random walks and show how
a much simpler version of the argument can be used to resolve their analysis. We
also revisit a renormalization technique for network sequences that we introduced
earlier and we propose a few simplifications. This work can be viewed as a gentle
introduction to Markov influence systems.
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1 Introduction

Markov chains have remarkably simple dynamics: they either mix toward a stationary
distribution or oscillate periodically. The periodic regime can be easily ruled out by
introducing self-loops; thus, from a dynamical-systems perspective, Markov chains are
essentially trivial. Not so with time-varying Markov chains [1, 4–12, 14]. We recently
introduced Markov influence systems (MIS ) to model random walks in graphs whose
transition probabilities and topologies change over time endogenously [3]. The presence
of a feedback loop, through which the next graph is chosen as a function of the current
distribution of the walk, plays a crucial role. Indeed, the dynamics ranges over the
entire spectrum from fixed-point attraction to chaos. This stands in sharp contrast to not
only classical Markov chains but also time-varying chains whose temporal changes are
driven randomly [1].

We showed that, if the Markov chains used at each step are irreducible, then the
MIS is almost surely asymptotically periodic [3]. We prove a similar result in the next
section, but for a different family of random walks, called uniform-inflow. Though the
proof borrows much of the architecture of our previous one, it is much simpler and can
be viewed as a gentle introduction to Markov influence systems.
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The main weakness of our bifurcation analysis is to impose topological restric-
tions on the graphs. As a step toward overcoming this limitation, we have developed a
renormalization technique for graph sequences [3]. The motivation was to extend the
standard classification of Markov chain states to the time-varying case. We revisit this
technique in §3 and propose a number of useful simplifications.

2 Time-Varying Random Walks

Recall the definition of a Markov influence system [3]. Let Sn−1 be the probability
simplex

{
x ∈ Rn | x ≥ 0 , ‖x‖1 = 1

}
and let S denote set of all n-by-n row-stochastic

matrices. An MIS is a discrete-time dynamical system with phase space Sn−1, which is
defined by the map f : x> 7→ f (x) := x>S(x), where x ∈ Sn−1 and S is a piecewise-
constant function Sn−1 7→ S over the cells {Ck} of a hyperplane arrangement H within
Sn−1 (fig.1); over the discontinuities h ∩ Sn−1 (h ∈ H), we define f as the identity.1

Fig. 1. The arrangement H consists of three hyperplanes. Each cell Ci in the simplex Sn−1 is
associated with a stochastic matrix defining the map f over it. The figure shows the first two
iterates of x under f . The case |H| = 0 corresponds to an ordinary random walk.

We focus our attention on lazy uniform-inflow random walks: each matrix S(x) is
associated with a probability distribution (p0(x), . . . , pn(x)) ∈ Sn, such that S(x)i j =

p j(x) + δi j p0(x) and δi j is the Kronecker delta. The cases p0(x) = 0, 1 are both trivial,
so we may assume that 0 < p0(x) < 1. Thus, any given S(x) is the transition matrix of a
lazy random walk. We state our main result:

Theorem 1. Every orbit of a lazy uniform-inflow Markov influence system is almost
surely asymptotically periodic.

Note that lazy uniform-inflow random walks are not necessarily irreducible, so the
theorem does not follow from [3].2 In the remainder of this section, we discuss the

1 The discontinuities can also be chosen to be real-algebraic varieties.
2 For example, the lazy random walk specified by the matrix

( 1 0
0.5 0.5

)
is not irreducible. Also,

unlike in [3], we do not require the matrices to be rational.
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meaning of the result and then we prove it. The orbit of x ∈ Sn−1 is the infinite sequence
( f t(x))t≥0 and its itinerary is the corresponding sequence of cells Ci’s visited in the
process. The orbit is periodic if f t(x) = f s(x) for any s = t modulo a fixed integer.
It is asymptotically periodic if it gets arbitrarily close to a periodic orbit over time.
The discontinuities in the map f occur at the intersections of the simplex Sn−1 with the
hyperplanes {x ∈ Rn | a>i x = 1} ofH . The hyperplanes are perturbed into the form a>i x =

1 + δ, for δ ∈ Ω = [−ω,ω] and ω > 0. Assuming that H is in general position, ω can
always be chosen small enough so that the perturbed arrangement remains topologically
invariant over all δ ∈ Ω. Theorem 1 follows from the existence of a set of Lebesgue
measure zero (coverable by a Cantor set of Hausdorff dimension less than one) such
that, for any δ ∈ Ω outside of it, there is a finite set of stable periodic orbits (ie, discrete
limit cycles) such that every orbit is asymptotically attracted to one of them.

