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Faster Dimension Reduction
By Nir Ailon and Bernard Chazelle

Abstract
Data represented geometrically in high-dimensional vec-
tor spaces can be found in many applications. Images and 
videos, are often represented by assigning a dimension 
for every pixel (and time). Text documents may be repre-
sented in a vector space where each word in the diction-
ary incurs a dimension. The need to manipulate such data 
in huge corpora such as the web and to support various 
query types gives rise to the question of how to represent 
the data in a lower-dimensional space to allow more space 
and time efficient computation. Linear mappings are an 
attractive approach to this problem because the mapped 
input can be readily fed into popular algorithms that oper-
ate on linear spaces (such as principal-component analy-
sis, PCA) while avoiding the curse of dimensionality.

The fact that such mappings even exist became known 
in computer science following seminal work by Johnson 
and Lindenstrauss in the early 1980s. The underlying 
technique is often called “random projection.” The com-
plexity of the mapping itself, essentially the product of a 
vector with a dense matrix, did not attract much attention 
until recently. In 2006, we discovered a way to “sparsify” 
the matrix via a computational version of Heisenberg’s 
Uncertainty Principle. This led to a significant speedup, 
which also retained the practical simplicity of the stan-
dard Johnson–Lindenstrauss projection. We describe 
the improvement in this article, together with some of its 
applications.

1. INTRODUCTION
Dimension reduction, as the name suggests, is an algo-
rithmic technique for reducing the dimensionality of data. 
From a programmer’s point of view, a d-dimensional array 
of real numbers, after applying this technique, is repre-
sented by a much smaller array. This is useful because 
many data-centric applications suffer from exponential 
blowup as the underlying dimension grows. The infamous 
curse of dimensionality (exponential dependence of an 
algorithm on the dimension of the input) can be avoided 
if the input data is mapped into a space of logarithmic 
dimension (or less); for example, an algorithm running 
in time proportional to 2d in dimension d will run in lin-
ear time if the dimension can be brought down to log 
d. Common beneficiaries of this approach are cluster-
ing and nearest neighbor searching algorithms. One 
typical case involving both is, for example, organizing a 
massive corpus of documents in a database that allows 
one to respond quickly to similar-document searches. 
The clustering is used in the back-end to eliminate (near) 
duplicates, while nearest-neighbor queries are processed 
at the front-end. Reducing the dimensionality of the 
data helps the system respond faster to both queries and 

data updates. The idea, of course, is to retain the basic 
metric properties of the data set (e.g., pairwise distances)  
while reducing its size. Because this is technically 
impossible to do, one will typically relax this demand and  
tolerate errors as long as they can be made arbitrarily 
small.

The common approaches to dimensionality reduction 
fall into two main classes. The first one includes data-
aware techniques that take advantage of prior information 
about the input, principal-component analysis (PCA) and 
compressed sensing being the two archetypical examples: 
the former works best when most of the information in 
the data is concentrated along a few fixed, unknown direc-
tions in the vector space. The latter shines when there 
exists a basis of the linear space over which the input can 
be represented sparsely, i.e., as points with few nonzero 
coordinates.

The second approach to dimension reduction includes 
data-oblivious techniques that assume no prior information 
on the data. Examples include sketches for data streams, 
locality sensitive hashing, and random linear mappings 
in Euclidean space. The latter is the focus of this article. 
Programmatically, it is equivalent to multiplying the input 
array by a random matrix. We begin with a rough sketch of 
the main idea.

