
february 2010 | vol. 53 | no. 2 | communications of the acm 97

Faster Dimension Reduction
By Nir Ailon and Bernard Chazelle

Abstract
Data represented geometrically in high-dimensional vec-
tor spaces can be found in many applications. Images and
videos, are often represented by assigning a dimension
for every pixel (and time). Text documents may be repre-
sented in a vector space where each word in the diction-
ary incurs a dimension. The need to manipulate such data
in huge corpora such as the web and to support various
query types gives rise to the question of how to represent
the data in a lower-dimensional space to allow more space
and time efficient computation. Linear mappings are an
attractive approach to this problem because the mapped
input can be readily fed into popular algorithms that oper-
ate on linear spaces (such as principal-component analy-
sis, PCA) while avoiding the curse of dimensionality.

The fact that such mappings even exist became known
in computer science following seminal work by Johnson
and Lindenstrauss in the early 1980s. The underlying
technique is often called “random projection.” The com-
plexity of the mapping itself, essentially the product of a
vector with a dense matrix, did not attract much attention
until recently. In 2006, we discovered a way to “sparsify”
the matrix via a computational version of Heisenberg’s
Uncertainty Principle. This led to a significant speedup,
which also retained the practical simplicity of the stan-
dard Johnson–Lindenstrauss projection. We describe
the improvement in this article, together with some of its
applications.

1. INTRODUCTION
Dimension reduction, as the name suggests, is an algo-
rithmic technique for reducing the dimensionality of data.
From a programmer’s point of view, a d-dimensional array
of real numbers, after applying this technique, is repre-
sented by a much smaller array. This is useful because
many data-centric applications suffer from exponential
blowup as the underlying dimension grows. The infamous
curse of dimensionality (exponential dependence of an
algorithm on the dimension of the input) can be avoided
if the input data is mapped into a space of logarithmic
dimension (or less); for example, an algorithm running
in time proportional to 2d in dimension d will run in lin-
ear time if the dimension can be brought down to log
d. Common beneficiaries of this approach are cluster-
ing and nearest neighbor searching algorithms. One
typical case involving both is, for example, organizing a
massive corpus of documents in a database that allows
one to respond quickly to similar-document searches.
The clustering is used in the back-end to eliminate (near)
duplicates, while nearest-neighbor queries are processed
at the front-end. Reducing the dimensionality of the
data helps the system respond faster to both queries and

data updates. The idea, of course, is to retain the basic
metric properties of the data set (e.g., pairwise distances)
while reducing its size. Because this is technically
impossible to do, one will typically relax this demand and
tolerate errors as long as they can be made arbitrarily
small.

The common approaches to dimensionality reduction
fall into two main classes. The first one includes data-
aware techniques that take advantage of prior information
about the input, principal-component analysis (PCA) and
compressed sensing being the two archetypical examples:
the former works best when most of the information in
the data is concentrated along a few fixed, unknown direc-
tions in the vector space. The latter shines when there
exists a basis of the linear space over which the input can
be represented sparsely, i.e., as points with few nonzero
coordinates.

The second approach to dimension reduction includes
data-oblivious techniques that assume no prior information
on the data. Examples include sketches for data streams,
locality sensitive hashing, and random linear mappings
in Euclidean space. The latter is the focus of this article.
Programmatically, it is equivalent to multiplying the input
array by a random matrix. We begin with a rough sketch of
the main idea.

Drawing on basic intuition from both linear alge-
bra and probability, it may be easy to see that mapping
high-dimensional data into a random lower-dimensional
space via a linear function will produce an approximate
representation of the original data. Think of the direc-
tions contained in the random space as samples from
a population, each offering a slightly different view of
a set of vectors, given by their projection therein. The
collection of these narrow observations can be used to
learn about the approximate geometry of these vectors.
By “approximate” we mean that properties that the task
at hand may care about (such as distances and angles
between vector) will be slightly distorted. Here is a small
example for concreteness. Let a1, …, ad be independent
random variables with mean 0 and unit variance
(e.g., a Gaussian N(0, 1) ). Given a vector x = (x1, …, xd), con-
sider the inner product Z = Si aixi: the expectation of Z is
0 but its variance is precisely the square of the Euclidean
length of x. The number Z can be interpreted as a “random
projection” in one dimension: the variance allows us to
“read off” the length of x. By sampling in this way several
times, we can increase our confidence, using the law of

A previous version of this paper appeared in Proceedings
of the 38th ACM Symposium on Theory in Computing (May
2006, Seattle, WA).

doi:10.1145/1646353.1646379

98 communications of the acm | february 2010 | vol. 53 | no. 2

research highlights

set Rd endowed with a norm, where the norm of a vector
x (written as ||x||p) is given by (Sd

i=1|xi|
p)1/p. The metric is

given by the distance between pairs of vectors x and y
taken to be ||x − y||p.)

•	 Embedding into tree metrics (where the distance
between two nodes is defined by the length of the path
joining them) is useful for solving network design opti-
mization problems.