It is useful to begin with a few observations about the stochastic matrices involved
in lazy uniform-inflow random walks:

1. The matrix S(x) can be written as

p0(x)I + 1
(
p1(x), . . . , pn(x)

)
(1)

and it has the unique stationary distribution π(x) = 1
1−p0(x)

(
p1(x), . . . , pn(x)

)
. The

family of such matrices is closed under composition. Indeed,

S(x)S(y) = q0I + 1
(
q1, . . . , qn

)
,

where q0 = p0(x)p0(y) and, for i > 0, qi = pi(x)p0(y) + pi(y).

2. Let M be the (finite) set of all the matrices S(x) that arise in the definition of f .
We just saw that p0(x) is multiplicative. In this case, it is equal to the coefficient of
ergodicity of the matrix [13], which is defined as half the maximum `1-distance
between any two of its rows. By our assumption, τ := supx p0(x) < 1. Given
M1, . . . ,Mk ∈ M, if π denotes the stationary distribution of M1 · · ·Mk, then M1 · · ·Mk = qI + (1 − q)1π>

diam`∞

(
Sn−1M1 · · ·Mk

)
= q ≤ τk.

(2)

Let D be the union of the discontinuities (defined by the intersection of the perturbed
hyperplanes with the simplex), for some fixed δ ∈ Ω. Put Zt =

⋃
0≤k≤t f −k(D) and

Z =
⋃

t≥0 Zt and note that Zν = Zν−1 implies that Z = Zν. Indeed, suppose that Zt+1 ⊃ Zt

for t ≥ ν; then, f t+1(y) ∈ D but f t(y) < D for some y ∈ Sn−1; in other words, f ν(x) ∈ D
but f ν−1(x) < D for x = f t−ν+1(y), which contradicts the equality Zν = Zν−1. The key to
periodicity is to prove that ν is finite.3

Lemma 1. There is a constant c > 0 such that, for any ε > 0, there exist an integer
ν ≤ c log(1/ε) and a finite union K of intervals of total length at most ε such that
Zν = Zν−1, for any δ ∈ Ω \ K.

3 The constants in this paper may depend on any of the input parameters, such as the dimen-
sion n, the number of hyperplanes, the hyperplane coefficients, and the matrix elements.
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Proof of Theorem 1. The theorem can be shown to follow from Lemma 1 by using
an argument from [3]. We reproduce the proof here for the sake of completeness. The
polyhedral cells defined by the connected components of the complement of Z = Zν
form the continuity pieces of f ν+1: by continuity, each one of them maps, under f , not
simply to within a single cell of D but actually to within a single cell of Z itself.4 This
in turn implies the eventual periodicity of the symbolic dynamics. Once an itinerary
becomes periodic at time to with period σ, the map f t can be expressed locally by
matrix powers. Indeed, divide t − to by σ and let q be the quotient and r the remainder;
then, locally, f t = gq ◦ f to+r, where g is specified by the stochastic matrix of a lazy,
uniform-inflow random walk, which implies convergence to a periodic point. In fact,
better than that, we know from (2) that the matrix corresponds to a random walk that
mixes to a unique stationary distribution, so the attracting periodic orbits are stable and
there are only a finite number of them.

To complete the proof, we apply Lemma 1 repeatedly, with ε = 2−l for l = 1, 2, . . .
and denote by Kl be the corresponding union of “forbidden” intervals. Define Kl =⋃

j≥l K j and K∞ =
⋂

l>0 Kl; then Leb(Kl) ≤ 21−l and hence Leb(K∞) = 0. Theorem 1
follows from the fact that any δ ∈ Ω outside of K∞ lies outside of Kl for some l > 0. �

As in [3], we begin the proof of Lemma 1 with a discussion of the symbolic dy-
namics of the system. Given ∆ ⊆ Ω, let Lt

∆ denote the set of t-long prefixes of any
itinerary for any starting position x ∈ Sn−1 and any δ ∈ ∆. Fix ρ > 0 and define
Dρ =

{
[kρ, (k + 1)ρ] ∩ Ω | k ∈ Z

}
.