Drawing on basic intuition from both linear alge-
bra and probability, it may be easy to see that mapping 
high-dimensional data into a random lower-dimensional 
space via a linear function will produce an approximate 
representation of the original data. Think of the direc-
tions contained in the random space as samples from 
a population, each offering a slightly different view of 
a set of vectors, given by their projection therein. The 
collection of these narrow observations can be used to 
learn about the approximate geometry of these vectors. 
By “approximate” we mean that properties that the task 
at hand may care about (such as distances and angles 
between vector) will be slightly distorted. Here is a small 
example for concreteness. Let a1, …, ad be independent 
random variables with mean 0 and unit variance  
(e.g., a Gaussian N(0, 1) ). Given a vector x = (x1, …, xd), con-
sider the inner product Z = Si aixi: the expectation of Z is 
0 but its variance is precisely the square of the Euclidean 
length of x. The number Z can be interpreted as a “random 
projection” in one dimension: the variance allows us to 
“read off” the length of x. By sampling in this way several 
times, we can increase our confidence, using the law of 
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set Rd endowed with a norm, where the norm of a vector 
x (written as ||x||p) is given by (Sd

i=1|xi|
p)1/p. The metric is 

given by the distance between pairs of vectors x and y 
taken to be ||x − y||p.)

•	 Embedding into tree metrics (where the distance 
between two nodes is defined by the length of the path 
joining them) is useful for solving network design opti-
mization problems.

The JL algorithm linearly embeds an input which is 
already in a high-dimensional Euclidean space d

2  into a 
lower-dimensional k

p space for any p ³ 1, and admits a naïve 
implementation with O(dk) running time per data vector; in 
other words, the complexity is proportional to the number 
of random matrix elements.

Our modification of JL is denoted FJLT, for Fast- 
Johnson–Lindenstrauss-Transform. Although JL often works 
well, it is the computational bottleneck of many applica-
tions, such as approximate nearest neighbor searching.24, 27  
In such cases, substituting FJLT yields an immediate 
improvement. Another benefit is that implementing FJLT 
remains extremely simple. Later in Section 3 we show how 
FJLT helps in some of the applications mentioned above. 
Until then, we concentrate on the story of FJLT itself, which 
is interesting in its own right.

1.1. A brief history of a quest for a faster JL
Before describing our result, we present the original JL 
result in detail, as well as survey results related to its com-
putational aspects. We begin with the central lemma 
behind JL.25 The following are the main variables we will be 
manipulating:

X—a set of vectors in Euclidean space (our input data-
set). In what follows, we use the term points and vectors 
interchangeably.

n—the size of the set X.
d—the dimension of the Euclidean space (typically  

very big).
k—the dimension of the space we will reduce the points 

in X to (ideally, much smaller than d).
e—a small tolerance parameter, measuring to what is 

the maximum allowed distortion rate of the metric space 
induced by the set X in Euclidean m-space (the exact defini-
tion of distortion will be given below).

In JL, we take k to be ce−2 log n, for some large enough 

large numbers. Each sample corresponds to a dimension. 
The beauty of the scheme is that we can now use it to han-
dle many distances at once.

It is easy to see that randomness is necessary if we hope 
to make meaningful use of the reduced data; otherwise 
we could be given as input a set of vectors belonging to  
the kernel of any fixed matrix, thus losing all information. 
The size of the distortion as well as the failure probability are 
user-specified parameters that determine the target (low) 
dimension. How many dimensions are sufficient? Careful 
quantitative calculation reveals that, if all we care about 
is distances between pairs of vectors and angles between 
them—in other words, the Euclidean geometry of the data—
then a random linear mapping to a space of dimension loga-
rithmic in the size of the data is sufficient. This statement, 
which we formalize in Section 1.1, follows from Johnson 
and Lindenstrauss’s seminal work.25 The consequence 
is quite powerful: If our database contains n vectors in  
d dimensions, then we can replace it with one in which data 
contains only log n dimensions! Although the original paper 
was not stated in a computational language, deriving a naïve 
pseudocode for an algorithm implementing the idea in that 
paper is almost immediate. This algorithm, which we refer 
to as JL for brevity, has been studied in theoretical com-
puter science in many different contexts. The main theme 
in this study is improving efficiency of algorithms for high-
dimensional geometric problems such as clustering,37 near-
est neighbor searching,24, 27 and large scale linear algebraic 
computation.18, 28, 35, 36, 38

For many readers it may be obvious that these algorithms 
are directly related to widely used technologies such as web 
search. For others this may come as a surprise: Where does 
a Euclidean space hide in a web full of textual documents? 
It turns out that it is very useful to represent text as vectors  
in high-dimensional Euclidean space.34 The dimension in 
the latter example can be as high as the number of words  
in the text language!