The JL algorithm linearly embeds an input which is
already in a high-dimensional Euclidean space d

2 into a
lower-dimensional k

p space for any p ³ 1, and admits a naïve
implementation with O(dk) running time per data vector; in
other words, the complexity is proportional to the number
of random matrix elements.

Our modification of JL is denoted FJLT, for Fast-
Johnson–Lindenstrauss-Transform. Although JL often works
well, it is the computational bottleneck of many applica-
tions, such as approximate nearest neighbor searching.24, 27
In such cases, substituting FJLT yields an immediate
improvement. Another benefit is that implementing FJLT
remains extremely simple. Later in Section 3 we show how
FJLT helps in some of the applications mentioned above.
Until then, we concentrate on the story of FJLT itself, which
is interesting in its own right.

1.1. A brief history of a quest for a faster JL
Before describing our result, we present the original JL
result in detail, as well as survey results related to its com-
putational aspects. We begin with the central lemma
behind JL.25 The following are the main variables we will be
manipulating:

X—a set of vectors in Euclidean space (our input data-
set). In what follows, we use the term points and vectors
interchangeably.

n—the size of the set X.
d—the dimension of the Euclidean space (typically

very big).
k—the dimension of the space we will reduce the points

in X to (ideally, much smaller than d).
e—a small tolerance parameter, measuring to what is

the maximum allowed distortion rate of the metric space
induced by the set X in Euclidean m-space (the exact defini-
tion of distortion will be given below).

In JL, we take k to be ce−2 log n, for some large enough

large numbers. Each sample corresponds to a dimension.
The beauty of the scheme is that we can now use it to han-
dle many distances at once.

It is easy to see that randomness is necessary if we hope
to make meaningful use of the reduced data; otherwise
we could be given as input a set of vectors belonging to
the kernel of any fixed matrix, thus losing all information.
The size of the distortion as well as the failure probability are
user-specified parameters that determine the target (low)
dimension. How many dimensions are sufficient? Careful
quantitative calculation reveals that, if all we care about
is distances between pairs of vectors and angles between
them—in other words, the Euclidean geometry of the data—
then a random linear mapping to a space of dimension loga-
rithmic in the size of the data is sufficient. This statement,
which we formalize in Section 1.1, follows from Johnson
and Lindenstrauss’s seminal work.25 The consequence
is quite powerful: If our database contains n vectors in
d dimensions, then we can replace it with one in which data
contains only log n dimensions! Although the original paper
was not stated in a computational language, deriving a naïve
pseudocode for an algorithm implementing the idea in that
paper is almost immediate. This algorithm, which we refer
to as JL for brevity, has been studied in theoretical com-
puter science in many different contexts. The main theme
in this study is improving efficiency of algorithms for high-
dimensional geometric problems such as clustering,37 near-
est neighbor searching,24, 27 and large scale linear algebraic
computation.18, 28, 35, 36, 38

For many readers it may be obvious that these algorithms
are directly related to widely used technologies such as web
search. For others this may come as a surprise: Where does
a Euclidean space hide in a web full of textual documents?
It turns out that it is very useful to represent text as vectors
in high-dimensional Euclidean space.34 The dimension in
the latter example can be as high as the number of words
in the text language!

This last example illustrates what a metric embedding is:
a mapping of objects as points in metric spaces. Computer
scientists care about such embeddings because often it is
easier to design algorithms for metric spaces. The sim-
pler the metric space is, the friendlier it is for algorithm
design. Dimensionality is just one out of many measures of
simplicity. We digress from JL by mentioning a few impor-
tant results in computer science illustrating why embed-
ding input in simple metric spaces is useful. We refer the
reader to Linial et al.29 for one of the pioneering works in
the field.

•	 The Traveling Salesman Problem (TSP), in which
one wishes to plan a full tour of a set of cities, with
given costs of traveling between any two cities is
an archetype of a computational hardness which
becomes easier if the cities are embedded in a metric
space,14 and especially in a low-dimensional Euclidean
one.7, 30

•	 Problems such as combinatorial optimization on
graphs become easier if the nodes of the graph can be
embedded in 1 space. (The space d

p is defined to be the

Figure 1. Embedding a spherical metric onto a planar one is no easy
task. The latter is more favorable as input to printers.

february 2010 | vol. 53 | no. 2 | communications of the acm 99

absolute constant c. We then choose a random subspace of
dimension k in Rd (we omit the mathematical details of what
a random subspace is), and define F to be the operation of
projecting a point in Rd onto the subspace. We remind the
reader that such an operation is linear, and is hence equiva-
lently representable by a matrix. In other words, we’ve just
defined a random matrix. Denote it by F.