Lemma 2. There is a constant b > 0 such that, for any real ρ > 0 and any integer
T > 0, there exist tρ ≤ b log(1/ρ) and V ⊆ Dρ of size at most bT such that, for any
∆ ∈ Dρ\V, any integer t ≥ tρ, and any σ ∈ Lt

∆, we have
∣∣∣ {σ′ |σ · σ′ ∈ Lt+T

∆

} ∣∣∣ ≤ b.

Proof. Given M1, . . . ,Mk ∈ M, let ϕk(x) = x>M1 · · ·Mk for x ∈ Rn and k ≤ T ; and let
hδ : a>x = 1 + δ be some hyperplane in Rn. Let h∆ :=

⋃
δ∈∆ hδ and X = x + ρ[−1, 1]n, for

x ∈ Sn−1. We define an exclusion zone U outside of which the T iterated images of X
can meet h∆ at most once. This is a general position claim much stronger than the one
we used in [3] and closer in spirit to a dimensionality argument for planar contractions
from [2] that inspired our approach.

Claim A. For some constant d > 0 (independent of ρ), there exists U ⊆ Dρ of size at
most dT 2 such that, for any ∆ ∈ Dρ\U and x ∈ Sn−1, there are at most one integer k ≤ T
such that ϕk(X) ∩ h∆ , ∅.

Proof. The crux of the claim is that it holds for any probability distribution x. We
assume the existence of two integers j < k ≤ T such that ϕi(X) ∩ h∆ , ∅, for i = j, k
and ∆ ∈ Dρ. We draw the consequences and then negate them in order to rule out the
assumption: this, in turn, specifies the set U. The assumption implies the existence of δ
and x ∈ Sn−1 such that |(x + u)T M1 · · ·M ja− (1 + δ)| ≤ doρ, with ‖u‖∞ ≤ ρ and constant

4 Indeed, if that were not the case, then some x in a cell of Z, thus outside of Z, would be
such that f (x) ∈ Z = Zν−1. It would follow that f k(x) ∈ D, for k ≤ ν; hence x ∈ Zν = Z, a
contradiction.
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do > 0. Likewise, we have |(x+u′)T M1 · · ·Mka−(1+δ)| ≤ doρ, with ‖u′‖∞ ≤ ρ. Writing
v = xT M1 · · ·M j, we have |vT a − (1 + δ)| ≤ d′o ρ and |vT M j+1 · · ·Mka − (1 + δ)| ≤ d′o ρ,
for constant d′o dependent on a. By (1), M j+1 · · ·Mk = q0I + 1(q1, . . . , qn), for some
(q0, . . . , qn) ∈ Sn. Since v ∈ Sn−1, it follows that∣∣∣ q0vT a + (q1, . . . , qn)a − (1 + δ)

∣∣∣ ≤ d′o ρ;

hence |δ+1− (q1, . . . , qn)a/(1−q0))| ≤ 2d′oρ/(1−τ). To rule out the previous condition,
we must keep δ outside of O(1/(1− τ)) intervals ofDρ. The claim follows from the fact
that the number of products M j+1 · · ·Mk is quadratic in T . �

To complete the proof of Lemma 2, we define V as the union of the sets U formed by
applying Claim A to each one of the hyperplanes hδ ofH and every possible sequence
of T matrices inM; hence |V | ≤ bT for constant b > 0. We fix ∆ ∈ Dρ\V and consider
the (lifted) phase space S×∆ for the dynamical system induced by the map f↑ :

(
x>, δ) 7→

( x>S(x), δ
)
. A continuity piece Υt for f t

↑
is a maximal polyhedron within Sn−1 × ∆ over

which the t-th iterate of f↑ is linear.
Given any sequence M1, . . . ,Mk inM, recall from (2) that diam`∞