This last example illustrates what a metric embedding is: 
a mapping of objects as points in metric spaces. Computer 
scientists care about such embeddings because often it is 
easier to design algorithms for metric spaces. The sim-
pler the metric space is, the friendlier it is for algorithm 
design. Dimensionality is just one out of many measures of 
simplicity. We digress from JL by mentioning a few impor-
tant results in computer science illustrating why embed-
ding input in simple metric spaces is useful. We refer the 
reader to Linial et al.29 for one of the pioneering works in 
the field.

•	 The Traveling Salesman Problem (TSP), in which  
one wishes to plan a full tour of a set of cities, with 
given costs of traveling between any two cities is  
an archetype of a computational hardness which 
becomes easier if the cities are embedded in a metric 
space,14 and especially in a low-dimensional Euclidean 
one.7, 30

•	 Problems such as combinatorial optimization on 
graphs become easier if the nodes of the graph can be 
embedded in 1 space. (The space d

p is defined to be the 

Figure 1. Embedding a spherical metric onto a planar one is no easy 
task. The latter is more favorable as input to printers.
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absolute constant c. We then choose a random subspace of 
dimension k in Rd (we omit the mathematical details of what 
a random subspace is), and define F to be the operation of 
projecting a point in Rd onto the subspace. We remind the 
reader that such an operation is linear, and is hence equiva-
lently representable by a matrix. In other words, we’ve just 
defined a random matrix. Denote it by F.

The JL Lemma states that with high probability, for all 
pairs of points x, y Î X simultaneously,

    �
(1)

This fact is useful provided that k < d, which will be implied 
by the assumption

	 �
(2)

Informally, JL says that projecting the n points on a ran-
dom low-dimensional subspace should, up to a distortion of  
1 ± e, preserve pairwise distances. The mapping matrix of size  
F = k × d can be implemented in a computer program as 
follows: The first row is a random unit vector chosen uni-
formly in Rd; the second row is a random unit vector from 
the space orthogonal to the first row; the third is a random 
unit vector from the space orthogonal to the first two rows, 
etc. The high-level proof idea is to show that for each pair 
x, y Î X the probability of (1) being violated is order of 1/n2.  
A standard union bound over the number of pairs of points 
in X then concludes the proof.

It is interesting to pause and ask whether the JL theorem 
should be intuitive. The answer is both yes and no. Low-
dimensional geometric intuition is of little help. Take an 
equilateral triangle ABC in the plane (Figure 2), no matter 
how you project it into a line, you get three points in a row, 
two of which form a distance at least twice the smallest one. 
The distortion is at least 2, which is quite bad. The problem 
is that, although the expected length of each side’s projec-
tion is identical, the variance is high. In other words, the 
projected distance is rarely close to the average. If, instead 
of d = 2, we choose a high dimension d and project down to 
k = ce −2 log n dimensions, the three projected lengths of ABC 
still have the same expected value, but crucially their (iden-
tical) variances are now very small. Why? Each such length 
(squared) is a sum of k independent random variables, so its 
distribution is almost normal with variance proportional to 
k (this is a simple case of the central limit theorem). This fact 
alone explains each factor in the expression for k: e −2 ensures 
the desired distortion; log n reduces the error probability to 

n−c', for constant c' growing with c, which allows us to apply a 
union bound over all  pairs of distances in X.

Following Johnson and Lindenstrauss,25 various research-
ers suggested simplifications of the original JL design and of 
their proofs (Frankl and Maehara,20 DasGupta and Gupta,17 
Indyk and Motwany24). These simplifications slightly change 
the distribution from which F is drawn and result in a bet-
ter constant c and simpler proofs. These results, however, do 
not depart from the original JL from a computational point 
of view, because the necessary time to apply F to a vector is 
still order of nk.