The JL Lemma states that with high probability, for all
pairs of points x, y Î X simultaneously,

   �
(1)

This fact is useful provided that k < d, which will be implied
by the assumption

	 �
(2)

Informally, JL says that projecting the n points on a ran-
dom low-dimensional subspace should, up to a distortion of
1 ± e, preserve pairwise distances. The mapping matrix of size
F = k × d can be implemented in a computer program as
follows: The first row is a random unit vector chosen uni-
formly in Rd; the second row is a random unit vector from
the space orthogonal to the first row; the third is a random
unit vector from the space orthogonal to the first two rows,
etc. The high-level proof idea is to show that for each pair
x, y Î X the probability of (1) being violated is order of 1/n2.
A standard union bound over the number of pairs of points
in X then concludes the proof.

It is interesting to pause and ask whether the JL theorem
should be intuitive. The answer is both yes and no. Low-
dimensional geometric intuition is of little help. Take an
equilateral triangle ABC in the plane (Figure 2), no matter
how you project it into a line, you get three points in a row,
two of which form a distance at least twice the smallest one.
The distortion is at least 2, which is quite bad. The problem
is that, although the expected length of each side’s projec-
tion is identical, the variance is high. In other words, the
projected distance is rarely close to the average. If, instead
of d = 2, we choose a high dimension d and project down to
k = ce −2 log n dimensions, the three projected lengths of ABC
still have the same expected value, but crucially their (iden-
tical) variances are now very small. Why? Each such length
(squared) is a sum of k independent random variables, so its
distribution is almost normal with variance proportional to
k (this is a simple case of the central limit theorem). This fact
alone explains each factor in the expression for k: e −2 ensures
the desired distortion; log n reduces the error probability to

n−c', for constant c' growing with c, which allows us to apply a
union bound over all pairs of distances in X.

Following Johnson and Lindenstrauss,25 various research-
ers suggested simplifications of the original JL design and of
their proofs (Frankl and Maehara,20 DasGupta and Gupta,17
Indyk and Motwany24). These simplifications slightly change
the distribution from which F is drawn and result in a bet-
ter constant c and simpler proofs. These results, however, do
not depart from the original JL from a computational point
of view, because the necessary time to apply F to a vector is
still order of nk.

A bold and ingenious attempt to reduce this cost was
taken by Achlioptas.1 He noticed that the only property of
F needed for the transformation to work is that (Fi · x)2 be
tightly concentrated around the mean 1/d for all unit vectors
x Î Rd, where Fi is the ith row of F. The distribution he pro-
posed is very simple: Choose each element of F uniformly
from the following distribution:

	 √–3/d   with probability   1/6;
	  0		 2/3;
	 -√–3/d		 1/6.

The nice property of this distribution is that it is relatively
sparse: on average, a fraction 2/3 of the entries of F are 0.
Assuming we want to apply F on many points in Rd in a real-
time setting, we can keep a linked list of all the nonzeros of
F during preprocessing and reap the rewards in the form of
a threefold speedup in running time.

Is Achlioptas’s result optimal, or is it possible to get a
super constant speedup? This question is the point of depar-
ture for this work. One idea to obtain a speedup, aside from
sparsifying F, would be to reduce the target dimension k, and
multiply by a smaller matrix F. Does this have a chance of
working? A lower bound of Alon5 provides a negative answer
to this question, and dashes any hope of reducing the num-
ber of rows of F by more than a factor of O(log(1/e) ). The
remaining question is hence whether the matrix can be
made sparser than Achlioptas’s construction. This idea has
been explored by Bingham and Mannila.11 They considered
sparse projection heuristics, namely, fixing most of the
entries of F as zeroes. They noticed that in practice such
matrices F seem to give a considerable speedup with little
compromise in distortion for data found in certain appli-
cations. Unfortunately, it can be shown that sparsifying F
by more than a constant factor (as implicitly suggested in
Bingham and Mannila’s work) will not work for all inputs.
Indeed, a sparse matrix will typically distort a sparse vector.
The intuition for this is given by an extreme case: If both F
and the vector x are very sparse, the product Fx may be null,
not necessarily because of cancellations, but more simply
because each multiplication Fij xj is itself zero.

1.2. The random densification technique
In order to prevent the problem of simultaneous sparsity
of F and x, we use a central concept from harmonic analy-
sis known as the Heisenberg principle—so named because
it is the key idea behind the Uncertainty Principle: a signal
and its spectrum cannot be both concentrated. The look of

A

B C

CB A

Figure 2. A triangle cannot be embedded onto a line while
simultaneously preserving distances between all pairs of vertices.

100 communications of the acm | february 2010 | vol. 53 | no. 2

research highlights

The matrices P and D are chosen randomly whereas H is
deterministic:

•	 P is a k-by-d matrix. Each element is an independent
mixture of 0 with an unbiased normal distribution of
variance 1/q, where

	 In other words, Pij ∼ N(0, 1/q) with probability q, and
Pij = 0 with probability 1 − q.

•	 H is a d-by-d normalized Walsh–Hadamard matrix:

Hij = d–1/2 (–1)〈i –1, j –1〉,

	 where 〈i, j〉 is the dot-product (modulo 2) of the m-bit
vectors i, j expressed in binary.

•	 D is a d-by-d diagonal matrix, where each Dii is drawn
independently from {−1, 1} with probability 1/2.