(
Sn−1M1 · · ·Mk

)
≤

τk. This implies the existence of an integer tρ ≤ b log(1/ρ) (raising the previous constant
b if necessary) such that, for any t ≥ tρ, f t

↑
(Υt) ⊆ (x + ρIn) × ∆, for some x = x(t, Υt) ∈

Sn−1. Consider a nested sequence Υ1 ⊇ Υ2 ⊇ · · · . Note that Υ1 is a polyhedral cell
within Sn−1 × ∆ and f k

↑
(Υk+1) ⊆ f k

↑
(Υk). There is a split at k if Υk+1 ⊂ Υk. Observe that,

by Claim A, given any t ≥ tρ, there are at most a constant number b1 of splits between
t and t + T (at most one per hyperplane of H). It follows that the number of nested
sequences is bounded by the number of leaves in a tree of height T with at most b1
nodes of degree greater than 1 along any path. Lemma 2 follows from the fact that no
node has more than a constant number of children. �

Proof of Lemma 1. We use the notation of Lemma 2 and set T to a large enough constant.
Fix ε > 0 and set ρ = 1

2ε/|V |, and ν = tρ + kT , where k = T log(1/ε). Since tρ ≤
b log(1/ρ), note that ν = O(log 1/ε). Let P = M1 · · ·Mν, where M1, . . . ,Mν is the matrix
sequence matching an element of Lν

∆
, for ∆ ∈ Dρ \V . By (2), diam`∞

(
Sn−1 P

)
≤ τν, so

there is a point xP such that, given any point y ∈ Sn−1 whose ν-th iterate f ν(y) = zT is
specified by zT = yT P, we have ‖xP − z‖∞ ≤ τν. Given a discontinuity hδ : a>i x = 1 + δ
of the system, the point z lies on one side of hδ if and only if xP lies on the (relevant)
side of some hδ′ , for |δ′ − δ| ≤ c1τ

ν, for constant c1 > 0. Thus, adding an interval of
length c2τ

ν to V , for constant c2 large enough (independent of T ), it is the case that, for
any h ∈ H , it holds that, for all y ∈ Sn−1, the ν-th iterates f ν(y) specified by P all lie
strictly on the same side of hδ, for any δ ∈ ∆. We repeat this operation for every string
Lν
∆

and each one of the (at most) 1/ρ intervals ∆ ∈ Dρ \V . This increases the length
Leb(V) covered by V from its original ρ|V | = ε/2 to ρ|V | + c2|Lν∆|τ

ν/ρ ≤ ε. This last
inequality follows from:
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(ρε)−1|Lν∆| ≤ (ρε)−1ctρ
3 bk [ for constant c3 independent of T ]

≤ 2ctρ
3 bk+T 4k/T [ 1/ρε ≤ 2bT /ε2 ≤ 2bT 4k/T ]

≤ 2cb2k
3 bk+T 4k/T [ tρ ≤ b log(1/ρ) ≤ b2T log(1/ε) ]

≤ T k ≤ τ−ν/(2c2). [ for T large enough ]

Thus, for any δ ∈ Ω outside a set of intervals covering a length at most ε, no f ν(x) lies
on a discontinuity. It follows that, for any such δ, we have Zν = Zν−1. �

This completes the proof of Theorem 1.

3 Revisiting Network Sequence Renormalization

In [3], we proposed a mechanism for expressing an infinite sequence of networks as a
hierarchy of graph clusters. The intention was to generalize to the time-varying case the
standard classification of the states of a Markov chain. We review the main parts of this
“renormalization” technique and propose a number of simplifications along the way.
Our variant maintains the basic division of the renormalization process into temporal
and topological parts, but it simplifies the overall procedure. For example, the new
grammar includes only three productions, as opposed to four.