A bold and ingenious attempt to reduce this cost was 
taken by Achlioptas.1 He noticed that the only property of 
F needed for the transformation to work is that (Fi · x)2 be 
tightly concentrated around the mean 1/d for all unit vectors 
x Î Rd, where Fi is the ith row of F. The distribution he pro-
posed is very simple: Choose each element of F uniformly 
from the following distribution:

	 √–3/d    with probability    1/6;
	   0		  2/3;
	 -√–3/d		  1/6.

The nice property of this distribution is that it is relatively 
sparse: on average, a fraction 2/3 of the entries of F are 0. 
Assuming we want to apply F on many points in Rd in a real-
time setting, we can keep a linked list of all the nonzeros of 
F during preprocessing and reap the rewards in the form of 
a threefold speedup in running time.

Is Achlioptas’s result optimal, or is it possible to get a 
super constant speedup? This question is the point of depar-
ture for this work. One idea to obtain a speedup, aside from  
sparsifying F, would be to reduce the target dimension k, and  
multiply by a smaller matrix F. Does this have a chance of 
working? A lower bound of Alon5 provides a negative answer 
to this question, and dashes any hope of reducing the num-
ber of rows of F by more than a factor of O(log(1/e) ). The 
remaining question is hence whether the matrix can be 
made sparser than Achlioptas’s construction. This idea has 
been explored by Bingham and Mannila.11 They considered 
sparse projection heuristics, namely, fixing most of the 
entries of F as zeroes. They noticed that in practice such 
matrices F seem to give a considerable speedup with little 
compromise in distortion for data found in certain appli-
cations. Unfortunately, it can be shown that sparsifying F 
by more than a constant factor (as implicitly suggested in 
Bingham and Mannila’s work) will not work for all inputs. 
Indeed, a sparse matrix will typically distort a sparse vector. 
The intuition for this is given by an extreme case: If both F 
and the vector x are very sparse, the product Fx may be null, 
not necessarily because of cancellations, but more simply 
because each multiplication Fij xj is itself zero.

1.2. The random densification technique
In order to prevent the problem of simultaneous sparsity 
of F and x, we use a central concept from harmonic analy-
sis known as the Heisenberg principle—so named because 
it is the key idea behind the Uncertainty Principle: a signal 
and its spectrum cannot be both concentrated. The look of 

A

B C

CB A

Figure 2. A triangle cannot be embedded onto a line while  
simultaneously preserving distances between all pairs of vertices.



100    communications of the acm   |   february 2010  |   vol.  53  |   no.  2

research highlights 

 

The matrices P and D are chosen randomly whereas H is 
deterministic:

•	 P is a k-by-d matrix. Each element is an independent 
mixture of 0 with an unbiased normal distribution of 
variance 1/q, where

	 In other words, Pij ∼ N(0, 1/q) with probability q, and  
Pij = 0 with probability 1 − q.

•	 H is a d-by-d normalized Walsh–Hadamard matrix:

Hij = d–1/2 (–1)〈i –1,  j –1〉,

	 where 〈i, j〉 is the dot-product (modulo 2) of the m-bit 
vectors i, j expressed in binary.

•	 D is a d-by-d diagonal matrix, where each Dii is drawn 
independently from {−1, 1} with probability 1/2.

The Walsh–Hadamard matrix corresponds to the discrete 
Fourier transform over the additive group GF (2)d: its FFT is 
very simple to compute and requires only O(d log d) steps. 
It follows that the mapping Fx of any point x ∈ d can be 
computed in time O(d log d + |P|), where |P| is the number 
of nonzero entries in P. The latter is O(e −2 log n) not only on 
average but also with high probability. Thus we can assume 
that the running time of O(d log d + qde −2 log n) is worst-case, 
and not just expected.
The FJLT Lemma. Given a fixed set X of n points in Rd, e < 1, and 
p Î {1, 2}, draw a matrix F from FJLT. With probability at least 
2/3, the following two events occur:

1.	 For any x Î X,

where  and a2 = k.

2.	 The mapping F: Rd ® Rk requires

operations.