The Walsh–Hadamard matrix corresponds to the discrete
Fourier transform over the additive group GF (2)d: its FFT is
very simple to compute and requires only O(d log d) steps.
It follows that the mapping Fx of any point x ∈ d can be
computed in time O(d log d + |P|), where |P| is the number
of nonzero entries in P. The latter is O(e −2 log n) not only on
average but also with high probability. Thus we can assume
that the running time of O(d log d + qde −2 log n) is worst-case,
and not just expected.
The FJLT Lemma. Given a fixed set X of n points in Rd, e < 1, and
p Î {1, 2}, draw a matrix F from FJLT. With probability at least
2/3, the following two events occur:

1.	 For any x Î X,

where and a2 = k.

2.	 The mapping F: Rd ® Rk requires

operations.

Remark: By repeating the construction O(log (1/d )) times we
can ensure that the probability of failure drops to d for any
desired d > 0. By failure we mean that either the first or the
second part of the lemma does not hold.

2.2. Showing that F works
We sketch a proof of the FJLT Lemma. Without loss of gen-
erality, we can assume that e < e0 for some suitably small e0.
Fix x Î X. The inequalities of the lemma are invariant under
scaling, so we can assume that ||x||2 = 1. Consider the random
variable u = HDx, denoted by (u1, …, ud)T. The first coordinate
u1 is of the form Sd

i=1 ai
 xi, where each ai = ± d−1/2 is chosen inde-

pendently and uniformly. We can use a standard tail esti-
mate technique to prove that, with probability at least, say,
0.95,

	 � (3)

frustration on the face of any musician who has to wrestle
with the delay from a digital synthesizer can be attributed to
the Uncertainty Principle.

Before we show how to use this principle, we must stop
and ask: what are the tools we have at our disposal? We may
write the matrix F as a product of matrices, or, algorithmi-
cally, apply a chain of linear mappings on an input vector.
With that in mind, an interesting family of matrices we can
apply to an input vector is the orthogonal family of d-by-d
matrices. Such matrices are isometries: The Euclidean geom-
etry suffers no distortion from their application.

With this in mind, we precondition the random k-by-d map-
ping with a Fourier transform (via an efficient FFT algorithm)
in order to isometrically densify any sparse vector. To prevent
the inverse effect, i.e., the sparsification of dense vectors,
we add a little randomization to the Fourier transform (see
Section 2 for details). The reason this works is because sparse
vectors are rare within the space of all vectors. Think of them
as forming a tiny ball within a huge one: if you are inside the
tiny ball, a random transformation is likely to take you outside;
on the other hand, if you are outside to begin with, the trans-
formation is highly unlikely to take you inside the tiny ball.

The resulting FJLT shares the low-distortion characteris-
tics of JL but with a lower running time complexity.

2. THE DETAILS OF FJLT
In this section we show how to construct a matrix F drawn
from FJLT and then prove that it works, namely:

1.	 It provides a low distortion guarantee. (In addition to
showing that it embeds vectors in low-dimensional k

2 ,
we will show it also embeds in k

1.)
2.	 Applying it to a vector is efficiently computable.

The first property is shared by the standard JL and its vari-
ants, while the second one is the main novelty of this work.

2.1. Constructing F
We first make some simplifying assumptions. We may
assume with no loss of generality that d is a power of two,
d = 2h > k, and that n W d = W(e−1/2); otherwise the dimension
of the reduced space is linear in the original dimension. Our
random embedding F ∼ FJLT (n, d, e, p) is a product of three
real-valued matrices (Figure 3):

F = PHD.

Figure 3. FJLT.

Sparse
JL

Walsh–
Hadamard

±1

±1

. . .

±1

k×d d×d d×d

february 2010 | vol. 53 | no. 2 | communications of the acm 101

Let u* Î Rd denote a vector such that u*2 is a vertex of P. By
symmetry of these vertices, there will be no loss of generality
in what follows if we fix:

The vector u* will be convenient for identifying extremal
cases in the analysis of Z. By extremal we mean the most
problematic case, namely, the sparsest possible under
assumption (3) (recall that the whole objective of HD was to
alleviate sparseness).

We shall use Z* to denote the random variable Z corre-
sponding to the case u = u*. We observe that Z* ∼ m−1B(m, q);
in words, the binomial distribution with parameters m, q
divided by the constant m. Consequently,

	 � (5)

In what follows, we divide our discussion between the 1
and the 2 cases.