Throughout this discussion, a digraph is a directed graph with vertices in [n] :=
{1, . . . , n} and a self-loop attached to each vertex. Graphs and digraphs (words we use
interchangeably) have no multiple edges. A digraph sequence g = (gk)k>0 is an ordered
(possibly infinite) list of digraphs over the same vertex set [n]. We define the product
gi × g j as the digraph consisting of all the edges (x, y) with an edge (x, z) in gi and
another one (z, y) in g j for at least one vertex z. The operation × is associative but not
commutative; it corresponds roughly to matrix multiplication. The digraph

∏
≤k g =

g1 × · · · × gk is called a cumulant and, for finite g, we write
∏

g = g1 × g2 × · · ·

The cumulant links all the pairs of vertices that can be joined by a temporal walk
of a given length. The mixing time of a random walk on a (fixed) graph depends on
the speed at which information diffuses and, in particular, how quickly the cumulant
becomes transitive. In the time-varying case, mixing is a more complicated proposition,
but the emergence of transitive cumulants is still what guides the parsing process.

An edge (x, y) of a digraph g is leading if there is u such that (u, x) is an edge of g
but (u, y) is not. The non-leading edges form a subgraph of g, which is denoted by tf (g)
and called the transitive front of g. For example, tf (x → y→ z) is the graph over x, y, z
with the single edge x → y (and the three self-loops); on the other hand, the transitive
front of a directed cycle over three or more vertices has no edges besides the self-loops.
We denote by cl(g) the transitive closure of g: it is the graph that includes an edge (x, y)
for any two vertices x, y with a path from x to y. Note that tf (g) � g � cl(g).

• An equivalent definition of the transitive front is that the edges of tf (g) are precisely
the pairs (i, j) such that Ci ⊆ C j, where Ck denotes the set of vertices l such that
(l, k) is an edge of g. Because each vertex has a self-loop, the inclusion Ci ⊆ C j
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implies that (i, j) is an edge of g. If g is transitive, then tf (g) = g. The set-inclusion
definition of the transitive front shows that it is indeed transitive: ie, if (x, y) and
(y, z) are edges, then so is (x, z). Given two graphs g, h over the same vertex set, we
write g � h if all the edges of g are in h (with strict inclusion denoted by the symbol
≺). Because of the self-loops, g, h � g × h.

• A third characterization of tf (g) is as the unique largest graph h over [n] such that
g × h = g: we call this the maximally-dense property of the transitive front, and it
is the motivation behind our use of the concept. Indeed, the failure of subsequent
graphs to grow the cumulant implies a structural constraint on them. This is the sort
of structure that parsing attempts to tease out.

A graph sequence g = (gk)k>0 can be parsed into a rooted tree whose leaves are
associated with g1, g2, . . . from left to right. The purpose of the parse tree is to track
the creation of new temporal walks over time. This is based on the observation that,
because of the self-loops, the cumulant

∏
≤k g is monotonically nondecreasing with k

(with all references to graph ordering being relative to �). If the increase were strict at
each step, then the parse tree would look like a fishbone. The cumulant cannot grow
forever, obviously, and parsing is what tells us what to do when it reaches its maximum
size. The underlying grammar consists of three productions: (1a) and (1b) renormalize
the graph sequence along the time axis, while (2) creates the hierarchical clustering of
the graphs in the sequence g.

1. Temporal renormalization We express the sequence g in terms of minimal sub-
sequences with cumulants equal to

∏
g. There is a unique decomposition

g = g1, gm1 , . . . , gk, gmk , gk+1

such that
(i) g1 = g1, . . . , gm1−1; gi = gmi−1+1, . . . , gmi−1 (1 < i ≤ k); and gk+1 = gmk+1, . . . .

(ii)
(∏

gi
)
× gmi =

∏
g, for any i ≤ k; and

∏
gi ≺

∏
g, for any i ≤ k + 1.

The two productions below create the temporal parse tree. Unless specified other-
wise, the node corresponding to the sequence g is annotated by the transitive graph
cl(

∏
g), called its sketch.

• Transitivization. Assume that
∏

g is not transitive. We define h = tf (
∏

g)
and note that h ≺

∏
g. It follows from the maximally-dense property of the

transitive front that k = 1. Indeed, k > 1 would imply that
∏

g =
(∏

g2
)
×gm2 �

tf
{(∏

g1
)
×gm1

}
= tf (

∏
g), which would contradict the non-transitivity of

∏
g.