Remark: By repeating the construction O(log (1/d )) times we 
can ensure that the probability of failure drops to d for any 
desired d > 0. By failure we mean that either the first or the 
second part of the lemma does not hold.

2.2. Showing that F works
We sketch a proof of the FJLT Lemma. Without loss of gen-
erality, we can assume that e < e0 for some suitably small e0. 
Fix x Î X. The inequalities of the lemma are invariant under 
scaling, so we can assume that ||x||2 = 1. Consider the random 
variable u = HDx, denoted by (u1, …, ud)T. The first coordinate 
u1 is of the form Sd

i=1 ai
 xi, where each ai = ± d−1/2 is chosen inde-

pendently and uniformly. We can use a standard tail esti-
mate technique to prove that, with probability at least, say, 
0.95,

	 � (3)

frustration on the face of any musician who has to wrestle 
with the delay from a digital synthesizer can be attributed to 
the Uncertainty Principle.

Before we show how to use this principle, we must stop 
and ask: what are the tools we have at our disposal? We may 
write the matrix F as a product of matrices, or, algorithmi-
cally, apply a chain of linear mappings on an input vector. 
With that in mind, an interesting family of matrices we can 
apply to an input vector is the orthogonal family of d-by-d 
matrices. Such matrices are isometries: The Euclidean geom-
etry suffers no distortion from their application.

With this in mind, we precondition the random k-by-d map-
ping with a Fourier transform (via an efficient FFT algorithm) 
in order to isometrically densify any sparse vector. To prevent 
the inverse effect, i.e., the sparsification of dense vectors, 
we add a little randomization to the Fourier transform (see 
Section 2 for details). The reason this works is because sparse 
vectors are rare within the space of all vectors. Think of them 
as forming a tiny ball within a huge one: if you are inside the 
tiny ball, a random transformation is likely to take you outside; 
on the other hand, if you are outside to begin with, the trans-
formation is highly unlikely to take you inside the tiny ball.

The resulting FJLT shares the low-distortion characteris-
tics of JL but with a lower running time complexity.

2. THE DETAILS OF FJLT
In this section we show how to construct a matrix F drawn 
from FJLT and then prove that it works, namely:

1.	 It provides a low distortion guarantee. (In addition to 
showing that it embeds vectors in low-dimensional k

2 , 
we will show it also embeds in k

1.)
2.	 Applying it to a vector is efficiently computable.

The first property is shared by the standard JL and its vari-
ants, while the second one is the main novelty of this work.

2.1. Constructing F
We first make some simplifying assumptions. We may 
assume with no loss of generality that d is a power of two,  
d = 2h > k, and that n W d = W(e−1/2); otherwise the dimension 
of the reduced space is linear in the original dimension. Our 
random embedding F ∼ FJLT (n, d, e, p) is a product of three 
real-valued matrices (Figure 3):

F = PHD.

Figure 3. FJLT.

Sparse
JL
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Hadamard

±1

±1
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k×d d×d d×d
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Let u* Î Rd denote a vector such that u*2 is a vertex of P. By 
symmetry of these vertices, there will be no loss of generality 
in what follows if we fix:

The vector u* will be convenient for identifying extremal 
cases in the analysis of Z. By extremal we mean the most 
problematic case, namely, the sparsest possible under 
assumption (3) (recall that the whole objective of HD was to 
alleviate sparseness).

We shall use Z* to denote the random variable Z corre-
sponding to the case u = u*. We observe that Z* ∼ m−1B(m, q);  
in words, the binomial distribution with parameters m, q 
divided by the constant m. Consequently,

	 � (5)

In what follows, we divide our discussion between the 1 
and the 2 cases.