The 1 case: We choose

We now bound the moments of Z over the random bj’s.
Lemma 1. For any t > 1, E[Zt] = O(qt) t, and

Proof: The case q = 1 is trivial because Z is constant and equal
to 1. So we assume q = 1/(em) < 1. It is easy to verify that E[Zt]
is a convex function of u2, and hence achieves its maximum
at a vertex of P. So it suffices to prove the moment upper
bounds for Z*, which conveniently behaves like a (scaled)
binomial. By standard bounds on the binomial moments,

proving the first part of the lemma.
By Jensen’s inequality and (4),

This proves the upper-bound side of the second part of the
lemma. To prove the lower-bound side, we notice that
is a concave function of u2, and hence achieves its minimum
when u = u*. So it suffices to prove the desired lower bound
for . Since for all x ³ 0,

	
�

(6)

It is important to intuitively understand what (3)
means. Bounding ||HDx||∞ is tantamount to bounding
the magnitude of all coordinates of HDx. This can be
directly translated to a densification property. To see
why, consider an extreme case: If we knew that, say,
||HDx||∞ < 1, then we would automatically steer clear of
the sparsest case possible, in which x is null in all but one
coordinate (which would have to be 1 by the assumption
||x||2 = ||HDx||2 = 1).

To prove (3), we first make the following technical
observation:

Setting t = sd above, we now use the technical observation
together with Markov’s inequality to conclude that, for
any s > 0,

for . A union bound over all nd £ n2 coor-
dinates of the vectors {HDx|x Î X} leads to (3). We assume
from now on that (3) holds with s as the upper bound; in
other words, ||u||∞ £ s, where u = HDx. Assume now that u is
fixed. It is convenient (and immaterial) to choose s so that
m def

=  s–2 is an integer.
It can be shown that ||u||2 = ||x||2 by virtue of both H and

D (and their composition) being isometries (i.e., preserve 2
norms). Now define,

y = (y1,..., yk)T = Pu = Fx.

The vector y is the final mapping of x using F. It is useful
to consider each coordinate of y separately. All coordinates
share the same distribution (though not as independent
random variables). Consider y1. By definition of FJLT, it is
obtained as follows: Pick random i.i.d. indicator variables
b1, …, bd, where each bj equals 1 with probability q; then draw
random i.i.d. variables r1, …, rd from N(0, 1/q). Set y1 = Sd

j=1 rj bj uj
and let Z = Sd

j=1 bju
2
j . It can be shown that the conditional vari-

able ( y1|Z = z) is distributed N(0, z/q) (this follows a well
known fact known as the 2-stability of the normal distri-
bution). Note that all of y1, …, yk are i.i.d. (given u), and we
can similarly define corresponding random i.i.d. variables
Z1(= Z), Z2, . . . , Zk. It now follows that the expectation of Z
satisfies:

	 � (4)

Let u2 formally denote (u2
1, . . . , u2

d) Î (R+)d. By our assump-
tion that (3) holds, u2 lies in the d-dimensional polytope:

102 communications of the acm | february 2010 | vol. 53 | no. 2

research highlights

k ensures that, for any x Î X, ||Fx||1 = ||y||1 deviates from its
mean by at most e with probability at least 0.95. By (7), this
implies that kE[|y1|] is itself concentrated around a1 =
with a relative error at most e; rescaling e by a constant fac-
tor and ensuring (3) proves the 1 claim of the first part of the
FJLT lemma.

The 2 case: We set

for a large enough constant c1.

Lemma 2. With probability at least ,

1.	 q/2 £ Zi £ 2q for all i = 1, …, k; and

2.	

Proof: If q = 1 then Z is the constant q and the claim is
trivial. Otherwise, q = c1d−1 log2 n < 1. For any real l, the
function

is convex, hence achieves its maximum at the vertices
of the polytope P (same as in the proof of Lemma 1).
As argued before, therefore, E[elZ] £ E[elZ*]. We conclude
the proof of the first part with a union bound on stan-
dard tail estimates on the scaled binomial Z* that we
derive from bounds on its moment generating function
E[el Z*] (e.g., Alon and Spencer6). For the second part, let
S = Sk

i=1 Zi. Again, the moment generating function of S is
bounded above by that of S* ∼ m−1B(mk, q)—all Zi’s are
distributed as Z*—and the desired concentration bound
follows.� ®

We assume from now on that the premise of Lemma
2 holds for all choices of x Î X. A union bound shows
that this happens with probability of at least 0.95. For each
i = 1,…,k the random variable is distributed as c2 with
one degree of freedom. It follows that, conditioned on Zi,
the expected value of y2

i is Zi/q and the moment generating
function of y2

i is

Given any 0 < l < l0, for fixed l0, for large enough x, the
moment generating function converges and is equal to

We use here the fact that Zi/q = O(1), which we derive from
the first part of Lemma 2. By independence, therefore,

By (4), E[Z*/q −1] = 0 and, using (5),

Plugging this into (6) shows that , as
desired.� ®

Since the expectation of the absolute value of N(0, 1)
is , by taking conditional expectations, we find
that

On the other hand, by Lemma 1, we note that

	 �
(7)

Next, we prove that ||y||1 is sharply concentrated around its
mean E[||y||1] = kE[|y1|]. To do this, we begin by bounding the
moments of |y1| = |Sjbjrjuj|. Using conditional expectations,
we can show that, for any integer t ³ 0,

where U ∼ N(0,1). It is well known that E[|U|t] = (t)t/2; and so,
by Lemma 1,

It follows that the moment generating function satisfies

Therefore, it converges for any 0 £ l < l0, where l0 is an abso-
lute constant, and

Using independence, we find that

Meanwhile, Markov’s inequality and (7) imply that

for some l = Q (e). The constraint l < l0 corresponds to e
being smaller than some absolute constant. The same argu-
ment leads to a similar lower tail estimate. Our choice of

february 2010 | vol. 53 | no. 2 | communications of the acm 103

early solutions typically suffered from the curse of dimen-
sionality, but the last decade has witnessed a flurry of new
algorithms that “break the curse” (see Indyk23 for a recent
survey).