We have g = g1, gm1 , g2 and the production

g −→
(

g1
)

gm1

(
(g2) 4 h

)
. (1a)

In the parse tree, the node for g has three children: the first one serves as the root
of the temporal parse subtree for g1; the second one is the leaf associated with
the graph gm1 ; the third one is a special node annotated with the label 4h, which
serves as the parent of the node rooting the parse subtree for g2. The purpose
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of annotating a special node with the label 4h is to provide an intermediate
approximation of

∏
g2 that is strictly finer than the transitive closure. These

coarse-grained approximations form the sketches. Note that special nodes have
only one child.

• Cumulant completion. Assume that
∏

g is transitive. We have the production

g −→
(

g1
)

gm1

(
g2

)
gm2 · · ·

(
gk

)
gmk

(
gk+1

)
. (1b)

Note that the index k may be infinite and any of the subsequences gi might be
empty (for example, gk+1 if k = ∞).

2. Topological renormalization Network renormalization exploits the fact that the
information flowing across the system might get stuck in portions of the graph for
some period of time: when this happens, we cluster the graphs using topological
renormalization. Each nonspecial node v of the temporal parse tree is annotated
by the sketch cl(

∏
g), where g is the graph sequence formed by the leaves of the

subtree rooted at v. In this way, every path from the root of the temporal parse tree
comes with a nested sequence of sketches h1 � · · · � hl (for both special and non-
special nodes). Pick two consecutive ones, hi, hi+1: these are two transitive graphs
whose strongly connected components, therefore, are cliques. Let V1, . . . ,Va and
W1, . . . ,Wb be the vertex sets of the cliques corresponding to hi and hi+1, respec-
tively. Since hi+1 is a subgraph of hi, it follows that each Vi is a disjoint union of the
form Wi1 ∪ · · · ∪Wisi

.
• Decoupling. We decorate the temporal parse tree with additional trees connect-

ing the sketches along its paths. These topological parse trees are formed by
all the productions of the type:

Vi −→ Wi1 · · ·Wisi
. (3)

A sketch at a node v of the temporal tree can be viewed as an acyclic digraph
over cliques: its purpose is to place limits on the movement of the probability
mass in any temporal random walk corresponding to the leaves of the subtree
rooted at v. In particular, it indicates how decoupling might arise in the system
over certain time intervals specified by the temporal parse tree.

The maximum depth of the temporal parse tree is O(n2) because each child’s cumu-
lant loses at least one edge from its parent’s (or grandparent’s) cumulant. To see why
the quadratic bound is tight, consider a bipartite graph V = L ∪ R, where |L| = |R| and
each pair from L × R is added one at a time as a bipartite graph with a single nonloop
edge; the leftmost path of the parse tree is of quadratic length.

Left-to-right parsing. The temporal tree can be built on-line by scanning the graph
sequence g with no need to back up. Let g′ denote the sequence formed by appending
the graph g to the end of the finite graph sequence g. If g is empty, then the tree T (g′)
consists of a root with one child labeled g. If g is not empty and

∏
g ≺

∏
g′, the root

of T (g′) has one left child formed by the root of T (g) as well as a right child (a leaf)
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labeled g. Assume now that g is not empty and that
∏

g =
∏

g′. Let v be the lowest
internal nonspecial node on the rightmost path of T (g) such that cv × g = cv, where
cu denotes the product of the graphs associated with the leaves of the subtree rooted at
node u of T (g). Let w be the rightmost child of v; note that v and w always exist (the
latter because v is internal). We explain how to form T (g′) by editing T (g).

1. If cv is transitive and w is a leaf. Referring to (1b), v and w correspond to g and
gmk , respectively, and (gk+1) is empty. If g = cv, then (gk+1) remains empty while
gmk+1 = g is created: accordingly, we attach a leaf to v as its new rightmost child
and we label it g. On the other hand, if g ≺ cv, then gk+1 becomes the sequence
consisting of g, so we attach a new rightmost child z to v and then a single leaf to z,
which we label g, so as to form (gk+1).