The 1 case: We choose

We now bound the moments of Z over the random bj’s.
Lemma 1. For any t > 1, E[Zt] = O(qt) t, and

Proof: The case q = 1 is trivial because Z is constant and equal 
to 1. So we assume q = 1/(em) < 1. It is easy to verify that E[Zt] 
is a convex function of u2, and hence achieves its maximum 
at a vertex of P. So it suffices to prove the moment upper 
bounds for Z*, which conveniently behaves like a (scaled) 
binomial. By standard bounds on the binomial moments,

proving the first part of the lemma.
By Jensen’s inequality and (4),

This proves the upper-bound side of the second part of the 
lemma. To prove the lower-bound side, we notice that  
is a concave function of u2, and hence achieves its minimum 
when u = u*. So it suffices to prove the desired lower bound 
for . Since  for all x ³ 0,

	
�

(6)

It is important to intuitively understand what (3) 
means. Bounding ||HDx||∞ is tantamount to bounding 
the magnitude of all coordinates of HDx. This can be 
directly translated to a densification property. To see 
why, consider an extreme case: If we knew that, say,  
||HDx||∞ < 1, then we would automatically steer clear of 
the sparsest case possible, in which x is null in all but one 
coordinate (which would have to be 1 by the assumption 
||x||2 = ||HDx||2 = 1).

To prove (3), we first make the following technical 
observation:

Setting t = sd above, we now use the technical observation 
together with Markov’s inequality to conclude that, for  
any s > 0,

for . A union bound over all nd £ n2 coor-
dinates of the vectors {HDx|x Î X} leads to (3). We assume 
from now on that (3) holds with s as the upper bound; in 
other words, ||u||∞ £ s, where u = HDx. Assume now that u is 
fixed. It is convenient (and immaterial) to choose s so that 
m def

=  s–2 is an integer.
It can be shown that ||u||2 = ||x||2 by virtue of both H and 

D (and their composition) being isometries (i.e., preserve 2 
norms). Now define,

y = ( y1,..., yk)T = Pu = Fx.

The vector y is the final mapping of x using F. It is useful 
to consider each coordinate of y separately. All coordinates 
share the same distribution (though not as independent 
random variables). Consider y1. By definition of FJLT, it is 
obtained as follows: Pick random i.i.d. indicator variables 
b1, …, bd, where each bj equals 1 with probability q; then draw  
random i.i.d. variables r1, …, rd from N(0, 1/q). Set y1 = Sd

j=1 rj bj uj  
and let Z = Sd

j=1 bju
2
j . It can be shown that the conditional vari-

able ( y1|Z = z) is distributed N(0, z/q) (this follows a well 
known fact known as the 2-stability of the normal distri-
bution). Note that all of y1, …, yk are i.i.d. (given u), and we 
can similarly define corresponding random i.i.d. variables 
Z1(= Z), Z2, . . . , Zk. It now follows that the expectation of Z 
satisfies:

	 � (4)

Let u2 formally denote (u2
1, . . . , u2

d) Î (R+)d. By our assump-
tion that (3) holds, u2 lies in the d-dimensional polytope:
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k ensures that, for any x Î X, ||Fx||1 = ||y||1 deviates from its 
mean by at most e with probability at least 0.95. By (7), this 
implies that kE[|y1|] is itself concentrated around a1 =  
with a relative error at most e; rescaling e by a constant fac-
tor and ensuring (3) proves the 1 claim of the first part of the 
FJLT lemma.

The 2 case: We set

for a large enough constant c1.

Lemma 2. With probability at least ,

1.	 q/2 £ Zi £ 2q for all i = 1, …, k; and

2.	

Proof: If q = 1 then Z is the constant q and the claim is 
trivial. Otherwise, q = c1d−1 log2 n < 1. For any real l, the 
function

is convex, hence achieves its maximum at the vertices 
of the polytope P (same as in the proof of Lemma 1).  
As argued before, therefore, E[elZ] £ E[elZ*]. We conclude 
the proof of the first part with a union bound on stan-
dard  tail estimates on the scaled binomial Z* that we 
derive from bounds on its moment generating function 
E[el Z*] (e.g., Alon and Spencer6). For the second part, let  
S = Sk

i=1 Zi. Again, the moment generating function of S is 
bounded above by that of S* ∼ m−1B(mk, q)—all Zi’s are 
distributed as Z*—and the desired concentration bound  
follows.� ®