The first algorithms with query times of poly(d, log n)
and polynomial storage (for fixed e) were those of Indyk
and Motwani24 in the Euclidean space case, and Kushilevitz
et al.27 in the Hamming cube case. Using JL, Indyk et al.
provide a query time of O(e −2d log n) with nO(e−2) storage
and preprocessing. A discrete variant of JL was used by
Kushilevitz et al. in the Hamming cube case. We mention
here that the dimension reduction overwhelms the running
time of the two algorithms. In order to improve the run-
ning time in both cases, we used two main ideas in Ailon
and Chazelle.2 The first idea applied to the discrete case. It
used an observation related to the algebraic structure of the
discrete version of JL used in Kushilevitz et al.27 to obtain a
speedup in running time. This observation was only appli-
cable in the discrete case, but suggested the intuitive idea
that a faster JL should be possible in Euclidean space as
well, thereby motivating the search for FJLT. Indeed, by a
straightforward application in Indyk et al.’s algorithm (with
p = 1), the running time would later be improved using FJLT
to O(d log d + e −3 log2 n). Notice the additive form of this last
expression in some function f = f (d) and g = g(n, e), instead of
a multiplicative one.

3.2. Fast approximation of large matrices
Large matrices appear in virtually every corner of science.
Exact algorithms for decomposing or solving for large
matrices are often inhibitively expensive to perform. This
may change given improvements in matrix multiplication
technology, but it appears that we will have to rely on matrix
approximation strategies for a while, at least in the general
case. It turns out that FJLT and ideas inspired by it play an
important role in recent developments.

We elaborate on an example from a recent solution of
Sarlós36 to the problem of 2 regression (least square fit of an
overdetermined linear system). Prior to that work (and ours),
Drineas et al.18 showed that, by downsampling (choosing
only a small subset and discarding the rest) from the set of
equations of the linear regression, an approximate solution
to the problem could be obtained by solving the downsam-
pled problem, the size of which depends only on the dimen-
sion d of the original solution space. The difficulty with this
method is that the downsampling distribution depends on
norms of rows of the left-singular vector matrix of the origi-
nal system. Computing this matrix is as hard as the original
regression problem and requires O(m2d) operations, with m
the number of equations. To make this solution more prac-
tical, Sarlós observed that multiplying the equation matrix
on the left by the m × m orthogonal matrix HD (as defined
above in the definition of FJLT) implicitly multiplies the left-
singular vectors by HD as well. By an analysis similar to the
one above, the resulting left-singular matrix can be shown to
have almost uniform row norm. This allows use of Drineas
et al.’s ideas with uniform sampling of the equations. Put
together, these results imply the first o(m2d) running time
solution for worst-case approximate 2 regression.

and hence

	 �

(8)

If we plug

into (8) and assume that e is smaller than some global e0, we
avoid convergence issues (Lemma 2). By that same lemma,
we now conclude that

A similar technique can be used to bound the left tail esti-
mate. We set k = ce −2 log n for some large enough c and use a
union bound, possibly rescaling e, to conclude the 2 case of
the first part of the FJLT lemma.

Running Time: The vector Dx requires O(d) steps, since D is
diagonal. Computing H(Dx) takes O(d log d) time using the FFT
for Walsh–Hadamard. Finally, computing P(H Dx) requires
O(|P|) time, where |P| is the number of nonzeros in P. This
number is distributed in B(nk, q). It is now immediate to verify
that

A Markov bound establishes the desired complexity of the
FJLT. This concludes our sketch of the proof of the FJLT
lemma.� ®

3. APPLICATIONS

3.1. Approximate nearest neighbor searching
Given a metric space (U, dU) and a finite subset (database)
P ⊆ U, the problem of e-approximate nearest neighbor (e-ANN)
searching is to preprocess P so that, given a query x Î U,
a point p Î P satisfying

can be found efficiently. In other words, we are interested in
a point p further from x by a factor at most (1 + e) of the dis-
tance to its nearest neighbor.

This problem has received considerable attention. There
are two good reasons for this: (i) ANN boasts more applica-
tions than virtually any other geometric problem23; (ii) allow-
ing a small error e makes it possible to break the curse of
dimensionality.24, 27

There is abundant literature on (approximate) near-
est neighbor searching.8–10, 12, 13, 15, 16, 19, 21–24, 26, 27, 33, 39, 40 The

104 communications of the acm | february 2010 | vol. 53 | no. 2

research highlights

Administration, Carnegie-Mellon
University, Pittsburgh, 1976, 388.