2. If cv is transitive and w is not a leaf. Again, referring to (1b), v and w correspond
to g and the root of (gk+1), respectively. If cw × g = cv, then g = gmk+1 , so we
attach a leaf to v as its new rightmost child and we label it g. On the other hand,
if cw × g ≺ cv, then g is appended to the sequence gk+1. Because cw ≺ cw × g, we
create a node z with w as its left child and, as its right child, a leaf labeled g: we
attach z as the new rightmost child of v.

3. If cv is not transitive and w is a leaf. Referring to (1a), v and w correspond to g and
gm1 , respectively, and (g2) is empty. We know that g � 4tf (cv) ≺ cv. Accordingly,
we give v a new rightmost child z, which we make into a special node and annotate
with the label 4tf (cv). We attach a leaf to z and label it g.

4. If cv is not transitive and w is not a leaf. It follows then that w is a special node;
let w′ be its unique child. Referring to (1a), v and w correspond to g and the root of
(g2), respectively. Because cw ≺ cw × g � 4tf (cv) ≺ cv, we create a node z with w′

as its left child and, as its right child, a leaf labeled g: we attach z as the new unique
child of the special node w.

Undirected graphs. For our purposes, a graph is called undirected if any edge (x, y) with
x , y comes with its companion (y, x). Consider a sequence of undirected graphs over
[n]. We begin with the observation that the cumulant of a sequence of undirected graphs
might itself be directed; for example, the product g1 × g2 = (x ↔ y z) × (x y ↔ z)
has a directed edge from x to z but not from z to x. We can use undirectedness to
strengthen the definition of the transitive front. Recall that tf (g) is the unique maximal
graph h such that g × h = g. Its purpose is the following: if g is the current cumulant,
the transitive front of g is intended to include any edge that might appear in subsequent
graphs in the sequence without extending any path in g. Since, in the present case, the
only edges considered for extension will be undirected, we might as well require that h
itself (unlike g) should be undirected. In this way, we redefine the transitive front, now
denoted by utf (g), as the unique maximal undirected graph h such that g×h = g. Its edge
set includes all the pairs (i, j) such that Ci = C j. Because of self-loops, the condition
implies that (i, j) is an undirected edge of g. This forms an equivalence relation among
the vertices, so that utf (g) actually consists of disconnected, undirected cliques. To
see the difference with the directed case, we take our previous example and note that
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tf (g1 × g2) has the edges (x, y), (x, z), (y, z), (z, y) in addition to the self-loops, whereas
utf (g1 × g2) has the single undirected edge (y, z) plus self-loops.

As observed in [3], the depth of the parse tree can still be as high as quadratic in n.
Here is a variant of the construction. Given a clique Ck over k vertices x1, . . . , xk at time
t, attach to it, at time t+1, the undirected edge (x1, y). The cumulant gains the undirected
edge (x1, y) and the directed edges (xi, y) for i = 2, . . . , k. At time t + 2, . . . , t + k, visit
each one of the k − 1 undirected edges (x1, xi) for i > 1, using single-edge undirected
graphs with self-loops. Each such step will see the addition of a new directed edge (y, xi)
to the cumulant, until it becomes the undirected clique Ck+1. The quadratic lower bound
on the tree depth follows immediately.
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1. Avin, C., Koucký, M., Lotker, Z. How to explore a fast-changing world (cover time of a simple
random walk on evolving graphs), Proc. 35th ICALP (2008), 121–132.

2. Bruin, H., Deane, J.H.B. Piecewise contractions are asymptotically periodic, Proc. American
Mathematical Society 137, 4 (2009), 1389–1395.

3. Chazelle, B. Toward a theory of Markov influence systems and their renormalization, Proc.
9th ITCS (2018), 58:1-58:18.

4. Condon, A., Hernek, D. Random walks on colored graphs, Random Structures and Algorithms
5 (1994), 285–303.

5. Denysyuk, O., Rodrigues, L. Random walks on directed dynamic graphs, Proc. 2nd Interna-
tional Workshop on Dynamic Networks: Algorithms and Security (DYNAS10), Bordeaux,
France, July, 2010. Also arXiv:1101.5944 (2011).

6. Denysyuk, O., Rodrigues, L. Random walks on evolving graphs with recurring topologies,
Proc. 28th International Symposium on Distributed Computing (DISC), Austin, Texas, USA,
October 2014.
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