We assume from now on that the premise of Lemma 
2 holds for all choices of x Î X. A union bound shows  
that this happens with probability of at least 0.95. For each  
i = 1,…,k the random variable  is distributed as c2 with 
one degree of freedom. It follows that, conditioned on Zi, 
the expected value of y2

i is Zi/q and the moment generating 
function of y2

i is

Given any 0 < l < l0, for fixed l0, for large enough x, the 
moment generating function converges and is equal to

We use here the fact that Zi/q = O(1), which we derive from 
the first part of Lemma 2. By independence, therefore,

By (4), E[Z*/q −1] = 0 and, using (5),

Plugging this into (6) shows that , as 
desired.� ®

Since the expectation of the absolute value of N(0, 1)  
is , by taking conditional expectations, we find 
that

On the other hand, by Lemma 1, we note that

	 �
(7)

Next, we prove that ||y||1 is sharply concentrated around its 
mean E[||y||1] = kE[|y1|]. To do this, we begin by bounding the 
moments of |y1| = |Sjbjrjuj|. Using conditional expectations, 
we can show that, for any integer t ³ 0,

where U ∼ N(0,1). It is well known that E[|U|t] = (t)t/2; and so, 
by Lemma 1,

It follows that the moment generating function satisfies

Therefore, it converges for any 0 £ l < l0, where l0 is an abso-
lute constant, and

Using independence, we find that

Meanwhile, Markov’s inequality and (7) imply that

for some l = Q (e). The constraint l < l0 corresponds to e 
being smaller than some absolute constant. The same argu-
ment leads to a similar lower tail estimate. Our choice of 
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early solutions typically suffered from the curse of dimen-
sionality, but the last decade has witnessed a flurry of new 
algorithms that “break the curse” (see Indyk23 for a recent 
survey).

The first algorithms with query times of poly(d, log n) 
and polynomial storage (for fixed e) were those of Indyk 
and Motwani24 in the Euclidean space case, and Kushilevitz 
et al.27 in the Hamming cube case. Using JL, Indyk et al. 
provide a query time of O(e −2d log n) with nO(e−2) storage 
and preprocessing. A discrete variant of JL was used by 
Kushilevitz et al. in the Hamming cube case. We mention 
here that the dimension reduction overwhelms the running 
time of the two algorithms. In order to improve the run-
ning time in both cases, we used two main ideas in Ailon 
and Chazelle.2 The first idea applied to the discrete case. It 
used an observation related to the algebraic structure of the 
discrete version of JL used in Kushilevitz et al.27 to obtain a 
speedup in running time. This observation was only appli-
cable in the discrete case, but suggested the intuitive idea 
that a faster JL should be possible in Euclidean space as 
well, thereby motivating the search for FJLT. Indeed, by a 
straightforward application in Indyk et al.’s algorithm (with 
p = 1), the running time would later be improved using FJLT 
to O(d log d + e −3 log2 n). Notice the additive form of this last 
expression in some function f = f (d) and g = g(n, e), instead of  
a multiplicative one.

3.2. Fast approximation of large matrices
Large matrices appear in virtually every corner of science. 
Exact algorithms for decomposing or solving for large 
matrices are often inhibitively expensive to perform. This 
may change given improvements in matrix multiplication 
technology, but it appears that we will have to rely on matrix 
approximation strategies for a while, at least in the general 
case. It turns out that FJLT and ideas inspired by it play an 
important role in recent developments.

We elaborate on an example from a recent solution of 
Sarlós36 to the problem of 2 regression (least square fit of an 
overdetermined linear system). Prior to that work (and ours), 
Drineas et al.18 showed that, by downsampling (choosing 
only a small subset and discarding the rest) from the set of 
equations of the linear regression, an approximate solution 
to the problem could be obtained by solving the downsam-
pled problem, the size of which depends only on the dimen-
sion d of the original solution space. The difficulty with this 
method is that the downsampling distribution depends on 
norms of rows of the left-singular vector matrix of the origi-
nal system. Computing this matrix is as hard as the original 
regression problem and requires O(m2d) operations, with m 
the number of equations. To make this solution more prac-
tical, Sarlós observed that multiplying the equation matrix 
on the left by the m × m orthogonal matrix HD (as defined 
above in the definition of FJLT) implicitly multiplies the left-
singular vectors by HD as well. By an analysis similar to the 
one above, the resulting left-singular matrix can be shown to 
have almost uniform row norm. This allows use of Drineas 
et al.’s ideas with uniform sampling of the equations. Put 
together, these results imply the first o(m2d) running time 
solution for worst-case approximate 2 regression.