	15.	C larkson, K.L. An algorithm for
approximate closest-point queries.
In Proceedings of the 10th Annual
ACM Symposium on Computational
Geometry (SoCG) (1994), 160–164.

	16.	C larkson, K.L. Nearest neighbor
queries in metric spaces. Discrete
Comput. Geometry 22, 1 (1999),
63–93.

	17.	 DasGupta, S., Gupta, A. An
elementary proof of the Johnson–
Lindenstrauss lemma. Technical
Report, UC Berkeley, 1999, 99–106.

	18.	 Drineas, P., Mahoney, M.W.,
Muthukrishnan, S. Sampling
algorithms for 2 regression and
applications. In Proceedings of the
17th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA)
(Miami, FL, United States, 2006).

	19.	 Farach-Colton, M., Indyk, P.
Approximate nearest neighbor
algorithms for Hausdorff metrics via
embeddings. In Proceedings of the
40th Annual IEEE Symposium on
Foundations of Computer Science
(FOCS) (1999), 171–180.

	20.	 Frankl, P., Maehara, H. The Johnson–
Lindenstrauss lemma and the
sphericity of some graphs. J. Comb.
Theory Ser. A 44 (1987), 355–362.

	21.	I ndyk, P. On approximate nearest
neighbors in non-Euclidean spaces.
In Proceedings of the 39th Annual
IEEE Symposium on Foundations of
Computer Science (FOCS) (1998),
148–155.

	22.	I ndyk, P. Dimensionality reduction
techniques for proximity problems.
In Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete
Algorithms (SODA) (2000), 371–378.

	23.	I ndyk, P. Nearest neighbors in high-
dimensional spaces. In Handbook
of Discrete and Computational
Geometry. CRC, 2004.

	24.	I ndyk P., Motwani, R. Approximate
nearest neighbors: Towards removing
the curse of dimensionality. In
Proceedings of the 30th Annual ACM
Symposium on Theory of Computing
(STOC) (1998), 604–613.

	25.	 Johnson, W.B., Lindenstrauss, J.
Extensions of Lipschitz mappings into
a Hilbert space. Contemp. Math. 26
(1984), 189–206.

	26.	K leinberg, J.M. Two algorithms for
nearest-neighbor search in high
dimensions. In Proceedings of the
29th Annual ACM Symposium on
Theory of Computing (STOC) (1997),
599–608.

	27.	K ushilevitz, E., Ostrovsky, R., Rabani,
Y. Efficient search for approximate
nearest neighbor in high dimensional
spaces. SIAM J. Comput. 30, 2
(2000), 457–474.

	28.	 Liberty, E., Woolfe, F., Martinsson, P.-G.,
Rokhlin, V., Tygert, M. Randomized
algorithms for the low-rank
approximation of matrices. Proc. Natl.
Acad. Sci. (PNAS) 104, 51 (2007),
20167–20172.

	29.	 Linial, N., London, E., Rabinovich, Y.
The geometry of graphs and some
of its algorithmic applications.
Combinatorica 15, 2 (1995), 215–245.

	30.	 Mitchell, J.S.B. Guillotine subdivisions
approximate polygonal subdivisions:
A simple new method for the
geometric k-MST problem. SIAM J.
Comput. 28, 4 (1999), 1298–1309.

	31.	 Morgenstern, J. Note on a lower
bound on the linear complexity of the
fast fourier transform. J. ACM 20, 2
(1973), 305–306.

	32.	 Morgenstern, J. The linear complexity
of computation. J. ACM 22, 2 (1975),
184–194.

	33.	 Muthukrishnan, S., Sahinalp, S.C.
Simple and practical sequence
nearest neighbors with block
operations. In Proceedings of the 13th
Annual Symposium on Combinatorial
Pattern Matching (CPM) (2002),
262–278.

	34.	 Papadimitriou, C., Raghavan, P.,
Tamaki, H., Vempala, S. Latent
semantic indexing: A probabilistic
analysis. In Proceedings of the 17th
Annual Symposium of Database
Systems (1998), 159–168.

	35.	R okhlin, V., Tygert, M. A fast
randomized algorithm for
overdetermined linear least-squares
regression. Proceedings of the
National Academy of Science (PNAS)
105, 36 (2008), 13212–13217.

	36.	 Sarlós, T. Improved approximation
algorithms for large matrices via
random projections. In Proceedings
of the 47th Annual IEEE Symposium
on Foundations of Computer Science
(FOCS) (Berkeley, CA, 2006).

	37.	 Schulman, L. Clustering for edge-cost
minimization. In Proceedings of the
32nd Annual Symposium on Theory of
Computing (STOC) (2000), 547–555.

	38.	 Woolfe, F., Liberty, E., Rokhlin,
V., Tygert, M. A fast randomized
algorithm for the approximation of
matrices. Appl. Comput. Harmon.
Anal. 25 (2008), 335–366.