and hence

	 �

(8)

If we plug

into (8) and assume that e is smaller than some global e0, we 
avoid convergence issues (Lemma 2). By that same lemma, 
we now conclude that

A similar technique can be used to bound the left tail esti-
mate. We set k = ce −2 log n for some large enough c and use a 
union bound, possibly rescaling e, to conclude the 2 case of 
the first part of the FJLT lemma.

Running Time: The vector Dx requires O(d) steps, since D is 
diagonal. Computing H(Dx) takes O(d log d) time using the FFT 
for Walsh–Hadamard. Finally, computing P(H Dx) requires 
O(|P|) time, where |P| is the number of nonzeros in P. This 
number is distributed in B(nk, q). It is now immediate to verify 
that

A Markov bound establishes the desired complexity of the 
FJLT. This concludes our sketch of the proof of the FJLT 
lemma.� ®

3. APPLICATIONS

3.1. Approximate nearest neighbor searching
Given a metric space (U, dU) and a finite subset (database)  
P ⊆ U, the problem of e-approximate nearest neighbor (e-ANN) 
searching is to preprocess P so that, given a query x Î U,  
a point p Î P satisfying

can be found efficiently. In other words, we are interested in 
a point p further from x by a factor at most (1 + e) of the dis-
tance to its nearest neighbor.

This problem has received considerable attention. There 
are two good reasons for this: (i) ANN boasts more applica-
tions than virtually any other geometric problem23; (ii) allow-
ing a small error e makes it possible to break the curse of 
dimensionality.24, 27

There is abundant literature on (approximate) near-
est neighbor searching.8–10, 12, 13, 15, 16, 19, 21–24, 26, 27, 33, 39, 40 The 
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In a recent stream of papers, authors Liberty, Martinsson, 
Rokhlin, Tygert and Woolfe28, 35, 38 design and analyze fast 
algorithms for low-dimensional approximation algorithms of 
matrices, and demonstrate their application to the evaluation 
of the SVD of numerically low-rank matrices. Their schemes 
are based on randomized transformations akin to FJLT.

4. BEYOND FJLT
The FJLT result gives rise to the following question: What is 
a lower bound, as a function of n, d and e, on the complexity 
of computing a JL-like random linear mapping? By this we 
mean a mapping that distorts pairwise Euclidean distances 
among any set of n points in d dimension by at most 1 ± e. 
The underlying model of computation can be chosen as a 
linear circuit,32 manipulating complex-valued intermedi-
ates by either adding two or multiplying one by (random) 
constants, and designating n as input and k = O(e −2 log n) as 
output (say, for p = 2). It is worth observing that any lower 
bound in W(e −2 log n min{d, log2 n}) would imply a simi-
lar lower bound on the complexity of computing a Fourier 
transform. Such bounds are known only in a very restricted 
model31 where constants are of bounded magnitude.

As a particular case of interest, we note that, whenever  
k = O(d1/3), the running time of FJLT is O(d log d). In a more 
recent paper, Ailon and Liberty3 improved this bound and 
showed that it is possible to obtain a JL-like random mapping 
in time O(d log d) for k = O(d1/2 −d ) and any d > 0. Their trans-
formation borrows the idea of preconditioning a Fourier 
transform with a random diagonal matrix from FJLT, but 
uses it differently and takes advantage of stronger measure 
concentration bounds and tools from error correcting codes 
over fields of characteristic 2. The same authors together 
with Singer consider the following inverse problem4: Design 
randomized linear time computable transformations that 
require the mildest assumptions possible on data to ensure 
successful dimensionality reduction.�
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