	39.	Y ianilos, P.N. Data structures and
algorithms for nearest neighbor
search in general metric spaces.
In Proceedings of the 4th Annual
ACM-SIAM Symposium on Discrete
Algorithms (SODA) (1993), 311–321.

	40.	Y ianilos, P.N. Locally lifting the
curse of dimensionality for nearest
neighbor search (extended abstract).
In Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete
Algorithms (SODA) (2000),
361–370.

In a recent stream of papers, authors Liberty, Martinsson,
Rokhlin, Tygert and Woolfe28, 35, 38 design and analyze fast
algorithms for low-dimensional approximation algorithms of
matrices, and demonstrate their application to the evaluation
of the SVD of numerically low-rank matrices. Their schemes
are based on randomized transformations akin to FJLT.

4. BEYOND FJLT
The FJLT result gives rise to the following question: What is
a lower bound, as a function of n, d and e, on the complexity
of computing a JL-like random linear mapping? By this we
mean a mapping that distorts pairwise Euclidean distances
among any set of n points in d dimension by at most 1 ± e.
The underlying model of computation can be chosen as a
linear circuit,32 manipulating complex-valued intermedi-
ates by either adding two or multiplying one by (random)
constants, and designating n as input and k = O(e −2 log n) as
output (say, for p = 2). It is worth observing that any lower
bound in W(e −2 log n min{d, log2 n}) would imply a simi-
lar lower bound on the complexity of computing a Fourier
transform. Such bounds are known only in a very restricted
model31 where constants are of bounded magnitude.

As a particular case of interest, we note that, whenever
k = O(d1/3), the running time of FJLT is O(d log d). In a more
recent paper, Ailon and Liberty3 improved this bound and
showed that it is possible to obtain a JL-like random mapping
in time O(d log d) for k = O(d1/2 −d ) and any d > 0. Their trans-
formation borrows the idea of preconditioning a Fourier
transform with a random diagonal matrix from FJLT, but
uses it differently and takes advantage of stronger measure
concentration bounds and tools from error correcting codes
over fields of characteristic 2. The same authors together
with Singer consider the following inverse problem4: Design
randomized linear time computable transformations that
require the mildest assumptions possible on data to ensure
successful dimensionality reduction.�

Nir Ailon (nailon@gmail.com), Google
Research.

Bernard Chazelle (chazelle@cs.
princeton.edu), Department of Computer
Science, Princeton University.

© 2010 ACM 0001-0782/10/0200 $10.00

	 1.	A chlioptas, D. Database-friendly
random projections: Johnson–
Lindenstrauss with binary coins.
J. Comput. Syst. Sci. 66, 4 (2003),
671–687.

	 2.	A ilon, N., Chazelle, B. Approximate
nearest neighbors and the fast
Johnson-Lindenstrauss transform.
SIAM J. Comput. 39, 1 (2009),
302–322.

	 3.	A ilon, N., Liberty, E. Fast dimension
reduction using rademacher series
on dual bch codes. Discrete and
Computational Geometry (2008).

	 4.	A ilon, N., Liberty, E., Singer, A.
Dense fast random projections and
lean walsh transforms. APPROX-
RANDOM, 2008, 512–522.

	 5.	A lon, N. Problems and results in
extremal combinatorics–I. Discrete
Math. 273, 1–3 (2003), 31–53.

	 6.	A lon, N., Spencer, J. The Probabilistic
Method. John Wiley, 2nd edition, 2000.

	 7.	A rora, S. Polynomial time
approximation schemes for euclidean
traveling salesman and other
geometric problems. J. ACM 45, 5
(1998), 753–782.

	 8.	A rya, S., Mount, D.M. Approximate
nearest neighbor queries in fixed
dimensions. In Proceedings of the 4th

Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA) (Austin,
TX, United States, 1993), 271–280.

	 9.	A rya, S., Mount, D.M., Netanyahu, N.S.,
Silverman, R., Wu, A.Y. An optimal
algorithm for approximate nearest
neighbor searching fixed dimensions.
J. ACM 45, 6 (1998), 891–923.

	10.	B ern, M.W. Approximate closest-
point queries in high dimensions. Inf.
Process. Lett. 45, 2 (1993), 95–99.

	11.	B ingham, E., Mannila, H. Random
projection in dimensionality reduction:
Applications to image and text data.
In Knowledge Discovery and Data
Mining, 2001, 245–250.

	12.	B orodin, A., Ostrovsky, R., Rabani, Y.
Lower bounds for high dimensional
nearest neighbor search and related
problems. In Proceedings of the
31st Annual Symposium on the
Theory of Computing (STOC) (1999),
312–321.

	13.	C han, T.M. Approximate nearest
neighbor queries revisited. Discrete
Comput. Geometry 20, 3 (1998),
359–373.

	14.	C hristofides, N. Worst-case analysis
of a new heuristic for the travelling
salesman problem. Technical Report,
Graduate School of Industrial

References

